Upload folder using huggingface_hub
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- README.md +7 -0
- build.toml +3 -0
- flake.nix +17 -0
- tests/__init__.py +0 -0
- tests/__pycache__/__init__.cpython-310.pyc +0 -0
- tests/__pycache__/conftest.cpython-310-pytest-8.3.4.pyc +0 -0
- tests/__pycache__/test_mxfp.cpython-310-pytest-8.3.4.pyc +0 -0
- tests/conftest.py +20 -0
- tests/test_compaction.py +28 -0
- tests/test_matmul.py +569 -0
- tests/test_mxfp.py +113 -0
- tests/test_routing.py +97 -0
- tests/test_specialize.py +84 -0
- tests/test_swiglu.py +42 -0
- tests/test_tensor.py +1 -0
- tests/test_tensor_details/test_layout_blackwell.py +24 -0
- tests/test_tensor_details/test_layout_hopper.py +99 -0
- torch-ext/triton_kernels/__init__.py +0 -0
- torch-ext/triton_kernels/__pycache__/__init__.cpython-310.pyc +0 -0
- torch-ext/triton_kernels/__pycache__/compaction.cpython-310.pyc +0 -0
- torch-ext/triton_kernels/__pycache__/datastruct.cpython-310.pyc +0 -0
- torch-ext/triton_kernels/__pycache__/matmul_ogs.cpython-310.pyc +0 -0
- torch-ext/triton_kernels/__pycache__/numerics.cpython-310.pyc +0 -0
- torch-ext/triton_kernels/__pycache__/routing.cpython-310.pyc +0 -0
- torch-ext/triton_kernels/__pycache__/specialize.cpython-310.pyc +0 -0
- torch-ext/triton_kernels/__pycache__/swiglu.cpython-310.pyc +0 -0
- torch-ext/triton_kernels/__pycache__/target_info.cpython-310.pyc +0 -0
- torch-ext/triton_kernels/__pycache__/topk.cpython-310.pyc +0 -0
- torch-ext/triton_kernels/compaction.py +69 -0
- torch-ext/triton_kernels/compaction_details/__pycache__/_masked_compaction.cpython-310.pyc +0 -0
- torch-ext/triton_kernels/compaction_details/_masked_compaction.py +20 -0
- torch-ext/triton_kernels/matmul_ogs.py +662 -0
- torch-ext/triton_kernels/matmul_ogs_details/__pycache__/_common.cpython-310.pyc +0 -0
- torch-ext/triton_kernels/matmul_ogs_details/__pycache__/_finalize_matmul.cpython-310.pyc +0 -0
- torch-ext/triton_kernels/matmul_ogs_details/__pycache__/_matmul_ogs.cpython-310.pyc +0 -0
- torch-ext/triton_kernels/matmul_ogs_details/__pycache__/_p_matmul_ogs.cpython-310.pyc +0 -0
- torch-ext/triton_kernels/matmul_ogs_details/__pycache__/_weight_transpose.cpython-310.pyc +0 -0
- torch-ext/triton_kernels/matmul_ogs_details/__pycache__/fast_contiguous.cpython-310.pyc +0 -0
- torch-ext/triton_kernels/matmul_ogs_details/__pycache__/opt_flags.cpython-310.pyc +0 -0
- torch-ext/triton_kernels/matmul_ogs_details/__pycache__/opt_flags_amd.cpython-310.pyc +0 -0
- torch-ext/triton_kernels/matmul_ogs_details/__pycache__/opt_flags_nvidia.cpython-310.pyc +0 -0
- torch-ext/triton_kernels/matmul_ogs_details/_common.py +165 -0
- torch-ext/triton_kernels/matmul_ogs_details/_finalize_matmul.py +377 -0
- torch-ext/triton_kernels/matmul_ogs_details/_matmul_ogs.py +464 -0
- torch-ext/triton_kernels/matmul_ogs_details/_p_matmul_ogs.py +505 -0
- torch-ext/triton_kernels/matmul_ogs_details/opt_flags.py +298 -0
- torch-ext/triton_kernels/matmul_ogs_details/opt_flags_details/opt_flags_amd.py +33 -0
- torch-ext/triton_kernels/matmul_ogs_details/opt_flags_details/opt_flags_nvidia.py +111 -0
- torch-ext/triton_kernels/numerics.py +42 -0
- torch-ext/triton_kernels/numerics_details/__init__.py +0 -0
README.md
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# triton-kernels
|
2 |
+
|
3 |
+
triton-kernels is a set of kernels that enable fast moe on different architecture. These kernels are compatible with different precision (e.g bf16, mxfp4)
|
4 |
+
|
5 |
+
|
6 |
+
Original code here https://github.com/triton-lang/triton/tree/main/python/triton_kernels
|
7 |
+
The current version is the following commit 7d0efaa7231661299284a603512fce4fa255e62c
|
build.toml
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
[general]
|
2 |
+
name = "triton_kernels"
|
3 |
+
universal = true
|
flake.nix
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
description = "Flake for triton-kernels kernels";
|
3 |
+
|
4 |
+
inputs = {
|
5 |
+
kernel-builder.url = "github:huggingface/kernel-builder";
|
6 |
+
};
|
7 |
+
|
8 |
+
outputs =
|
9 |
+
{
|
10 |
+
self,
|
11 |
+
kernel-builder,
|
12 |
+
}:
|
13 |
+
kernel-builder.lib.genFlakeOutputs {
|
14 |
+
path = ./.;
|
15 |
+
rev = self.shortRev or self.dirtyShortRev or self.lastModifiedDate;
|
16 |
+
};
|
17 |
+
}
|
tests/__init__.py
ADDED
File without changes
|
tests/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (156 Bytes). View file
|
|
tests/__pycache__/conftest.cpython-310-pytest-8.3.4.pyc
ADDED
Binary file (618 Bytes). View file
|
|
tests/__pycache__/test_mxfp.cpython-310-pytest-8.3.4.pyc
ADDED
Binary file (8.73 kB). View file
|
|
tests/conftest.py
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pytest
|
2 |
+
|
3 |
+
|
4 |
+
def pytest_addoption(parser):
|
5 |
+
parser.addoption("--device", action="store", default="cuda")
|
6 |
+
|
7 |
+
|
8 |
+
@pytest.fixture
|
9 |
+
def device(request):
|
10 |
+
return request.config.getoption("--device")
|
11 |
+
|
12 |
+
|
13 |
+
@pytest.fixture
|
14 |
+
def fresh_knobs(monkeypatch):
|
15 |
+
from triton._internal_testing import _fresh_knobs_impl
|
16 |
+
fresh_function, reset_function = _fresh_knobs_impl(monkeypatch)
|
17 |
+
try:
|
18 |
+
yield fresh_function()
|
19 |
+
finally:
|
20 |
+
reset_function()
|
tests/test_compaction.py
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pytest
|
2 |
+
import torch
|
3 |
+
from triton_kernels.compaction import compaction, compaction_torch
|
4 |
+
|
5 |
+
|
6 |
+
@pytest.mark.parametrize("n_tokens, n_cols, k, p", [
|
7 |
+
(8192, 64, 4, 0.5),
|
8 |
+
(8192, 64, 4, 1.0),
|
9 |
+
(131, 128, 16, 0.6),
|
10 |
+
(496, 128, 16, 0.),
|
11 |
+
])
|
12 |
+
def test_compaction(n_tokens, n_cols, k, p, device):
|
13 |
+
yi = torch.rand((n_tokens, n_cols), device=device).argsort(dim=-1)
|
14 |
+
yi = yi[:, :k].to(torch.int32)
|
15 |
+
yv = torch.randn((n_tokens, k), dtype=torch.bfloat16, device=device)
|
16 |
+
# "drop" indices from yi with probability `p`
|
17 |
+
mask = torch.zeros((n_tokens, n_cols), dtype=torch.int32, device=device)
|
18 |
+
keep = (torch.rand(yi.shape, device=device) < p)
|
19 |
+
if keep.any():
|
20 |
+
rows = torch.arange(yi.size(0), device=device).unsqueeze(1).expand_as(yi)
|
21 |
+
mask[rows[keep], yi[keep]] = 1
|
22 |
+
chunks = mask.view(*mask.shape[:-1], -1, 32)
|
23 |
+
weights = (1 << torch.arange(32, dtype=torch.int32, device=device))
|
24 |
+
bitmask = (chunks.int() * weights).sum(dim=-1)
|
25 |
+
yv_ref, yi_ref = compaction_torch(yv, yi, bitmask)
|
26 |
+
yv_tri, yi_tri = compaction(yv, yi, bitmask)
|
27 |
+
assert torch.all(yi_ref == yi_tri)
|
28 |
+
assert torch.all(yv_ref == yv_tri)
|
tests/test_matmul.py
ADDED
@@ -0,0 +1,569 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# isort: off
|
2 |
+
# fmt: off
|
3 |
+
from dataclasses import dataclass, fields, replace
|
4 |
+
import pytest
|
5 |
+
import torch
|
6 |
+
from typing import Union
|
7 |
+
import triton
|
8 |
+
# routing utilities
|
9 |
+
from triton_kernels.routing import routing
|
10 |
+
# matmul utilities
|
11 |
+
import triton_kernels.matmul_ogs_details.opt_flags as opt_flags
|
12 |
+
from triton_kernels.matmul_ogs import FlexCtx, PrecisionConfig, FusedActivation, FnSpecs, FnName, Epilogue
|
13 |
+
from triton_kernels.matmul_ogs import matmul_ogs_set_idle_sms, matmul_ogs, matmul_ogs_torch
|
14 |
+
from triton_kernels.swiglu import swiglu, swiglu_fn, PrecisionConfig as SwiGLUPrecisionConfig
|
15 |
+
from triton_kernels.tensor import convert_layout, wrap_torch_tensor, FP4
|
16 |
+
from triton_kernels.tensor_details import layout
|
17 |
+
# numerics utilities
|
18 |
+
from triton_kernels.numerics import InFlexData, OutFlexData
|
19 |
+
from triton_kernels.numerics_details.mxfp import downcast_to_mxfp, upcast_from_mxfp, dequantize_mxfp8_fn, downcast_to_mxfp_torch, upcast_from_mxfp_torch, MXFP_BLOCK_SIZE
|
20 |
+
# testing utilities
|
21 |
+
from triton_kernels.testing import assert_close, compute_actual_scale
|
22 |
+
# target-specific utilities
|
23 |
+
from triton_kernels.target_info import is_hip, is_hip_cdna3, is_cuda, is_hip_cdna4
|
24 |
+
|
25 |
+
# ---------------
|
26 |
+
# initialize data
|
27 |
+
# ---------------
|
28 |
+
|
29 |
+
|
30 |
+
def alloc_rand(shape, device, dtype, requires_grad=True):
|
31 |
+
if dtype.itemsize == 1:
|
32 |
+
tmp = 2**-(torch.randint(4, 8, shape, device=device, dtype=torch.float16))
|
33 |
+
return tmp.to(dtype).requires_grad_(requires_grad)
|
34 |
+
return torch.randn(shape, device=device, dtype=dtype, requires_grad=requires_grad)
|
35 |
+
|
36 |
+
|
37 |
+
def alloc_rand_like(x):
|
38 |
+
return alloc_rand(x.shape, x.device, x.dtype, x.requires_grad)
|
39 |
+
|
40 |
+
|
41 |
+
def mask_indx(idx, n_expts_act):
|
42 |
+
idx.src_indx[idx.dst_indx[-n_expts_act:]] = -1
|
43 |
+
idx.dst_indx[-n_expts_act:] = -1
|
44 |
+
return idx
|
45 |
+
|
46 |
+
|
47 |
+
def init_routing_data(m, n_expts_tot, n_expts_act, n_expt_shards, do_gather, do_scatter, device="cuda"):
|
48 |
+
logits = torch.randn((m, n_expts_tot), dtype=torch.float16, device=device, requires_grad=True)
|
49 |
+
routing_data, gather_idx, scatter_idx = routing(logits, n_expts_act, simulated_ep=n_expt_shards)
|
50 |
+
routing_data.gate_scal = None
|
51 |
+
gather_idx = gather_idx if do_gather else None
|
52 |
+
scatter_idx = scatter_idx if do_scatter else None
|
53 |
+
return m, routing_data, gather_idx, scatter_idx
|
54 |
+
|
55 |
+
|
56 |
+
def init_compute_data(m, n, k, gindx, sindx, n_expts_tot, n_expts_act, n_expt_shards, mode, act_dtype, weight_dtype,
|
57 |
+
has_y_gammas, requires_grad=True, device="cuda"):
|
58 |
+
torch.manual_seed(0)
|
59 |
+
assert mode in {'batched', "plain", 'ragged'}
|
60 |
+
in_m = m * (n_expts_act if gindx is None else 1)
|
61 |
+
shape_x = (n_expts_tot, in_m, k) if mode == 'batched' else (in_m, k)
|
62 |
+
shape_batch = tuple() if mode == "plain" else (n_expts_tot // n_expt_shards, )
|
63 |
+
x = alloc_rand(shape_x, device=device, dtype=act_dtype, requires_grad=requires_grad)
|
64 |
+
w = alloc_rand(shape_batch + (k, n), device=device, dtype=weight_dtype, requires_grad=requires_grad)
|
65 |
+
bias = alloc_rand(shape_batch + (n, ), device=device, dtype=torch.float32, requires_grad=requires_grad)
|
66 |
+
gs0 = 2**torch.randint(-5, 0, (m * n_expts_act, ), device=device, dtype=torch.float32, requires_grad=requires_grad)
|
67 |
+
gs1 = 2**torch.randint(-5, 0, (m * n_expts_act, ), device=device, dtype=torch.float32, requires_grad=requires_grad)
|
68 |
+
gs0 = gs0.detach().requires_grad_(requires_grad)
|
69 |
+
gs1 = gs1.detach().requires_grad_(requires_grad)
|
70 |
+
if mode == 'batched' or (not has_y_gammas) or (has_y_gammas and (gindx is not None) and act_dtype.itemsize >= 2):
|
71 |
+
gs0 = None
|
72 |
+
gs1 = None
|
73 |
+
if "float8" in str(weight_dtype) and torch.cuda.get_device_capability()[0] < 10:
|
74 |
+
w = w.transpose(-1, -2).contiguous().transpose(-1, -2)
|
75 |
+
return x, w, bias, gs0, gs1
|
76 |
+
|
77 |
+
|
78 |
+
# ---------------
|
79 |
+
# numerics stuff
|
80 |
+
# ---------------
|
81 |
+
|
82 |
+
|
83 |
+
def init_precision(out_dtype, act_use_flexpoint, weight_dtype, weight_mxfp, n_expts_tot=1, device="cuda"):
|
84 |
+
weight_use_flexpoint = weight_dtype.itemsize == 1 and not weight_mxfp
|
85 |
+
# flexpoint
|
86 |
+
make_tensor = lambda val0, val1: torch.tensor([val0, val1] * (n_expts_tot // 2) +
|
87 |
+
([val0]
|
88 |
+
if n_expts_tot % 2 else []), dtype=torch.float32, device=device)
|
89 |
+
make_scalar = lambda val: torch.tensor([val], dtype=torch.float32, device=device)
|
90 |
+
in_flex_data = lambda scale, use_flex: InFlexData(dtype=out_dtype, scale=make_scalar(scale)
|
91 |
+
) if use_flex else InFlexData()
|
92 |
+
in_flex_edata = lambda scale0, scale1, use_flex: InFlexData(dtype=weight_dtype, scale=make_tensor(scale0, scale1)
|
93 |
+
) if use_flex else InFlexData()
|
94 |
+
out_flex_data = lambda scale, use_flex: OutFlexData(dtype=out_dtype, expected_scale=make_scalar(
|
95 |
+
scale), actual_scale=make_scalar(0), checksum_scale=make_scalar(0)) if use_flex else OutFlexData()
|
96 |
+
flex_ctx = FlexCtx(
|
97 |
+
lhs_data=in_flex_data(1.25, act_use_flexpoint),
|
98 |
+
rhs_data=in_flex_edata(1.50, 1.25, weight_use_flexpoint),
|
99 |
+
out_data=out_flex_data(4.00, act_use_flexpoint),
|
100 |
+
)
|
101 |
+
return PrecisionConfig(flex_ctx=flex_ctx, acc_scale=2.0 if act_use_flexpoint or weight_use_flexpoint else 1.0,
|
102 |
+
out_dtype=out_dtype)
|
103 |
+
|
104 |
+
|
105 |
+
def apply_precision(x_tri, w_tri, bias_tri, gs0_tri, gs1_tri, precision_config):
|
106 |
+
flex_ctx = precision_config.flex_ctx
|
107 |
+
|
108 |
+
def apply(x, scale):
|
109 |
+
if scale is None:
|
110 |
+
x = x.clone()
|
111 |
+
elif scale.numel() == 1:
|
112 |
+
x = x.float() * scale
|
113 |
+
else:
|
114 |
+
assert x.ndim == 3
|
115 |
+
assert scale.numel() == x.shape[0]
|
116 |
+
x = x.float() * scale[:, None, None]
|
117 |
+
return x.detach().requires_grad_()
|
118 |
+
|
119 |
+
return (
|
120 |
+
apply(x_tri, flex_ctx.lhs_data.scale),
|
121 |
+
apply(w_tri, flex_ctx.rhs_data.scale),
|
122 |
+
apply(bias_tri, None),
|
123 |
+
None if gs0_tri is None else apply(gs0_tri, None),
|
124 |
+
None if gs1_tri is None else apply(gs1_tri, None),
|
125 |
+
)
|
126 |
+
|
127 |
+
|
128 |
+
def dtype_str_to_torch(dtype_str: str) -> torch.dtype:
|
129 |
+
return torch.uint8 if dtype_str == "float4_e2m1" else getattr(torch, dtype_str)
|
130 |
+
|
131 |
+
|
132 |
+
# Scope to ensure that the opt_flags_constraints are reset after the test
|
133 |
+
@pytest.fixture
|
134 |
+
def opt_flags_scope(request):
|
135 |
+
yield
|
136 |
+
opt_flags.reset_opt_flags_constraints()
|
137 |
+
|
138 |
+
|
139 |
+
# ---------------
|
140 |
+
# unit tests
|
141 |
+
# ---------------
|
142 |
+
|
143 |
+
|
144 |
+
@dataclass
|
145 |
+
class Case:
|
146 |
+
m: int
|
147 |
+
n: int
|
148 |
+
k: int
|
149 |
+
mode: str
|
150 |
+
act_dtype_str: str
|
151 |
+
weight_dtype_str: str
|
152 |
+
n_expts_tot: int = 1
|
153 |
+
n_expts_act: int = 1
|
154 |
+
n_expt_shards: int = 1
|
155 |
+
split_k: int = 1
|
156 |
+
hbm_swizzling: bool = False
|
157 |
+
epilogue_subtile: Union[int, None] = None
|
158 |
+
|
159 |
+
|
160 |
+
@pytest.mark.parametrize(
|
161 |
+
", ".join(f.name for f in fields(Case)),
|
162 |
+
[
|
163 |
+
tuple(getattr(case, f.name) for f in fields(Case)) for case in [
|
164 |
+
# Non-mx types:
|
165 |
+
Case(16, 256, 256, "ragged", "float16", "float16", 128, 4),
|
166 |
+
Case(16, 256, 256, "ragged", "float16", "float16", 128, 4, n_expt_shards=2),
|
167 |
+
Case(16, 256, 256, "ragged", "float16", "float16", 128, 4, n_expt_shards=4),
|
168 |
+
Case(16, 256, 256, "ragged", "float16", "float16", 4, 1, n_expt_shards=2),
|
169 |
+
Case(16, 256, 256, "ragged", "float16", "float16", 128, 4, split_k=3),
|
170 |
+
Case(16, 256, 256, "ragged", "float16", "float16", 128, 4, split_k=3),
|
171 |
+
Case(300, 400, 400, "batched", "float8_e5m2", "float8_e5m2", 5, 1),
|
172 |
+
Case(16, 256, 256, "batched", "float16", "float16", 5, 1),
|
173 |
+
Case(16, 256, 256, "ragged", "float16", "float16", 3, 1),
|
174 |
+
Case(256, 256, 256, "ragged", "float16", "float16", 4, 1),
|
175 |
+
Case(256, 256, 256, "ragged", "float16", "float16", 4, 1, split_k=3),
|
176 |
+
Case(300, 400, 400, "batched", "float16", "float16", 5, 1),
|
177 |
+
Case(300, 400, 400, "ragged", "float16", "float16"),
|
178 |
+
Case(300, 400, 400, "ragged", "float8_e5m2", "float8_e5m2"),
|
179 |
+
Case(1000, 400, 400, "ragged", "float8_e5m2", "float8_e5m2", 3, 1),
|
180 |
+
Case(600, 400, 400, "ragged", "float8_e5m2", "float8_e5m2", 4, 2, epilogue_subtile=1),
|
181 |
+
Case(600, 400, 400, "ragged", "float8_e5m2", "float8_e5m2", 4, 2, epilogue_subtile=2),
|
182 |
+
Case(600, 400, 400, "ragged", "float8_e5m2", "float8_e5m2", 4, 2, epilogue_subtile=4),
|
183 |
+
Case(600, 400, 400, "ragged", "float8_e5m2", "float8_e5m2", 4, 2),
|
184 |
+
Case(600, 400, 400, "ragged", "float8_e5m2", "float8_e5m2", 4, 2, n_expt_shards=2),
|
185 |
+
Case(600, 400, 400, "ragged", "float8_e5m2", "float8_e5m2", 4, 1, n_expt_shards=2),
|
186 |
+
Case(600, 400, 400, "ragged", "float8_e5m2", "float8_e5m2", 4, 2, split_k=2),
|
187 |
+
Case(1000, 400, 400, "ragged", "float16", "float16", 3, 1),
|
188 |
+
Case(1000, 700, 700, "ragged", "float16", "float16", 8, 2),
|
189 |
+
Case(1000, 700, 700, "ragged", "float16", "float16", 8, 2, split_k=9),
|
190 |
+
# mx types:
|
191 |
+
Case(16, 256, 256, "plain", "bfloat16", "mxfloat4_e2m1", 1, 1),
|
192 |
+
Case(16, 256, 256, "plain", "bfloat16", "mxfloat4_e2m1", 1, 1, hbm_swizzling=True),
|
193 |
+
Case(16, 256, 256, "ragged", "bfloat16", "mxfloat4_e2m1", 1, 1),
|
194 |
+
Case(16, 256, 256, "ragged", "bfloat16", "mxfloat4_e2m1", 1, 1, hbm_swizzling=True),
|
195 |
+
Case(1000, 700, 700, "batched", "bfloat16", "mxfloat4_e2m1", 8, 2),
|
196 |
+
Case(1000, 700, 700, "batched", "bfloat16", "mxfloat4_e2m1", 8, 2, hbm_swizzling=True),
|
197 |
+
Case(1000, 700, 700, "ragged", "bfloat16", "mxfloat4_e2m1", 8, 2, split_k=9),
|
198 |
+
Case(1000, 512, 256, "ragged", "bfloat16", "mxfloat4_e2m1", 8, 2, split_k=9, hbm_swizzling=True),
|
199 |
+
Case(300, 400, 400, "ragged", "bfloat16", "mxfloat8_e4m3fn", 8, 4),
|
200 |
+
Case(300, 400, 400, "ragged", "bfloat16", "mxfloat8_e4m3fn", 8, 4, hbm_swizzling=True),
|
201 |
+
Case(300, 400, 400, "batched", "bfloat16", "mxfloat8_e5m2", 32, 4),
|
202 |
+
Case(1000, 700, 2, "batched", "bfloat16", "mxfloat4_e2m1", 8, 2),
|
203 |
+
Case(1, 2880, 2880, "ragged", "bfloat16", "mxfloat4_e2m1", 128, 4),
|
204 |
+
Case(16, 256, 256, "ragged", "float8_e5m2", "mxfloat4_e2m1", 128, 4, hbm_swizzling=True),
|
205 |
+
Case(1000, 704, 832, "batched", "float8_e5m2", "mxfloat4_e2m1", 3, 1, hbm_swizzling=True),
|
206 |
+
Case(1000, 704, 832, "batched", "float8_e5m2", "mxfloat4_e2m1", 3, 1, hbm_swizzling=True),
|
207 |
+
Case(1000, 704, 832, "batched", "float8_e5m2", "mxfloat4_e2m1", 3, 1),
|
208 |
+
Case(1000, 704, 800, "ragged", "float8_e5m2", "mxfloat4_e2m1", 8, 2, split_k=9),
|
209 |
+
Case(1000, 704, 800, "ragged", "float8_e5m2", "mxfloat4_e2m1", 8, 2, split_k=9, hbm_swizzling=True),
|
210 |
+
Case(1000, 704, 800, "ragged", "float8_e5m2", "mxfloat4_e2m1", 8, 2),
|
211 |
+
Case(1000, 704, 800, "ragged", "float8_e5m2", "mxfloat4_e2m1", 8, 2, hbm_swizzling=True),
|
212 |
+
Case(300, 400, 400, "ragged", "float8_e5m2", "mxfloat8_e4m3fn", 8, 4),
|
213 |
+
Case(300, 400, 400, "ragged", "float8_e5m2", "mxfloat8_e4m3fn", 8, 4, hbm_swizzling=True),
|
214 |
+
Case(300, 400, 832, "ragged", "float8_e5m2", "mxfloat4_e2m1", 8, 4),
|
215 |
+
Case(300, 400, 832, "ragged", "float8_e5m2", "mxfloat4_e2m1", 8, 4, hbm_swizzling=True),
|
216 |
+
Case(300, 400, 400, "batched", "float8_e5m2", "mxfloat8_e4m3fn", 32, 4),
|
217 |
+
Case(300, 400, 400, "batched", "float8_e5m2", "mxfloat8_e4m3fn", 32, 4, hbm_swizzling=True),
|
218 |
+
Case(256, 256, 256, "ragged", "float8_e5m2", "mxfloat4_e2m1", 128, 4, hbm_swizzling=True),
|
219 |
+
Case(256, 256, 256, "ragged", "float8_e5m2", "mxfloat4_e2m1", 128, 4, hbm_swizzling=False),
|
220 |
+
Case(16, 256, 256, "ragged", "mxfloat8_e4m3fn", "mxfloat4_e2m1", 128, 4, hbm_swizzling=True),
|
221 |
+
Case(1000, 704, 800, "batched", "mxfloat8_e4m3fn", "mxfloat4_e2m1", 3, 1, hbm_swizzling=True),
|
222 |
+
Case(1000, 704, 800, "batched", "mxfloat8_e4m3fn", "mxfloat4_e2m1", 2, 1),
|
223 |
+
Case(1000, 704, 800, "ragged", "mxfloat8_e4m3fn", "mxfloat4_e2m1", 8, 2, split_k=9),
|
224 |
+
Case(1000, 704, 800, "ragged", "mxfloat8_e4m3fn", "mxfloat4_e2m1", 8, 2, split_k=9, hbm_swizzling=True),
|
225 |
+
Case(1000, 704, 800, "ragged", "mxfloat8_e4m3fn", "mxfloat4_e2m1", 8, 2),
|
226 |
+
Case(1000, 704, 800, "ragged", "mxfloat8_e4m3fn", "mxfloat4_e2m1", 8, 2, hbm_swizzling=True),
|
227 |
+
Case(300, 400, 400, "ragged", "mxfloat8_e4m3fn", "mxfloat8_e4m3fn", 8, 4),
|
228 |
+
Case(300, 400, 400, "ragged", "mxfloat8_e4m3fn", "mxfloat8_e4m3fn", 8, 4, hbm_swizzling=True),
|
229 |
+
Case(300, 400, 800, "ragged", "mxfloat8_e4m3fn", "mxfloat4_e2m1", 8, 4),
|
230 |
+
Case(300, 400, 800, "ragged", "mxfloat8_e4m3fn", "mxfloat4_e2m1", 8, 4, hbm_swizzling=True),
|
231 |
+
Case(300, 400, 400, "batched", "mxfloat8_e4m3fn", "mxfloat8_e4m3fn", 32, 4),
|
232 |
+
Case(300, 400, 400, "batched", "mxfloat8_e4m3fn", "mxfloat8_e4m3fn", 32, 4, hbm_swizzling=True),
|
233 |
+
# AMD
|
234 |
+
Case(300, 400, 400, "ragged", "float8_e4m3fnuz", "float8_e4m3fnuz"),
|
235 |
+
Case(1000, 400, 400, "ragged", "float8_e4m3fnuz", "float8_e4m3fnuz", 3, 1),
|
236 |
+
Case(600, 400, 400, "ragged", "float8_e4m3fnuz", "float8_e4m3fnuz", 4, 2),
|
237 |
+
Case(600, 400, 400, "ragged", "float8_e4m3fnuz", "float8_e4m3fnuz", 4, 2, n_expt_shards=2),
|
238 |
+
Case(600, 400, 400, "ragged", "float8_e4m3fnuz", "float8_e4m3fnuz", 4, 2, split_k=2),
|
239 |
+
Case(300, 400, 400, "ragged", "float8_e4m3fn", "float8_e4m3fn"),
|
240 |
+
Case(1000, 400, 400, "ragged", "float8_e4m3fn", "float8_e4m3fn", 3, 1),
|
241 |
+
Case(600, 400, 400, "ragged", "float8_e4m3fn", "float8_e4m3fn", 4, 2),
|
242 |
+
Case(600, 400, 400, "ragged", "float8_e4m3fn", "float8_e4m3fn", 4, 2, n_expt_shards=2),
|
243 |
+
]
|
244 |
+
],
|
245 |
+
)
|
246 |
+
@pytest.mark.parametrize("block_m", [16, 128])
|
247 |
+
@pytest.mark.parametrize("do_gather, do_scatter, fused_scatter", [
|
248 |
+
(False, False, False),
|
249 |
+
(True, False, False),
|
250 |
+
(False, True, False),
|
251 |
+
(True, True, False),
|
252 |
+
(True, True, True),
|
253 |
+
])
|
254 |
+
@pytest.mark.parametrize("has_y_gammas", [False, True])
|
255 |
+
@pytest.mark.parametrize("is_persistent", [False, True])
|
256 |
+
def test_op(m, n, k, split_k, do_gather, do_scatter, fused_scatter, has_y_gammas, is_persistent, n_expts_tot,
|
257 |
+
n_expts_act, n_expt_shards, mode, act_dtype_str, weight_dtype_str, block_m, hbm_swizzling, epilogue_subtile,
|
258 |
+
device, opt_flags_scope, fresh_knobs):
|
259 |
+
# TODO: remove when Triton FP8 supports proper RTNE
|
260 |
+
if is_cuda():
|
261 |
+
if "float8" in weight_dtype_str and torch.cuda.get_device_capability()[0] < 9:
|
262 |
+
pytest.skip("Float8 not tested on A100")
|
263 |
+
if "float16" in act_dtype_str and "mx" in weight_dtype_str and torch.cuda.get_device_capability()[0] >= 10:
|
264 |
+
pytest.skip("float16 x mx not supported with cuda capability >= 10")
|
265 |
+
if weight_dtype_str.startswith("mx"):
|
266 |
+
if "float8" in act_dtype_str and torch.cuda.get_device_capability()[0] < 10:
|
267 |
+
pytest.skip("float8 x mx not supported with cuda capability < 10")
|
268 |
+
if act_dtype_str == "mxfloat8_e4m3fn":
|
269 |
+
if is_persistent:
|
270 |
+
pytest.skip("mx x mx not supported with persistent kernel")
|
271 |
+
if n == 2880 and k == 2880 and torch.cuda.get_device_capability()[0] < 9:
|
272 |
+
pytest.skip("Not enough memory on A100")
|
273 |
+
|
274 |
+
elif is_hip():
|
275 |
+
if "float8" in act_dtype_str and "mx" in weight_dtype_str and not is_hip_cdna4():
|
276 |
+
pytest.skip("float8 x mx only supported on CDNA4")
|
277 |
+
if "float8" in act_dtype_str and "mxfloat8" in weight_dtype_str:
|
278 |
+
pytest.skip("NYI: float8 x mxfloat8 not tested on AMD GPU")
|
279 |
+
if act_dtype_str.startswith("mx") and weight_dtype_str.startswith("mx"):
|
280 |
+
pytest.skip("NYI: mx x mx not tested on AMD GPU")
|
281 |
+
if is_persistent:
|
282 |
+
pytest.skip("NYI: Persistent kernel not supported on AMD GPU")
|
283 |
+
if split_k > 1:
|
284 |
+
pytest.skip("splitK hasn't been fully tested on AMD GPU.")
|
285 |
+
|
286 |
+
if "float8_e4m3fnuz" in (weight_dtype_str, act_dtype_str) and not is_hip_cdna3():
|
287 |
+
pytest.skip("float8_e4m3fnuz only tested on AMD CDNA3 Platform")
|
288 |
+
|
289 |
+
if fused_scatter and split_k > 1:
|
290 |
+
pytest.skip("fused scatter scratchpad not supported with split_k")
|
291 |
+
if hbm_swizzling:
|
292 |
+
if is_hip():
|
293 |
+
pytest.skip("NYI. HBM swizzling just implemented for CUDA.")
|
294 |
+
if torch.cuda.get_device_capability()[0] < 9:
|
295 |
+
pytest.skip("NYI. Ampere swizzling.")
|
296 |
+
if torch.cuda.get_device_capability()[0] < 10:
|
297 |
+
if "mxfloat4" not in weight_dtype_str:
|
298 |
+
pytest.skip("NYI. Hopper swizzling just implemented for mxfp4.")
|
299 |
+
if k % 64 != 0 or n % 64 != 0:
|
300 |
+
# Automatic padding not implemented for Hopper swizzle
|
301 |
+
pytest.skip("Hopper swizzling acts on a 64x64 tile (4x1 mma tiles).")
|
302 |
+
|
303 |
+
# launch metadata for batched / mx types may not work yet.
|
304 |
+
test_launch_metadata = (mode == "ragged") and ("mx" not in weight_dtype_str)
|
305 |
+
|
306 |
+
torch.manual_seed(0)
|
307 |
+
|
308 |
+
block_k = None
|
309 |
+
if is_persistent and weight_dtype_str.startswith("mx") and torch.cuda.get_device_capability()[0] < 10:
|
310 |
+
# Override block_k for testing correctness. The default is temporarily 128 for
|
311 |
+
# performance reasons which doesn't work with persistent matmul.
|
312 |
+
# TODO: revisit when Triton is better for H100 + MXFP4
|
313 |
+
block_k = 256
|
314 |
+
|
315 |
+
constraints = {
|
316 |
+
"block_m": block_m,
|
317 |
+
"block_k": block_k,
|
318 |
+
"split_k": split_k,
|
319 |
+
"fused_scatter": fused_scatter,
|
320 |
+
"is_persistent": is_persistent,
|
321 |
+
"epilogue_subtile": epilogue_subtile,
|
322 |
+
}
|
323 |
+
opt_flags.update_opt_flags_constraints(constraints)
|
324 |
+
|
325 |
+
weight_mxfp = weight_dtype_str.startswith("mx")
|
326 |
+
if weight_mxfp:
|
327 |
+
weight_dtype_str = weight_dtype_str[2:]
|
328 |
+
act_mxfp8 = act_dtype_str.startswith("mx")
|
329 |
+
act_is_float8 = act_dtype_str.startswith("float8")
|
330 |
+
if act_mxfp8:
|
331 |
+
act_dtype_str = act_dtype_str[2:]
|
332 |
+
dequantize_mxfp8_spec = FnSpecs(
|
333 |
+
FnName.DEQUANTIZE_MXFP8.name, dequantize_mxfp8_fn, (), ()
|
334 |
+
)
|
335 |
+
|
336 |
+
test_bwd = False
|
337 |
+
weight_dtype = dtype_str_to_torch(weight_dtype_str)
|
338 |
+
act_dtype = dtype_str_to_torch(act_dtype_str)
|
339 |
+
precision_opt = init_precision(act_dtype, act_is_float8, weight_dtype, weight_mxfp, n_expts_tot // n_expt_shards, device=device)
|
340 |
+
# precision_opt.x_pad_trans_requires_flexpoint = False
|
341 |
+
if mode == "ragged":
|
342 |
+
m, rdata, gindx, sindx = init_routing_data(m, n_expts_tot, n_expts_act, n_expt_shards, do_gather, do_scatter,
|
343 |
+
device=device)
|
344 |
+
else:
|
345 |
+
rdata = gindx = sindx = None
|
346 |
+
x_tri, w_tri, bias_tri, gs0_tri, gs1_tri = init_compute_data(m, n, k, gindx, sindx, n_expts_tot, n_expts_act,
|
347 |
+
n_expt_shards, mode, torch.bfloat16 if act_mxfp8 else act_dtype, #
|
348 |
+
torch.bfloat16 if weight_mxfp else weight_dtype,
|
349 |
+
has_y_gammas, requires_grad=test_bwd, device=device)
|
350 |
+
x_ref, w_ref, bias_ref, gs0_ref, gs1_ref = apply_precision(x_tri, w_tri, bias_tri, gs0_tri, gs1_tri, precision_opt)
|
351 |
+
|
352 |
+
if w_tri.shape[0] == 1:
|
353 |
+
# Test the case when weight has dim 2, i.e., shape (K, N).
|
354 |
+
w_tri = w_tri.squeeze(0).detach().requires_grad_(test_bwd)
|
355 |
+
w_ref = w_ref.squeeze(0).detach().requires_grad_(test_bwd)
|
356 |
+
|
357 |
+
if weight_mxfp:
|
358 |
+
mx_axis = w_tri.ndim - 2
|
359 |
+
# compute layouts
|
360 |
+
w_layout, w_layout_opts = layout.StridedLayout, dict()
|
361 |
+
w_scale_layout, w_scale_layout_opts = layout.StridedLayout, dict()
|
362 |
+
if hbm_swizzling and "float4" in weight_dtype_str:
|
363 |
+
w_layout, w_layout_opts = layout.make_default_matmul_mxfp4_w_layout(mx_axis=mx_axis)
|
364 |
+
w_scale_layout, w_scale_layout_opts = layout.make_default_matmul_mxfp4_w_scale_layout(
|
365 |
+
mx_axis=mx_axis, num_warps=8)
|
366 |
+
# downcast to mxfp
|
367 |
+
w_tri, w_scale_tri = downcast_to_mxfp(w_tri, weight_dtype, axis=mx_axis)
|
368 |
+
w_ref = upcast_from_mxfp(w_tri, w_scale_tri, torch.bfloat16, axis=mx_axis)
|
369 |
+
w_tri_dtype = FP4 if "float4" in weight_dtype_str else weight_dtype
|
370 |
+
w_tri = wrap_torch_tensor(w_tri, w_tri_dtype)
|
371 |
+
w_scale_tri = wrap_torch_tensor(w_scale_tri)
|
372 |
+
# convert layouts
|
373 |
+
w_tri = convert_layout(w_tri, w_layout, **w_layout_opts)
|
374 |
+
w_scale_tri = convert_layout(w_scale_tri, w_scale_layout, **w_scale_layout_opts)
|
375 |
+
precision_opt.weight_scale = w_scale_tri
|
376 |
+
epilogue = None
|
377 |
+
if act_mxfp8:
|
378 |
+
x_tri, x_mx_scales_tri = downcast_to_mxfp(x_tri, act_dtype, axis=-1)
|
379 |
+
x_ref = upcast_from_mxfp(x_tri, x_mx_scales_tri, torch.bfloat16, axis=-1)
|
380 |
+
is_input_batched = x_tri.ndim == 3
|
381 |
+
y_shape = x_tri.shape if is_input_batched else (1,) + x_tri.shape
|
382 |
+
n_rows = y_shape[1] if gindx is None or mode == "batched" else gindx.dst_indx.shape[0]
|
383 |
+
y_shape = (y_shape[0], n_rows, w_tri.shape[-1])
|
384 |
+
if sindx is None or mode == "batched":
|
385 |
+
if not is_input_batched:
|
386 |
+
y_shape = (y_shape[1], y_shape[2])
|
387 |
+
else:
|
388 |
+
y_shape = (n_rows // rdata.n_expts_act, y_shape[-1])
|
389 |
+
y_scale_shape = y_shape[:-1] + (triton.cdiv(y_shape[-1], MXFP_BLOCK_SIZE),)
|
390 |
+
y_scale = torch.empty(y_scale_shape, dtype=torch.uint8, device=x_tri.device)
|
391 |
+
precision_opt = replace(precision_opt, act_scale=x_mx_scales_tri, out_scale=y_scale)
|
392 |
+
epilogue = Epilogue(dequantize_mxfp8_spec, tuple(), tuple(), effective_itemsize=6.0)
|
393 |
+
else:
|
394 |
+
y_scale = None
|
395 |
+
|
396 |
+
if test_launch_metadata:
|
397 |
+
|
398 |
+
def _clobber(t, used_mask):
|
399 |
+
# Fill the unread part of the tensor with garbage, to be sure that
|
400 |
+
# we don't actually read from the part.
|
401 |
+
if len(used_mask) == 1:
|
402 |
+
return
|
403 |
+
elif t.element_size() == 1:
|
404 |
+
t.view(torch.int8)[~used_mask] = 127
|
405 |
+
else:
|
406 |
+
t[~used_mask] = torch.inf
|
407 |
+
|
408 |
+
if rdata is not None:
|
409 |
+
n_tokens = rdata.expt_hist.sum().item()
|
410 |
+
used_expts = (rdata.expt_hist > 0)
|
411 |
+
_clobber(w_tri, used_expts)
|
412 |
+
n_w_bytes = used_expts.sum().item() * n * k * w_tri.element_size()
|
413 |
+
else:
|
414 |
+
n_tokens = m
|
415 |
+
n_w_bytes = w_tri.numel() * w_tri.element_size()
|
416 |
+
|
417 |
+
if gindx is not None:
|
418 |
+
used_x_rows = (gindx.dst_indx.view(-1, n_expts_act) != -1).any(dim=1)
|
419 |
+
_clobber(x_tri, used_x_rows)
|
420 |
+
n_x_bytes = used_x_rows.sum().item() * k * x_tri.element_size()
|
421 |
+
elif rdata is not None:
|
422 |
+
n_x_bytes = n_tokens * k * x_tri.element_size()
|
423 |
+
else:
|
424 |
+
n_x_bytes = x_tri.numel() * x_tri.element_size()
|
425 |
+
|
426 |
+
nbytes = None
|
427 |
+
|
428 |
+
def _hook(launch_metadata):
|
429 |
+
nonlocal nbytes
|
430 |
+
metadata = launch_metadata.get()
|
431 |
+
if "matmul_ogs" in metadata["name"]:
|
432 |
+
nbytes = metadata["bytes"]
|
433 |
+
|
434 |
+
triton.knobs.runtime.launch_enter_hook = _hook
|
435 |
+
|
436 |
+
if mode == "batched":
|
437 |
+
rdata, gindx, sindx = None, None, None
|
438 |
+
flex = precision_opt.flex_ctx
|
439 |
+
|
440 |
+
# triton
|
441 |
+
try:
|
442 |
+
tri_y = matmul_ogs(x_tri, w_tri, bias_tri, rdata, gindx, sindx, precision_opt, gammas=gs1_ref, epilogue=epilogue)
|
443 |
+
except (opt_flags.InapplicableConstraint, NotImplementedError):
|
444 |
+
pytest.skip("inapplicable opt_flags constraint")
|
445 |
+
# If split_k > 1, then the intermediate tensor is fp32.
|
446 |
+
sep_gather = mode == "ragged" and do_gather and n_expts_act > 1 and split_k == 1
|
447 |
+
sep_scatter = mode == "ragged" and do_scatter and n_expts_act > 1 and split_k == 1
|
448 |
+
y_scale = flex.out_data.expected_scale if act_is_float8 else 1
|
449 |
+
|
450 |
+
if test_launch_metadata:
|
451 |
+
if gindx is not None:
|
452 |
+
n_y_bytes = (gindx.src_indx != -1).sum().item() * n * tri_y.element_size()
|
453 |
+
elif rdata is not None:
|
454 |
+
n_y_bytes = n_tokens * n * tri_y.element_size()
|
455 |
+
else:
|
456 |
+
n_y_bytes = tri_y.numel() * tri_y.element_size()
|
457 |
+
assert nbytes == n_x_bytes + n_y_bytes + n_w_bytes
|
458 |
+
triton.knobs.runtime.launch_enter_hook = None
|
459 |
+
|
460 |
+
def round_x(x, idx):
|
461 |
+
return x.to(act_dtype).to(torch.float32) if sep_gather else x
|
462 |
+
|
463 |
+
round_y = lambda y: (y / y_scale).to(act_dtype).to(torch.float32) * y_scale if sep_scatter else y
|
464 |
+
ref_y = matmul_ogs_torch(x_ref, w_ref, bias_ref, #
|
465 |
+
rdata, gindx, sindx, round_x=round_x, round_y=round_y, gammas=gs1_ref)
|
466 |
+
scale = lambda val, scal: val if scal is None else val / scal
|
467 |
+
if n_expt_shards > 1:
|
468 |
+
if do_scatter:
|
469 |
+
indx = sindx.dst_indx[sindx.dst_indx != -1]
|
470 |
+
ref_y = ref_y[indx // n_expts_act, :]
|
471 |
+
if act_is_float8:
|
472 |
+
tri_y = tri_y.view(torch.int8)
|
473 |
+
tri_y = tri_y[indx // n_expts_act, :]
|
474 |
+
if act_is_float8:
|
475 |
+
tri_y = tri_y.view(act_dtype)
|
476 |
+
else:
|
477 |
+
n_rows = rdata.expt_hist.sum()
|
478 |
+
assert n_rows > 0
|
479 |
+
ref_y = ref_y[:n_rows]
|
480 |
+
tri_y = tri_y[:n_rows]
|
481 |
+
if act_mxfp8:
|
482 |
+
tri_y = upcast_from_mxfp(tri_y, precision_opt.out_scale, dtype=torch.bfloat16, axis=-1).to(ref_y.dtype)
|
483 |
+
ref_y_quant, ref_y_scale = downcast_to_mxfp_torch(ref_y, act_dtype, axis=-1)
|
484 |
+
ref_y = upcast_from_mxfp_torch(ref_y_quant, ref_y_scale, target_dtype=ref_y.dtype, axis=-1)
|
485 |
+
maxtol = 4e-1
|
486 |
+
rmstol = 4e-2
|
487 |
+
else:
|
488 |
+
maxtol = None
|
489 |
+
rmstol = None
|
490 |
+
assert_close(scale(ref_y, flex.out_data.expected_scale), tri_y, maxtol=maxtol, rmstol=rmstol)
|
491 |
+
|
492 |
+
if act_is_float8:
|
493 |
+
tri_y_scale = flex.out_data.actual_scale.clone()
|
494 |
+
ref_y_scale = compute_actual_scale(ref_y, tri_y.dtype)
|
495 |
+
assert (ref_y_scale -
|
496 |
+
tri_y_scale).abs() < 1e-10, f"ref_y_scale: {ref_y_scale}, tri_y_scale: {tri_y_scale.item()}"
|
497 |
+
|
498 |
+
|
499 |
+
def test_set_idle_sms():
|
500 |
+
if not is_cuda():
|
501 |
+
pytest.skip("Only supported on CUDA")
|
502 |
+
from triton_kernels.matmul_ogs_details.opt_flags import make_opt_flags
|
503 |
+
num_idle_sms = 24
|
504 |
+
matmul_ogs_set_idle_sms(num_idle_sms)
|
505 |
+
flags = make_opt_flags(torch.float32, torch.float32, torch.float32, PrecisionConfig(), \
|
506 |
+
1024, 1024, 1024, None, True, False, 1)
|
507 |
+
assert flags.idle_sms == num_idle_sms
|
508 |
+
|
509 |
+
|
510 |
+
@pytest.mark.parametrize("m, n, k, mode", [
|
511 |
+
(1200, 704, 608, "ragged"),
|
512 |
+
(800, 800, 400, "batched"),
|
513 |
+
])
|
514 |
+
@pytest.mark.parametrize("split_k", [1, 2])
|
515 |
+
@pytest.mark.parametrize("do_gather, do_scatter, fused_scatter", [
|
516 |
+
(False, False, False),
|
517 |
+
(True, False, False),
|
518 |
+
(False, True, False),
|
519 |
+
(True, True, False),
|
520 |
+
(True, True, True),
|
521 |
+
])
|
522 |
+
@pytest.mark.parametrize("is_persistent, epilogue_subtile", [
|
523 |
+
(False, None),
|
524 |
+
(True, 1),
|
525 |
+
(True, 4),
|
526 |
+
])
|
527 |
+
@pytest.mark.parametrize("swiglu_alpha, swiglu_limit", [
|
528 |
+
(1.1, 1.4),
|
529 |
+
(1.0, 1.2),
|
530 |
+
(0.7, 1.0),
|
531 |
+
])
|
532 |
+
def test_fused_act(m, n, k, mode, split_k, do_gather, do_scatter, fused_scatter, is_persistent, epilogue_subtile,
|
533 |
+
swiglu_alpha, swiglu_limit, device, opt_flags_scope):
|
534 |
+
if fused_scatter and split_k > 1:
|
535 |
+
pytest.skip("fused scatter scratchpad not supported with split_k")
|
536 |
+
torch.manual_seed(0)
|
537 |
+
constraints = {
|
538 |
+
"is_persistent": is_persistent,
|
539 |
+
"epilogue_subtile": epilogue_subtile,
|
540 |
+
"fused_scatter": fused_scatter,
|
541 |
+
"split_k": split_k,
|
542 |
+
}
|
543 |
+
n_expts_tot, n_expts_act, n_expt_shards = 1, 1, 1
|
544 |
+
opt_flags.update_opt_flags_constraints(constraints)
|
545 |
+
|
546 |
+
weight_dtype, act_dtype = torch.float16, torch.float16
|
547 |
+
if mode == "ragged":
|
548 |
+
m, rdata, gindx, sindx = init_routing_data(m, n_expts_tot, n_expts_act, n_expt_shards, do_gather, do_scatter,
|
549 |
+
device=device)
|
550 |
+
else:
|
551 |
+
rdata = gindx = sindx = None
|
552 |
+
|
553 |
+
precision_opt = init_precision(act_dtype, str(act_dtype).startswith("torch.float8"), weight_dtype, False, n_expts_tot // n_expt_shards, device=device)
|
554 |
+
x, w, bias, _, _ = init_compute_data(m, n, k, gindx, sindx, n_expts_tot, n_expts_act, n_expt_shards, mode,
|
555 |
+
act_dtype, weight_dtype, False, requires_grad=False, device=device)
|
556 |
+
|
557 |
+
if mode == "batched":
|
558 |
+
rdata, gindx, sindx = None, None, None
|
559 |
+
|
560 |
+
try:
|
561 |
+
a = swiglu(matmul_ogs(x, w, bias, rdata, gindx, sindx, precision_opt), swiglu_alpha,
|
562 |
+
precision_config=SwiGLUPrecisionConfig(swiglu_limit))
|
563 |
+
b = matmul_ogs(
|
564 |
+
x, w, bias, rdata, gindx, sindx, precision_opt,
|
565 |
+
fused_activation=FusedActivation(FnSpecs("swiglu", swiglu_fn, ("alpha", "limit")),
|
566 |
+
(swiglu_alpha, swiglu_limit), 2))
|
567 |
+
except opt_flags.InapplicableConstraint:
|
568 |
+
pytest.skip("inapplicable constraint")
|
569 |
+
assert_close(a, b)
|
tests/test_mxfp.py
ADDED
@@ -0,0 +1,113 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pytest
|
2 |
+
import torch
|
3 |
+
|
4 |
+
from triton_kernels.numerics_details.mxfp import (
|
5 |
+
DequantScaleRoundingMode,
|
6 |
+
downcast_to_mxfp,
|
7 |
+
downcast_to_mxfp_torch,
|
8 |
+
get_max_quant_val,
|
9 |
+
upcast_from_mxfp,
|
10 |
+
upcast_from_mxfp_torch,
|
11 |
+
)
|
12 |
+
from triton_kernels.testing import assert_close, assert_equal
|
13 |
+
|
14 |
+
|
15 |
+
def dtype_str_to_torch(dtype_str: str) -> torch.dtype:
|
16 |
+
return torch.uint8 if dtype_str == "float4_e2m1" else getattr(torch, dtype_str)
|
17 |
+
|
18 |
+
|
19 |
+
@pytest.mark.parametrize("dst_dtype", ["float16", "bfloat16"])
|
20 |
+
def test_mxfp4_rounding_cases(dst_dtype):
|
21 |
+
dst_dtype = dtype_str_to_torch(dst_dtype)
|
22 |
+
x = torch.tensor([6, 0, 0.24, 0.25, 0.75, 0.99, 1.2, 1.3]).cuda().bfloat16().view(1, -1, 1)
|
23 |
+
quant, scale = downcast_to_mxfp(x, torch.uint8, axis=1)
|
24 |
+
dequant = upcast_from_mxfp(quant, scale, dst_dtype, axis=1)
|
25 |
+
assert dequant.flatten().tolist() == [6, 0, 0, 0.5, 1.0, 1.0, 1.0, 1.5], f"{dequant=}"
|
26 |
+
|
27 |
+
quant_torch, scale_torch = downcast_to_mxfp_torch(x, torch.uint8, axis=1)
|
28 |
+
assert_equal(quant_torch, quant)
|
29 |
+
assert_equal(scale_torch, scale)
|
30 |
+
|
31 |
+
dequant_torch = upcast_from_mxfp_torch(quant_torch, scale_torch, dst_dtype, axis=1)
|
32 |
+
assert_equal(dequant_torch, dequant)
|
33 |
+
|
34 |
+
|
35 |
+
@pytest.mark.parametrize("src_dtype", ["float4_e2m1", "float8_e5m2", "float8_e4m3fn"])
|
36 |
+
@pytest.mark.parametrize("dst_dtype", ["float16", "bfloat16"])
|
37 |
+
def test_mxfp_quant_dequant(src_dtype, dst_dtype):
|
38 |
+
if "float8" in src_dtype and torch.cuda.get_device_capability()[0] < 9:
|
39 |
+
pytest.skip("Float8 not tested on A100")
|
40 |
+
limit_range = src_dtype == "float8_e5m2" and dst_dtype == "float16"
|
41 |
+
|
42 |
+
# This test checks that quantization and dequantization kernels produce the exact values for some inputs
|
43 |
+
# that can be represented exactly in the quantized format.
|
44 |
+
src_dtype = dtype_str_to_torch(src_dtype)
|
45 |
+
dst_dtype = dtype_str_to_torch(dst_dtype)
|
46 |
+
max_val = get_max_quant_val(src_dtype)
|
47 |
+
if limit_range:
|
48 |
+
# FP16 can't represent the full range of MXFP8, so we limit the max value here
|
49 |
+
max_val = 128
|
50 |
+
|
51 |
+
# These are all the valid mxfp4 positive values.
|
52 |
+
pos_vals = torch.tensor([0.0, 0.5, 1.0, 1.5, 2.0, 3.0, 4.0, max_val], device="cuda", dtype=dst_dtype)
|
53 |
+
neg_vals = -pos_vals
|
54 |
+
k_dim = torch.cat([pos_vals, neg_vals])
|
55 |
+
k_dim = k_dim.reshape([k_dim.shape[0], 1])
|
56 |
+
|
57 |
+
# We pick power of 2 scales since both the scales and their inverse only require exponent bits to be exactly
|
58 |
+
# represented. This means we can store the scales exactly in the e8m0 format.
|
59 |
+
powers = torch.arange(-8, 8, device="cuda", dtype=dst_dtype)
|
60 |
+
scales = 2**powers
|
61 |
+
scales = scales.reshape([1, powers.shape[0]])
|
62 |
+
weight = k_dim * scales
|
63 |
+
weight = weight.repeat((9, 32)) # Repeat the dimensions to test multi block launches.
|
64 |
+
weight = weight.reshape([1, weight.shape[0], weight.shape[1]])
|
65 |
+
weight = weight.mT.contiguous().mT
|
66 |
+
quant, scale = downcast_to_mxfp(weight, src_dtype, axis=1)
|
67 |
+
dequant = upcast_from_mxfp(quant, scale, dst_dtype, axis=1)
|
68 |
+
assert_equal(weight, dequant)
|
69 |
+
|
70 |
+
|
71 |
+
# fmt: off
|
72 |
+
@pytest.mark.parametrize(
|
73 |
+
"shape, axis, quant_dtype, rounding_mode",
|
74 |
+
[
|
75 |
+
((3, 4096, 1024), 1, "float4_e2m1", DequantScaleRoundingMode.ROUND_UP),
|
76 |
+
((10, 254, 60), 0, "float4_e2m1", DequantScaleRoundingMode.ROUND_DOWN),
|
77 |
+
((1, 320, 160), 2, "float8_e5m2", DequantScaleRoundingMode.ROUND_UP),
|
78 |
+
((2, 16, 512), -1, "float8_e4m3fn", DequantScaleRoundingMode.ROUND_DOWN),
|
79 |
+
],
|
80 |
+
)
|
81 |
+
# fmt: on
|
82 |
+
@pytest.mark.parametrize("dequant_dtype", ["float16", "bfloat16"])
|
83 |
+
def test_mxfp_casting(
|
84 |
+
shape: tuple[int, ...],
|
85 |
+
axis: int,
|
86 |
+
quant_dtype: str,
|
87 |
+
dequant_dtype: str,
|
88 |
+
rounding_mode: DequantScaleRoundingMode,
|
89 |
+
):
|
90 |
+
if "float8" in quant_dtype and torch.cuda.get_device_capability()[0] < 9:
|
91 |
+
pytest.skip("Float8 not tested on A100")
|
92 |
+
quant_torch_type = dtype_str_to_torch(quant_dtype)
|
93 |
+
dequant_torch_type = dtype_str_to_torch(dequant_dtype)
|
94 |
+
# Generate random input tensor that is contiguous once axis is the last dimension
|
95 |
+
x = torch.randn(shape, device="cuda", dtype=dequant_torch_type)
|
96 |
+
|
97 |
+
# Quantize and check equivalence
|
98 |
+
quant, scale = downcast_to_mxfp(x, quant_torch_type, axis, DEQUANT_SCALE_ROUNDING_MODE=rounding_mode)
|
99 |
+
quant_torch, scale_torch = downcast_to_mxfp_torch(x, quant_torch_type, axis,
|
100 |
+
DEQUANT_SCALE_ROUNDING_MODE=rounding_mode)
|
101 |
+
|
102 |
+
assert_equal(quant_torch, quant)
|
103 |
+
assert_equal(scale_torch, scale)
|
104 |
+
assert_equal(1, quant.stride(axis))
|
105 |
+
assert_equal(1, quant_torch.stride(axis))
|
106 |
+
|
107 |
+
# Dequantize and check equivalence
|
108 |
+
dequant = upcast_from_mxfp(quant, scale, dequant_torch_type, axis)
|
109 |
+
dequant_torch = upcast_from_mxfp_torch(quant_torch, scale_torch, dequant_torch_type, axis)
|
110 |
+
assert_equal(dequant, dequant_torch)
|
111 |
+
|
112 |
+
# Dequantized result should be close to the original, though tolerance is large due to the precision loss.
|
113 |
+
assert_close(x, dequant, maxtol=0.5, rmstol=0.15)
|
tests/test_routing.py
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pytest
|
2 |
+
import torch
|
3 |
+
from triton_kernels.routing import routing, routing_torch
|
4 |
+
from triton_kernels.testing import assert_close
|
5 |
+
from triton_kernels.testing import assert_equal
|
6 |
+
|
7 |
+
|
8 |
+
def init_data(n_tokens, n_expts_tot, dtype=torch.float16, device="cuda"):
|
9 |
+
logits = torch.randn((n_tokens, n_expts_tot), dtype=dtype, device=device, requires_grad=True)
|
10 |
+
return logits
|
11 |
+
|
12 |
+
|
13 |
+
n_tokens = [(x, None) for x in [371, 255, 256, 4096, 1023, 1024]]
|
14 |
+
n_tokens += [(1152, 911)]
|
15 |
+
|
16 |
+
|
17 |
+
@pytest.mark.parametrize("n_tokens_pad, n_tokens_raw", n_tokens)
|
18 |
+
@pytest.mark.parametrize("n_expts_tot, n_expts_act", [(128, 32), (1500, 8)])
|
19 |
+
@pytest.mark.parametrize("use_expt_indx", [False, True])
|
20 |
+
@pytest.mark.parametrize("sm_first", [True, False])
|
21 |
+
def test_op(n_tokens_pad, n_tokens_raw, n_expts_tot, n_expts_act, sm_first, use_expt_indx, device):
|
22 |
+
torch.manual_seed(2)
|
23 |
+
if n_tokens_raw is None:
|
24 |
+
n_tokens_raw = n_tokens_pad
|
25 |
+
n_routing_rows = None
|
26 |
+
else:
|
27 |
+
n_routing_rows = torch.tensor([n_tokens_raw], dtype=torch.int32, device=device)
|
28 |
+
n_gates_raw = n_tokens_raw * n_expts_act
|
29 |
+
tri_logits = init_data(n_tokens_pad, n_expts_tot, device=device, dtype=torch.float32).detach()
|
30 |
+
tri_logits[n_tokens_raw:, :] = float("inf") # should not be used
|
31 |
+
tri_logits = tri_logits.requires_grad_(True)
|
32 |
+
ref_logits = tri_logits.clone().detach().requires_grad_(True)
|
33 |
+
|
34 |
+
if use_expt_indx:
|
35 |
+
rand_idx = lambda: torch.randperm(n_expts_tot, device="cuda", dtype=torch.int64)
|
36 |
+
tri_expt_indx = torch.stack([rand_idx()[:n_expts_act] for _ in range(n_tokens_pad)])
|
37 |
+
tri_expt_indx, _ = torch.sort(tri_expt_indx, dim=1)
|
38 |
+
tri_expt_indx[n_tokens_raw:] = -99999 # should not be used
|
39 |
+
ref_expt_indx = tri_expt_indx[:n_tokens_raw]
|
40 |
+
else:
|
41 |
+
tri_expt_indx = ref_expt_indx = None
|
42 |
+
ref_routing_data, ref_gather, ref_scatter = routing_torch(ref_logits, n_expts_act, sm_first, ref_expt_indx,
|
43 |
+
n_rows=n_routing_rows)
|
44 |
+
tri_routing_data, tri_gather, tri_scatter = routing(tri_logits, n_expts_act, sm_first, tri_expt_indx,
|
45 |
+
n_rows=n_routing_rows)
|
46 |
+
|
47 |
+
def _assert_indx_equal(ref, tri):
|
48 |
+
assert_equal(ref, tri[:len(ref)])
|
49 |
+
assert torch.all(tri[len(ref):] == -1)
|
50 |
+
|
51 |
+
assert_close(ref_routing_data.gate_scal, tri_routing_data.gate_scal[:n_gates_raw], 2e-2, 4e-3)
|
52 |
+
assert_equal(ref_routing_data.expt_hist, tri_routing_data.expt_hist)
|
53 |
+
|
54 |
+
ref_expt_data = ref_routing_data.expt_data
|
55 |
+
tri_expt_data = tri_routing_data.expt_data
|
56 |
+
assert_equal(ref_expt_data.hist, tri_expt_data.hist)
|
57 |
+
assert_equal(ref_expt_data.token_offs_raw, tri_expt_data.token_offs_raw)
|
58 |
+
assert len(ref_expt_data.token_offs_pad) == len(tri_expt_data.token_offs_pad)
|
59 |
+
assert len(ref_expt_data.block_pid_map) == len(tri_expt_data.block_pid_map)
|
60 |
+
for block_m in ref_expt_data.token_offs_pad.keys():
|
61 |
+
assert_equal(ref_expt_data.token_offs_pad[block_m], tri_expt_data.token_offs_pad[block_m])
|
62 |
+
assert_equal(ref_expt_data.block_pid_map[block_m], tri_expt_data.block_pid_map[block_m])
|
63 |
+
|
64 |
+
assert ref_routing_data.n_expts_tot == ref_routing_data.n_expts_tot
|
65 |
+
assert ref_routing_data.n_expts_act == ref_routing_data.n_expts_act
|
66 |
+
|
67 |
+
_assert_indx_equal(ref_gather.src_indx, tri_gather.src_indx)
|
68 |
+
_assert_indx_equal(ref_gather.dst_indx, tri_gather.dst_indx)
|
69 |
+
_assert_indx_equal(ref_scatter.src_indx, tri_scatter.src_indx)
|
70 |
+
_assert_indx_equal(ref_scatter.dst_indx, tri_scatter.dst_indx)
|
71 |
+
|
72 |
+
scales_grad = torch.randn_like(tri_routing_data.gate_scal)
|
73 |
+
ref_routing_data.gate_scal.backward(scales_grad[:n_gates_raw])
|
74 |
+
tri_routing_data.gate_scal.backward(scales_grad)
|
75 |
+
|
76 |
+
assert_close(ref_logits.grad[:n_tokens_raw], tri_logits.grad[:n_tokens_raw])
|
77 |
+
|
78 |
+
|
79 |
+
def bench_routing():
|
80 |
+
import triton.profiler as proton
|
81 |
+
n_tokens = 8192
|
82 |
+
n_expts_tot, n_expts_act = 128, 4
|
83 |
+
tri_logits = init_data(n_tokens, n_expts_tot)
|
84 |
+
proton.start("routing")
|
85 |
+
proton.activate()
|
86 |
+
for i in range(100):
|
87 |
+
tri_routing_data, tri_gather, tri_scatter = routing(tri_logits, n_expts_act)
|
88 |
+
proton.finalize()
|
89 |
+
try:
|
90 |
+
import os
|
91 |
+
os.system("proton-viewer -m time/ms routing.hatchet")
|
92 |
+
except Exception:
|
93 |
+
pass
|
94 |
+
|
95 |
+
|
96 |
+
if __name__ == "__main__":
|
97 |
+
bench_routing()
|
tests/test_specialize.py
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import importlib
|
3 |
+
from triton_kernels.specialize import cacheable, specialize
|
4 |
+
import triton
|
5 |
+
import triton.language as tl
|
6 |
+
|
7 |
+
|
8 |
+
@triton.jit
|
9 |
+
def template_kernel(o):
|
10 |
+
cst = 1.0
|
11 |
+
tl.store(o, cst)
|
12 |
+
|
13 |
+
|
14 |
+
def retrieve_fn(module, name):
|
15 |
+
module = importlib.import_module(module)
|
16 |
+
fn = getattr(module, name)
|
17 |
+
return fn
|
18 |
+
|
19 |
+
|
20 |
+
_specialized_kernel = None
|
21 |
+
|
22 |
+
|
23 |
+
def get_specialized_kernel():
|
24 |
+
global _specialized_kernel
|
25 |
+
if _specialized_kernel is not None:
|
26 |
+
return _specialized_kernel
|
27 |
+
import types
|
28 |
+
spec_constants = {}
|
29 |
+
spec_tuples = {}
|
30 |
+
module = types.ModuleType("specialized_kernel")
|
31 |
+
module.specialized = specialize(template_kernel, module, spec_constants, spec_tuples)
|
32 |
+
_specialized_kernel = module.specialized
|
33 |
+
return _specialized_kernel
|
34 |
+
|
35 |
+
|
36 |
+
@cacheable
|
37 |
+
def cacheable_kernel():
|
38 |
+
return get_specialized_kernel()
|
39 |
+
|
40 |
+
|
41 |
+
def test_cacheable(device, fresh_knobs):
|
42 |
+
specialized_kernel = get_specialized_kernel()
|
43 |
+
|
44 |
+
specialization_data = None
|
45 |
+
fn_name = None
|
46 |
+
module_name = None
|
47 |
+
|
48 |
+
def cache_hook(*args, **kwargs):
|
49 |
+
nonlocal specialization_data
|
50 |
+
nonlocal fn_name
|
51 |
+
nonlocal module_name
|
52 |
+
specialization_data = kwargs["compile"]["specialization_data"]
|
53 |
+
fn_name = kwargs["fn"].name
|
54 |
+
module_name = kwargs["fn"].module
|
55 |
+
|
56 |
+
triton.knobs.runtime.jit_cache_hook = cache_hook
|
57 |
+
o = torch.empty((1, ), dtype=torch.float32, device=device)
|
58 |
+
k = specialized_kernel[(1, )](o, )
|
59 |
+
hash = k.hash
|
60 |
+
assert o.item() == 1.0
|
61 |
+
assert module_name == "tests.test_specialize"
|
62 |
+
assert fn_name == "cacheable_kernel"
|
63 |
+
|
64 |
+
compile_count = 0
|
65 |
+
|
66 |
+
def count_hook(*args, **kwargs):
|
67 |
+
nonlocal compile_count
|
68 |
+
compile_count += 1
|
69 |
+
|
70 |
+
triton.knobs.runtime.jit_cache_hook = count_hook
|
71 |
+
# clear the cache
|
72 |
+
specialized_kernel.device_caches.clear()
|
73 |
+
|
74 |
+
# retrieve the kernel from name and preload it.
|
75 |
+
fn = retrieve_fn(module_name, fn_name)
|
76 |
+
assert fn == specialized_kernel
|
77 |
+
preload = fn.preload(specialization_data)
|
78 |
+
assert compile_count == 1
|
79 |
+
assert preload.hash == hash
|
80 |
+
|
81 |
+
# verify that we hit the cache.
|
82 |
+
compile_count = 0
|
83 |
+
specialized_kernel[(1, )](o, )
|
84 |
+
assert compile_count == 0
|
tests/test_swiglu.py
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from triton_kernels.routing import routing_torch
|
2 |
+
from triton_kernels.swiglu import swiglu, swiglu_torch, PrecisionConfig
|
3 |
+
from triton_kernels.testing import assert_close
|
4 |
+
import torch
|
5 |
+
import pytest
|
6 |
+
|
7 |
+
from .test_routing import init_data as init_routing_data
|
8 |
+
|
9 |
+
# ---------------
|
10 |
+
# initialize data
|
11 |
+
# ---------------
|
12 |
+
|
13 |
+
|
14 |
+
def alloc_rand(shape, device, dtype, requires_grad=True):
|
15 |
+
if dtype.itemsize == 1:
|
16 |
+
tmp = 2**-(torch.randint(4, 8, shape, device=device, dtype=torch.float16))
|
17 |
+
return tmp.to(dtype).requires_grad_(requires_grad)
|
18 |
+
return torch.randn(shape, device=device, dtype=dtype, requires_grad=requires_grad)
|
19 |
+
|
20 |
+
|
21 |
+
# ---------------
|
22 |
+
# unit tests
|
23 |
+
# ---------------
|
24 |
+
|
25 |
+
|
26 |
+
@pytest.mark.parametrize("M, N", [(1311, 4352)])
|
27 |
+
@pytest.mark.parametrize("limit", [1e-2, 10])
|
28 |
+
def test_op(M, N, limit, device, alpha=0.5):
|
29 |
+
torch.manual_seed(2)
|
30 |
+
# initialize expert data
|
31 |
+
n_expts_tot = 6
|
32 |
+
n_expts_act = 2
|
33 |
+
logits = init_routing_data(M, n_expts_tot).detach()
|
34 |
+
routing_data, _, _ = routing_torch(logits, n_expts_act)
|
35 |
+
n_tokens = routing_data.expt_hist.sum()
|
36 |
+
|
37 |
+
# initialize data
|
38 |
+
x = alloc_rand([n_tokens, N], device=device, dtype=torch.bfloat16)
|
39 |
+
precision_config = PrecisionConfig(limit=limit)
|
40 |
+
tri_y = swiglu(x, alpha, precision_config, routing_data)
|
41 |
+
ref_y = swiglu_torch(x, alpha, precision_config)
|
42 |
+
assert_close(tri_y, ref_y)
|
tests/test_tensor.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
# TODO: add tests for non-layout parts of tensor class
|
tests/test_tensor_details/test_layout_blackwell.py
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pytest
|
2 |
+
import torch
|
3 |
+
from triton_kernels.tensor_details.layout import BlackwellMXScaleLayout
|
4 |
+
|
5 |
+
# ------------------------------------------------------------
|
6 |
+
# Torch tests
|
7 |
+
# ------------------------------------------------------------
|
8 |
+
|
9 |
+
|
10 |
+
@pytest.mark.parametrize(
|
11 |
+
"shape",
|
12 |
+
[
|
13 |
+
(3, 4096, 1024),
|
14 |
+
(10, 254, 60),
|
15 |
+
(1, 320, 160),
|
16 |
+
(2, 16, 512),
|
17 |
+
(3, 2, 36),
|
18 |
+
],
|
19 |
+
)
|
20 |
+
def test_mxfp4_scale_roundtrip(shape):
|
21 |
+
x = torch.randint(0, 256, shape, dtype=torch.uint8, device="cuda")
|
22 |
+
layout = BlackwellMXScaleLayout(x.shape)
|
23 |
+
res = layout.unswizzle_data(layout.swizzle_data(x))
|
24 |
+
assert (res == x).all()
|
tests/test_tensor_details/test_layout_hopper.py
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pytest
|
2 |
+
from triton._internal_testing import is_cuda
|
3 |
+
from triton_kernels.tensor import wrap_torch_tensor, convert_layout, FP4
|
4 |
+
from triton_kernels.tensor_details.layout import HopperMXScaleLayout, HopperMXValueLayout
|
5 |
+
from triton_kernels.numerics_details.mxfp import downcast_to_mxfp, upcast_from_mxfp
|
6 |
+
from triton_kernels.tensor_details.layout_details.hopper_value import mxfp4_to_bf16_triton
|
7 |
+
from triton_kernels.tensor_details.layout_details.hopper_scale import unswizzle_mxfp4_scale_hopper
|
8 |
+
from triton_kernels.target_info import cuda_capability_geq
|
9 |
+
import triton.language as tl
|
10 |
+
import triton
|
11 |
+
import torch
|
12 |
+
|
13 |
+
# ------------------------------------------------------------
|
14 |
+
# Torch tests
|
15 |
+
# ------------------------------------------------------------
|
16 |
+
|
17 |
+
|
18 |
+
@pytest.mark.parametrize("shape", [(16, 32), (16, 64), (32, 32), (32, 64), (64, 128), (128, 128)])
|
19 |
+
@pytest.mark.parametrize("trans", [False, True])
|
20 |
+
@pytest.mark.parametrize("mx_axis", [0, 1])
|
21 |
+
@pytest.mark.parametrize("mma_version", [2, 3])
|
22 |
+
def test_mxfp4_value_roundtrip(shape, trans, mx_axis, mma_version):
|
23 |
+
x = torch.randint(0, 256, shape, dtype=torch.uint8, device="cuda")
|
24 |
+
if trans:
|
25 |
+
x = x.mT
|
26 |
+
if x.shape[1 - mx_axis] < 32:
|
27 |
+
pytest.skip("Not enough elements along non-mx axis")
|
28 |
+
layout = HopperMXValueLayout(x.shape, mx_axis, mma_version)
|
29 |
+
res = layout.unswizzle_data(layout.swizzle_data(x))
|
30 |
+
assert (res == x).all()
|
31 |
+
|
32 |
+
|
33 |
+
@pytest.mark.parametrize("mx_axis", [0, 1])
|
34 |
+
@pytest.mark.parametrize("num_warps", [4, 8])
|
35 |
+
@pytest.mark.parametrize("shape", [(256, 64), (256, 128), (256, 256)])
|
36 |
+
def test_mxfp4_scale_roundtrip(shape, mx_axis, num_warps):
|
37 |
+
x = torch.randint(0, 256, shape, dtype=torch.uint8, device="cuda")
|
38 |
+
layout = HopperMXScaleLayout(x.shape, mx_axis=mx_axis, num_warps=num_warps)
|
39 |
+
res = layout.unswizzle_data(layout.swizzle_data(x))
|
40 |
+
assert (res[:shape[0], :shape[1]] == x).all()
|
41 |
+
|
42 |
+
|
43 |
+
# ------------------------------------------------------------
|
44 |
+
# Triton tests
|
45 |
+
# ------------------------------------------------------------
|
46 |
+
|
47 |
+
# ------------------ upcast mxfp4 to bf16 --------------------
|
48 |
+
|
49 |
+
|
50 |
+
@triton.jit
|
51 |
+
def _upcast_mxfp4_to_bf16(Y, X, XScale, x_stride_m, x_stride_n, x_scale_stride_m, x_scale_stride_n, y_stride_m,
|
52 |
+
y_stride_n, X_BLOCK_M: tl.constexpr, X_BLOCK_N: tl.constexpr, Y_BLOCK_M: tl.constexpr,
|
53 |
+
Y_BLOCK_N: tl.constexpr, SCALE_BLOCK_M: tl.constexpr, SCALE_BLOCK_N: tl.constexpr,
|
54 |
+
mx_axis: tl.constexpr):
|
55 |
+
offs_m_val = tl.arange(0, X_BLOCK_M)
|
56 |
+
offs_n_val = tl.arange(0, X_BLOCK_N)
|
57 |
+
offs_m_scale = tl.arange(0, SCALE_BLOCK_M)
|
58 |
+
offs_n_scale = tl.arange(0, SCALE_BLOCK_N)
|
59 |
+
# load values
|
60 |
+
offs_x = offs_m_val[:, None] * x_stride_m + offs_n_val[None, :] * x_stride_n
|
61 |
+
x = tl.load(X + offs_x)
|
62 |
+
# load scales
|
63 |
+
offs_x_scale = offs_m_scale[:, None] * x_scale_stride_m + offs_n_scale[None, :] * x_scale_stride_n
|
64 |
+
x_scale = tl.load(XScale + offs_x_scale)
|
65 |
+
x_scale = unswizzle_mxfp4_scale_hopper(x_scale, mx_axis=mx_axis, num_warps=tl.extra.cuda.num_warps())
|
66 |
+
y = mxfp4_to_bf16_triton(x, x_scale, mx_axis=mx_axis)
|
67 |
+
# write back output
|
68 |
+
offs_m_val = tl.arange(0, Y_BLOCK_M)
|
69 |
+
offs_n_val = tl.arange(0, Y_BLOCK_N)
|
70 |
+
offs_y = offs_m_val[:, None] * y_stride_m + offs_n_val[None, :] * y_stride_n
|
71 |
+
tl.store(Y + offs_y, y)
|
72 |
+
|
73 |
+
|
74 |
+
@pytest.mark.skipif(not is_cuda(), reason="Only supported on cuda")
|
75 |
+
@pytest.mark.skipif(not cuda_capability_geq(9), reason="Only supported for capability >= 9")
|
76 |
+
def test_upcast_mxfp4_to_bf16():
|
77 |
+
mx_axis = 0
|
78 |
+
num_warps = 4
|
79 |
+
torch.manual_seed(0)
|
80 |
+
torch.cuda.manual_seed(0)
|
81 |
+
shape = (256, 128)
|
82 |
+
x = torch.randn(shape, dtype=torch.bfloat16, device="cuda")
|
83 |
+
x_fp4_val, x_fp4_scale = downcast_to_mxfp(x, torch.uint8, axis=mx_axis)
|
84 |
+
x_bf16 = upcast_from_mxfp(x_fp4_val, x_fp4_scale, x.dtype, axis=mx_axis)
|
85 |
+
x_fp4_val = wrap_torch_tensor(x_fp4_val, dtype=FP4)
|
86 |
+
x_fp4_scale = wrap_torch_tensor(x_fp4_scale)
|
87 |
+
x_fp4_val = convert_layout(x_fp4_val, HopperMXValueLayout, mx_axis=mx_axis)
|
88 |
+
x_fp4_scale = convert_layout(x_fp4_scale, HopperMXScaleLayout, mx_axis=mx_axis, num_warps=num_warps)
|
89 |
+
y = torch.empty_like(x_bf16)
|
90 |
+
_upcast_mxfp4_to_bf16[(1, )](
|
91 |
+
y, x_fp4_val.storage.data, x_fp4_scale.storage.data, #
|
92 |
+
x_fp4_val.storage.data.stride(0), x_fp4_val.storage.data.stride(1), #
|
93 |
+
x_fp4_scale.storage.data.stride(0), x_fp4_scale.storage.data.stride(1), #
|
94 |
+
y.stride(0), y.stride(1), #
|
95 |
+
x_fp4_val.storage.data.shape[0], x_fp4_val.storage.data.shape[1], #
|
96 |
+
shape[0], shape[1], #
|
97 |
+
x_fp4_scale.storage.data.shape[0], x_fp4_scale.storage.data.shape[1], #
|
98 |
+
mx_axis=mx_axis, num_warps=num_warps)
|
99 |
+
assert (y == x_bf16).all()
|
torch-ext/triton_kernels/__init__.py
ADDED
File without changes
|
torch-ext/triton_kernels/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (165 Bytes). View file
|
|
torch-ext/triton_kernels/__pycache__/compaction.cpython-310.pyc
ADDED
Binary file (2.2 kB). View file
|
|
torch-ext/triton_kernels/__pycache__/datastruct.cpython-310.pyc
ADDED
Binary file (2.1 kB). View file
|
|
torch-ext/triton_kernels/__pycache__/matmul_ogs.cpython-310.pyc
ADDED
Binary file (25.4 kB). View file
|
|
torch-ext/triton_kernels/__pycache__/numerics.cpython-310.pyc
ADDED
Binary file (1.77 kB). View file
|
|
torch-ext/triton_kernels/__pycache__/routing.cpython-310.pyc
ADDED
Binary file (8.44 kB). View file
|
|
torch-ext/triton_kernels/__pycache__/specialize.cpython-310.pyc
ADDED
Binary file (4.12 kB). View file
|
|
torch-ext/triton_kernels/__pycache__/swiglu.cpython-310.pyc
ADDED
Binary file (2.9 kB). View file
|
|
torch-ext/triton_kernels/__pycache__/target_info.cpython-310.pyc
ADDED
Binary file (2.11 kB). View file
|
|
torch-ext/triton_kernels/__pycache__/topk.cpython-310.pyc
ADDED
Binary file (2.89 kB). View file
|
|
torch-ext/triton_kernels/compaction.py
ADDED
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from .compaction_details._masked_compaction import _masked_compaction
|
3 |
+
from .tensor import Bitmatrix
|
4 |
+
|
5 |
+
|
6 |
+
def compaction(yv, yi, bitmask, sentinel=-1):
|
7 |
+
"""
|
8 |
+
Return compacted copies of *yv* and *yi* based on a per-row bitmask.
|
9 |
+
|
10 |
+
Only the elements whose index appears among the active bits of *bitmask*
|
11 |
+
are kept; the rest are replaced by *sentinel*. Kept elements preserve
|
12 |
+
their original left-to-right order.
|
13 |
+
|
14 |
+
Parameters
|
15 |
+
----------
|
16 |
+
yv : torch.Tensor, shape (B, K)
|
17 |
+
Values tensor.
|
18 |
+
yi : torch.Tensor, shape (B, K), dtype torch.long
|
19 |
+
Integer indices (0 ≤ index < 32) associated with *yv*.
|
20 |
+
bitmask : torch.Tensor, shape (B,) **or** (B, 32)
|
21 |
+
Per-row mask of active indices. See the in-place version for details.
|
22 |
+
sentinel : int, default -1
|
23 |
+
Value written into dropped positions of the returned tensors.
|
24 |
+
|
25 |
+
Returns
|
26 |
+
-------
|
27 |
+
(yv_out, yi_out) : Tuple[torch.Tensor, torch.Tensor], each shape (B, K)
|
28 |
+
New tensors with the same dtype/device as the inputs.
|
29 |
+
|
30 |
+
"""
|
31 |
+
|
32 |
+
n_rows, n_cols = yi.shape
|
33 |
+
ret_yv = torch.empty_like(yv)
|
34 |
+
ret_yi = torch.empty_like(yi)
|
35 |
+
if isinstance(bitmask, Bitmatrix):
|
36 |
+
bitmask = bitmask.storage.data
|
37 |
+
|
38 |
+
_masked_compaction[(n_rows, )](
|
39 |
+
yv, yi, bitmask, bitmask.stride(0), bitmask.stride(1), # inputs
|
40 |
+
ret_yv, ret_yi, # outputs
|
41 |
+
sentinel, # sentinel
|
42 |
+
K=n_cols # constants
|
43 |
+
)
|
44 |
+
return ret_yv, ret_yi
|
45 |
+
|
46 |
+
|
47 |
+
def compaction_torch(yv: torch.Tensor, yi: torch.Tensor, bitmask: torch.Tensor, sentinel=-1):
|
48 |
+
"""
|
49 |
+
reference implementation of `masked_compact`
|
50 |
+
"""
|
51 |
+
B, K = yi.shape
|
52 |
+
device = yi.device
|
53 |
+
# Expand bitmask to a boolean matrix of active bits (B, 32)
|
54 |
+
w = (1 << torch.arange(32, device=device, dtype=bitmask.dtype))
|
55 |
+
bits = (bitmask.unsqueeze(-1) & w) != 0
|
56 |
+
mask = bits.flatten(start_dim=-2) # or bits.reshape(B, -1)
|
57 |
+
# For every yi element decide whether it should be kept
|
58 |
+
keep = mask.gather(1, yi.long())
|
59 |
+
# Build a stable permutation that brings all "keep" items forward
|
60 |
+
# False→0, True→1 ==> invert so kept==0, dropped==1, then argsort
|
61 |
+
order = (~keep).to(torch.int).argsort(dim=1, stable=True)
|
62 |
+
# Re‑order tensors according to above permutation
|
63 |
+
yi_sorted = yi.gather(1, order)
|
64 |
+
yv_sorted = yv.gather(1, order)
|
65 |
+
# fill relevant positions with sentinel
|
66 |
+
keep_sorted = keep.gather(1, order)
|
67 |
+
yi_sorted[~keep_sorted] = sentinel
|
68 |
+
yv_sorted[~keep_sorted] = sentinel
|
69 |
+
return yv_sorted, yi_sorted
|
torch-ext/triton_kernels/compaction_details/__pycache__/_masked_compaction.cpython-310.pyc
ADDED
Binary file (883 Bytes). View file
|
|
torch-ext/triton_kernels/compaction_details/_masked_compaction.py
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import triton
|
2 |
+
import triton.language as tl
|
3 |
+
|
4 |
+
|
5 |
+
@triton.jit
|
6 |
+
def _masked_compaction(Yv, Yi, BitMask, stride_bm, stride_bn, RetYv, RetYi, sentinel, K: tl.constexpr):
|
7 |
+
pid_m = tl.program_id(0)
|
8 |
+
yv = tl.load(Yv + pid_m * K + tl.arange(0, K))
|
9 |
+
yi = tl.load(Yi + pid_m * K + tl.arange(0, K))
|
10 |
+
div = yi // 32
|
11 |
+
rem = yi % 32
|
12 |
+
active_bits = (tl.load(BitMask + pid_m * stride_bm + div * stride_bn) >> rem) & 1
|
13 |
+
exc_cumsum = tl.cumsum(active_bits, 0) - active_bits
|
14 |
+
active_flags = active_bits.to(tl.int1)
|
15 |
+
rev_arange = tl.where(active_flags, 0, K - 1 - tl.arange(0, K))
|
16 |
+
write_indx = exc_cumsum + rev_arange
|
17 |
+
yv = tl.where(active_flags, yv, sentinel)
|
18 |
+
yi = tl.where(active_flags, yi, sentinel)
|
19 |
+
tl.store(RetYv + pid_m * K + write_indx, yv)
|
20 |
+
tl.store(RetYi + pid_m * K + write_indx, yi)
|
torch-ext/triton_kernels/matmul_ogs.py
ADDED
@@ -0,0 +1,662 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# isort: off
|
2 |
+
# fmt: off
|
3 |
+
from dataclasses import dataclass
|
4 |
+
import itertools
|
5 |
+
import sys
|
6 |
+
import torch
|
7 |
+
import triton
|
8 |
+
from enum import Enum, auto
|
9 |
+
# utilities
|
10 |
+
from triton_kernels import target_info
|
11 |
+
from triton_kernels.numerics import InFlexData, OutFlexData
|
12 |
+
from triton_kernels.routing import GatherIndx, RoutingData, ScatterIndx
|
13 |
+
from triton_kernels.target_info import is_cuda
|
14 |
+
# details
|
15 |
+
from .matmul_ogs_details._matmul_ogs import _compute_writeback_idx
|
16 |
+
from .matmul_ogs_details._matmul_ogs import _matmul_ogs
|
17 |
+
from .matmul_ogs_details._p_matmul_ogs import _p_matmul_ogs, get_per_device_per_stream_alloc_fn
|
18 |
+
from .matmul_ogs_details._finalize_matmul import _finalize_matmul
|
19 |
+
from .matmul_ogs_details.opt_flags import make_opt_flags, update_opt_flags_constraints
|
20 |
+
from .numerics_details.mxfp import MXFP_BLOCK_SIZE
|
21 |
+
from .specialize import specialize
|
22 |
+
from .tensor import Storage, Tensor, FP4, bitwidth, wrap_torch_tensor
|
23 |
+
|
24 |
+
|
25 |
+
@dataclass(frozen=True)
|
26 |
+
class FnSpecs:
|
27 |
+
name: str
|
28 |
+
fn: "triton.runtime.jit.JITFunction"
|
29 |
+
fn_arg_names: tuple[str]
|
30 |
+
fn_arg_do_not_specialize: tuple[str] = tuple()
|
31 |
+
|
32 |
+
@staticmethod
|
33 |
+
def default():
|
34 |
+
return FnSpecs("dflt", None, tuple())
|
35 |
+
|
36 |
+
|
37 |
+
@dataclass(frozen=True)
|
38 |
+
class FusedActivation:
|
39 |
+
specs: FnSpecs = FnSpecs.default()
|
40 |
+
fn_args: tuple[object] = tuple()
|
41 |
+
reduction_n: int = 1
|
42 |
+
|
43 |
+
|
44 |
+
@dataclass(frozen=True)
|
45 |
+
class Epilogue:
|
46 |
+
specs: FnSpecs = FnSpecs.default()
|
47 |
+
fn_arg_values_matmul: tuple[object] = tuple()
|
48 |
+
fn_arg_values_finalize: tuple[object] = tuple()
|
49 |
+
effective_itemsize: float = None
|
50 |
+
|
51 |
+
class FnName(Enum):
|
52 |
+
DEQUANTIZE_MXFP8 = auto()
|
53 |
+
|
54 |
+
|
55 |
+
EpilogueSpecs = FnSpecs # TODO: remove this alias when callers are updated
|
56 |
+
|
57 |
+
_kernels = dict()
|
58 |
+
|
59 |
+
|
60 |
+
def get_kernels(epilogue: FnSpecs = FnSpecs.default(), fused_activation: FnSpecs = FnSpecs.default()):
|
61 |
+
global _kernels
|
62 |
+
key = (fused_activation.name, epilogue.name)
|
63 |
+
if key in _kernels:
|
64 |
+
return _kernels[key]
|
65 |
+
spec_constants = {
|
66 |
+
"ACTIVATION_FN": fused_activation.fn,
|
67 |
+
"EPILOGUE_FN": epilogue.fn,
|
68 |
+
}
|
69 |
+
spec_tuples = {
|
70 |
+
"activation_fn_args": fused_activation.fn_arg_names,
|
71 |
+
"epilogue_fn_args": epilogue.fn_arg_names,
|
72 |
+
}
|
73 |
+
do_not_specialize = fused_activation.fn_arg_do_not_specialize + epilogue.fn_arg_do_not_specialize
|
74 |
+
import types
|
75 |
+
|
76 |
+
module = types.ModuleType(f"matmul_ogs_{'_'.join(key)}")
|
77 |
+
sys.modules[module.__name__] = module
|
78 |
+
module._finalize_matmul = specialize(_finalize_matmul, module, spec_constants, spec_tuples,
|
79 |
+
do_not_specialize=do_not_specialize)
|
80 |
+
module._matmul_ogs = specialize(_matmul_ogs, module, spec_constants, spec_tuples,
|
81 |
+
do_not_specialize=do_not_specialize)
|
82 |
+
module._p_matmul_ogs = specialize(_p_matmul_ogs, module, spec_constants, spec_tuples,
|
83 |
+
do_not_specialize=do_not_specialize)
|
84 |
+
_kernels[key] = module
|
85 |
+
return module
|
86 |
+
|
87 |
+
|
88 |
+
# -----------------------------------------------------------------------------
|
89 |
+
# Matrix Multiplication + Outer Gather/Scatter
|
90 |
+
# -----------------------------------------------------------------------------
|
91 |
+
|
92 |
+
|
93 |
+
def can_overflow_int32(tensor: torch.Tensor):
|
94 |
+
max_int32 = (1 << 31) - 1
|
95 |
+
offset = 0
|
96 |
+
for i in range(tensor.ndim):
|
97 |
+
offset += (tensor.shape[i] - 1) * tensor.stride(i)
|
98 |
+
return offset > max_int32
|
99 |
+
|
100 |
+
|
101 |
+
def should_upcast_indices(*args):
|
102 |
+
return any(tensor is not None and can_overflow_int32(tensor) for tensor in args)
|
103 |
+
|
104 |
+
|
105 |
+
# ---------------------
|
106 |
+
# Numerics
|
107 |
+
# ---------------------
|
108 |
+
|
109 |
+
# fmt: off
|
110 |
+
|
111 |
+
@dataclass(frozen=True)
|
112 |
+
class FlexCtx:
|
113 |
+
lhs_data: InFlexData = InFlexData()
|
114 |
+
rhs_data: InFlexData = InFlexData()
|
115 |
+
out_data: OutFlexData = OutFlexData()
|
116 |
+
|
117 |
+
@dataclass
|
118 |
+
class PrecisionConfig:
|
119 |
+
max_num_imprecise_acc: int = None
|
120 |
+
allow_tf32: bool = True
|
121 |
+
flex_ctx: FlexCtx = FlexCtx()
|
122 |
+
acc_scale: int = 1.0
|
123 |
+
flexpoint_saturate_inf: bool = False
|
124 |
+
report_quantization_err_fn: callable = None
|
125 |
+
act_scale: Tensor | None = None
|
126 |
+
weight_scale: Tensor| None = None
|
127 |
+
out_scale: Tensor | None = None
|
128 |
+
out_dtype: torch.dtype = None
|
129 |
+
enforce_bitwise_invariance: bool = False
|
130 |
+
|
131 |
+
# ---------------------
|
132 |
+
# Preprocessing
|
133 |
+
# ---------------------
|
134 |
+
|
135 |
+
@dataclass(frozen=True)
|
136 |
+
class PreprocessingFeatures:
|
137 |
+
swap_xw: bool
|
138 |
+
|
139 |
+
|
140 |
+
def init_preprocessing_features(w, precision_config, opt_flags):
|
141 |
+
swap_xw = False # Whether or not to swap X and W operands to the tl.dot
|
142 |
+
if target_info.cuda_capability_geq(10, 0):
|
143 |
+
swap_xw = precision_config.weight_scale is not None and opt_flags.block_m <= 64 and opt_flags.is_persistent
|
144 |
+
return PreprocessingFeatures(swap_xw)
|
145 |
+
|
146 |
+
def apply_preprocessing_features(x, w, gather_indx, scatter_indx, routing_data, opt_flags, preprocessing_features):
|
147 |
+
has_fused_scatter_scratchpad = opt_flags.fused_scatter and routing_data.n_expts_act > 1
|
148 |
+
if has_fused_scatter_scratchpad:
|
149 |
+
M = scatter_indx.src_indx.shape[0]
|
150 |
+
writeback_idxs = torch.zeros((M,), dtype=torch.int32, device=x.device)
|
151 |
+
writeback_size = writeback_idxs.shape[0]
|
152 |
+
finalize_scatter_idxs = torch.zeros((M // routing_data.n_expts_act + M + 1,), dtype=torch.int32, device=x.device)
|
153 |
+
BLOCK_M=256
|
154 |
+
_compute_writeback_idx[(triton.cdiv(M, BLOCK_M),)](
|
155 |
+
writeback_idxs,
|
156 |
+
finalize_scatter_idxs,
|
157 |
+
scatter_indx.dst_indx,
|
158 |
+
scatter_indx.src_indx,
|
159 |
+
M // routing_data.n_expts_act,
|
160 |
+
M,
|
161 |
+
BLOCK_M=BLOCK_M,
|
162 |
+
N_EXPTS_ACT=routing_data.n_expts_act,
|
163 |
+
)
|
164 |
+
elif scatter_indx is not None and routing_data.n_expts_act == 1:
|
165 |
+
writeback_idxs = scatter_indx.dst_indx
|
166 |
+
writeback_size = scatter_indx.dst_indx.shape[0]
|
167 |
+
finalize_scatter_idxs = None
|
168 |
+
else:
|
169 |
+
writeback_idxs, writeback_size, finalize_scatter_idxs = None, None, None
|
170 |
+
# preprocess routing information and ptr lookup table
|
171 |
+
M = x.shape[1] if gather_indx is None else gather_indx.src_indx.shape[0]
|
172 |
+
return x, w, writeback_idxs, writeback_size, finalize_scatter_idxs
|
173 |
+
|
174 |
+
|
175 |
+
# ---------------------
|
176 |
+
# Postprocessing
|
177 |
+
# ---------------------
|
178 |
+
|
179 |
+
|
180 |
+
@dataclass(frozen=True)
|
181 |
+
class PostprocessingFeatures:
|
182 |
+
finalize: bool
|
183 |
+
|
184 |
+
def init_postprocessing_features(routing_data, scatter_indx, opt_flags):
|
185 |
+
finalize = (scatter_indx is not None and routing_data.n_expts_act > 1) or opt_flags.split_k > 1
|
186 |
+
return PostprocessingFeatures(finalize)
|
187 |
+
|
188 |
+
def apply_postprocessing_features(scatter_indx, finalize_scatter_idxs, opt_flags, expt_offs, num_indx, precision_config, routing_data,
|
189 |
+
postprocess_features, memory, fused_activation, epilogue):
|
190 |
+
out = memory["output"]
|
191 |
+
flex_ctx = precision_config.flex_ctx
|
192 |
+
if postprocess_features.finalize:
|
193 |
+
has_fused_scatter_scratchpad = opt_flags.fused_scatter and routing_data.n_expts_act > 1
|
194 |
+
if has_fused_scatter_scratchpad:
|
195 |
+
inp = memory["output"]
|
196 |
+
else:
|
197 |
+
inp = memory["scratchpad"]["matmul"]
|
198 |
+
if scatter_indx is not None:
|
199 |
+
assert inp.shape[1] == 1, "batched finalize scatter not supported"
|
200 |
+
n_final_rows = scatter_indx.src_indx.shape[0] // routing_data.n_expts_act
|
201 |
+
scatter_src_indx = scatter_indx.src_indx
|
202 |
+
EXPT_PER_TOK = routing_data.n_expts_act
|
203 |
+
num_rows = None
|
204 |
+
else:
|
205 |
+
n_final_rows = inp.shape[1] * inp.shape[2]
|
206 |
+
scatter_src_indx = None
|
207 |
+
EXPT_PER_TOK = 1
|
208 |
+
num_rows = num_indx or (None if expt_offs is None else expt_offs[-1])
|
209 |
+
|
210 |
+
if inp.dtype == torch.float32:
|
211 |
+
inp_flex = OutFlexData()
|
212 |
+
else:
|
213 |
+
inp_flex = precision_config.flex_ctx.out_data
|
214 |
+
|
215 |
+
out_scatter = memory["output"]
|
216 |
+
out_scatter_flex = precision_config.flex_ctx.out_data
|
217 |
+
|
218 |
+
N = inp.shape[3]
|
219 |
+
M = n_final_rows
|
220 |
+
warps_per_sm = 32 if target_info.is_hip() else 128
|
221 |
+
|
222 |
+
def compute_grid(BLOCK_N, num_warps):
|
223 |
+
num_pid = target_info.num_sms() * (warps_per_sm // num_warps)
|
224 |
+
if M < num_pid or target_info.is_hip():
|
225 |
+
grid_n = triton.cdiv(N, BLOCK_N)
|
226 |
+
grid_m = min(M, max(1, triton.cdiv(num_pid, grid_n)))
|
227 |
+
else:
|
228 |
+
grid_m = min(M, num_pid)
|
229 |
+
grid_n = 1
|
230 |
+
return (grid_m, grid_n)
|
231 |
+
|
232 |
+
if inp.dtype.itemsize == 1:
|
233 |
+
candidates = [(1024, 1)]
|
234 |
+
else:
|
235 |
+
if target_info.is_hip():
|
236 |
+
candidates = [(4096 // inp.dtype.itemsize, 2)]
|
237 |
+
else:
|
238 |
+
if inp.dtype.itemsize == 2:
|
239 |
+
candidates = [
|
240 |
+
(4096 // inp.dtype.itemsize, 4),
|
241 |
+
(1024 // inp.dtype.itemsize, 1),
|
242 |
+
]
|
243 |
+
else:
|
244 |
+
candidates = [
|
245 |
+
(2048 // inp.dtype.itemsize, 4),
|
246 |
+
(1024 // inp.dtype.itemsize, 1),
|
247 |
+
]
|
248 |
+
if precision_config.enforce_bitwise_invariance:
|
249 |
+
candidates = [candidates[0]]
|
250 |
+
|
251 |
+
# sort by smallest grid_n so we share compute across a row
|
252 |
+
grid, (BLOCK_N, num_warps) = sorted([(compute_grid(*c), c) for c in candidates], key=lambda x: x[0][1])[0]
|
253 |
+
STAGES = 1 if num_warps == 1 else min(triton.cdiv(triton.cdiv(N, BLOCK_N), grid[1]), 5)
|
254 |
+
|
255 |
+
out_scale = precision_config.out_scale
|
256 |
+
out_has_mx = out_scale is not None
|
257 |
+
out_scale_strides = (None, None) if out_scale is None else out_scale.stride()[-2:]
|
258 |
+
mx_a_scale = memory["scratchpad"].get("mx_out_scale", None)
|
259 |
+
if mx_a_scale is not None:
|
260 |
+
mx_a_scale_stride_k, mx_a_scale_stride_m = [mx_a_scale.stride(i) for i in (0, 2)]
|
261 |
+
else:
|
262 |
+
mx_a_scale_stride_k, mx_a_scale_stride_m = None, None
|
263 |
+
|
264 |
+
kernels = get_kernels(epilogue.specs, fused_activation.specs)
|
265 |
+
kernels._finalize_matmul[grid](
|
266 |
+
flex_ctx.out_data.reinterpret(out_scatter),
|
267 |
+
*((None, out_scale, None) if out_has_mx else out_scatter_flex),
|
268 |
+
*out_scale_strides,
|
269 |
+
flex_ctx.out_data.reinterpret(inp), inp.stride(0), inp.stride(2),
|
270 |
+
inp_flex.expected_scale if mx_a_scale is None else mx_a_scale,
|
271 |
+
mx_a_scale_stride_k, mx_a_scale_stride_m,
|
272 |
+
scatter_src_indx, finalize_scatter_idxs,
|
273 |
+
inp.shape[0], M, N, num_rows,
|
274 |
+
*fused_activation.fn_args, fused_activation.reduction_n,
|
275 |
+
*epilogue.fn_arg_values_finalize,
|
276 |
+
EXPT_PER_TOK=EXPT_PER_TOK,
|
277 |
+
BLOCK_N=BLOCK_N,
|
278 |
+
STAGES=STAGES,
|
279 |
+
num_warps=num_warps,
|
280 |
+
flexpoint_saturate_inf=precision_config.flexpoint_saturate_inf,
|
281 |
+
HAS_FUSED_SCRATCHPAD=has_fused_scatter_scratchpad,
|
282 |
+
)
|
283 |
+
out = out_scatter
|
284 |
+
# trim unnecessary part of output
|
285 |
+
if has_fused_scatter_scratchpad:
|
286 |
+
# Discard scratchpad part.
|
287 |
+
# This still gives a contiguous tensor, because shape[0] > 1 only when
|
288 |
+
# batch mode is enabled, in which case this is a no-op (there's no scratchpad).
|
289 |
+
out = out[:, :, :n_final_rows, :]
|
290 |
+
return out
|
291 |
+
|
292 |
+
|
293 |
+
# ---------------------
|
294 |
+
# Allocation
|
295 |
+
# ---------------------
|
296 |
+
|
297 |
+
@dataclass
|
298 |
+
class MatmulAllocation:
|
299 |
+
device: str
|
300 |
+
output: tuple[tuple[int], torch.dtype]
|
301 |
+
scratchpads: dict[str, tuple]
|
302 |
+
|
303 |
+
def init_allocation(x, w, precision_config, fused_activation, routing_data, gather_indx, scatter_indx, opt_flags,
|
304 |
+
preprocessing_features, postprocessing_features):
|
305 |
+
# ---- output ------
|
306 |
+
N = w.shape[-1]
|
307 |
+
# by default - M is number of rows in the activations
|
308 |
+
M = x.shape[-2]
|
309 |
+
# if the activations are gathered, then M is number of gather indices
|
310 |
+
if gather_indx is not None:
|
311 |
+
M = gather_indx.src_indx.shape[0]
|
312 |
+
# final output
|
313 |
+
if routing_data.n_expts_act == 1 or scatter_indx is None:
|
314 |
+
y_rows = M
|
315 |
+
elif opt_flags.fused_scatter:
|
316 |
+
# we need the scratchpad and the output to be contiguous in memory
|
317 |
+
Mc = scatter_indx.src_indx.shape[0] // routing_data.n_expts_act # compressed number of rows
|
318 |
+
y_rows = M + Mc
|
319 |
+
else:
|
320 |
+
Mc = scatter_indx.src_indx.shape[0] // routing_data.n_expts_act # compressed number of rows
|
321 |
+
y_rows = Mc
|
322 |
+
batch_dim = x.shape[0] if x.ndim == 3 else 1
|
323 |
+
y_shape = (batch_dim, y_rows, N // fused_activation.reduction_n)
|
324 |
+
out_dtype = precision_config.out_dtype or x.dtype
|
325 |
+
output = (y_shape, out_dtype)
|
326 |
+
# ---- scratchpad -----#
|
327 |
+
scratchpad = dict()
|
328 |
+
# if we need either standalone scatter or split-k, the matmul output will need post-processing
|
329 |
+
if postprocessing_features.finalize:
|
330 |
+
if opt_flags.split_k > 1 or not opt_flags.fused_scatter:
|
331 |
+
dtype = torch.float32 if opt_flags.split_k > 1 else out_dtype
|
332 |
+
scratchpad["matmul"] = ((opt_flags.split_k, 1, M, N), dtype)
|
333 |
+
if precision_config.out_scale is not None and not (scratchpad.get("matmul", None) is not None and scratchpad["matmul"][1].itemsize > 1):
|
334 |
+
scratchpad["mx_out_scale"] = ((opt_flags.split_k, 1, M, triton.cdiv(N, MXFP_BLOCK_SIZE)), torch.uint8)
|
335 |
+
return MatmulAllocation(x.device, output, scratchpad)
|
336 |
+
|
337 |
+
def apply_allocation(allocation: MatmulAllocation, output):
|
338 |
+
ret = dict()
|
339 |
+
if output is None:
|
340 |
+
output = torch.empty(allocation.output[0], device=allocation.device, dtype=allocation.output[1])
|
341 |
+
else:
|
342 |
+
assert output.shape == allocation.output[0]
|
343 |
+
ret["output"] = output[None, :, :]
|
344 |
+
ret["scratchpad"] = {
|
345 |
+
k: torch.empty(v[0], device=allocation.device, dtype=v[1])
|
346 |
+
for k, v in allocation.scratchpads.items()
|
347 |
+
}
|
348 |
+
return ret
|
349 |
+
|
350 |
+
# -----------------------------------------------------------------------------
|
351 |
+
# Canonicalize
|
352 |
+
# -----------------------------------------------------------------------------
|
353 |
+
# the `matmul_ogs` kernel can operate on 2D or 3D inputs depending on the mode being used
|
354 |
+
# we can canonicalize storages to make the implementation more uniform
|
355 |
+
|
356 |
+
def _canonicalize_storage(storage, out_ndim, flex_data):
|
357 |
+
assert out_ndim >= storage.data.ndim
|
358 |
+
new_storage_shape = [1] * (out_ndim - storage.data.ndim) + list(storage.data.shape)
|
359 |
+
new_storage_data = storage.data.view(new_storage_shape)
|
360 |
+
if flex_data is not None:
|
361 |
+
new_storage_data = flex_data.reinterpret(new_storage_data)
|
362 |
+
return Storage(new_storage_data, storage.layout)
|
363 |
+
|
364 |
+
|
365 |
+
# -----------------------------------------------------------------------------
|
366 |
+
# Triton Implementation
|
367 |
+
# -----------------------------------------------------------------------------
|
368 |
+
|
369 |
+
def matmul_ogs_set_idle_sms(num_idle_sms):
|
370 |
+
"""
|
371 |
+
persistent kernels will leave `num_idle_sms` idle
|
372 |
+
"""
|
373 |
+
update_opt_flags_constraints({"idle_sms": num_idle_sms})
|
374 |
+
|
375 |
+
def matmul_ogs(x, w, bias,
|
376 |
+
routing_data: RoutingData | None = None,
|
377 |
+
gather_indx: GatherIndx | None = None,
|
378 |
+
scatter_indx: ScatterIndx | None = None,
|
379 |
+
precision_config: PrecisionConfig | None = None,
|
380 |
+
betas: torch.Tensor | None = None,
|
381 |
+
gammas: torch.Tensor | None = None,
|
382 |
+
out_alpha: float | None = None,
|
383 |
+
y: torch.Tensor | None = None,
|
384 |
+
fused_activation: FusedActivation | None = None,
|
385 |
+
epilogue: Epilogue | None = None,
|
386 |
+
):
|
387 |
+
"""
|
388 |
+
Y[:, :] = 0.
|
389 |
+
for e in num_experts:
|
390 |
+
Y[idxs_y_m(e), :] += matmul(X[idxs_x_m(e), :], W[e, :, :])
|
391 |
+
"""
|
392 |
+
is_input_batched = x.ndim == 3
|
393 |
+
if is_input_batched:
|
394 |
+
assert gather_indx is None, "gather not supported in batched mode"
|
395 |
+
assert scatter_indx is None, "scatter not supported in batched mode"
|
396 |
+
assert routing_data is None, "routing not supported in batched mode"
|
397 |
+
assert w.ndim == 3 and w.shape[0] == x.shape[0]
|
398 |
+
# canonicalize inputs
|
399 |
+
if precision_config is None:
|
400 |
+
precision_config = PrecisionConfig()
|
401 |
+
if fused_activation is None:
|
402 |
+
fused_activation = FusedActivation(FnSpecs.default(), tuple(), 1)
|
403 |
+
if epilogue is None:
|
404 |
+
epilogue = Epilogue(FnSpecs.default(), tuple(), tuple(), False)
|
405 |
+
if routing_data is None:
|
406 |
+
routing_data = RoutingData(None, None, max(1, w.shape[0]), 1)
|
407 |
+
# unpack scales
|
408 |
+
w_scale = precision_config.weight_scale
|
409 |
+
w_has_mx = w_scale is not None
|
410 |
+
is_hopper_fp8 = is_cuda() and not target_info.cuda_capability_geq(10, 0) and bitwidth(w.dtype) == 8
|
411 |
+
if w_has_mx: assert w.stride(-2) == 1, "`w` must be column-major when it has data-type mxfp"
|
412 |
+
if is_hopper_fp8: assert w.stride(-2) == 1, "`w` must be column-major when it has data-type FP8 on capability < 10"
|
413 |
+
if not isinstance(w, Tensor):
|
414 |
+
# TODO: remove this code path; using uint8 for mxfp4 weight will bite us when we want to support uint8 for real
|
415 |
+
dtype = FP4 if w.dtype == torch.uint8 else w.dtype
|
416 |
+
w = wrap_torch_tensor(w, dtype=dtype)
|
417 |
+
if w_scale is not None and not isinstance(w_scale, Tensor):
|
418 |
+
w_scale = Tensor(w_scale)
|
419 |
+
if w_scale is not None:
|
420 |
+
w_scale.storage.data = w_scale.data.view(torch.uint8)
|
421 |
+
w_scale.dtype = torch.uint8
|
422 |
+
x_scale = precision_config.act_scale
|
423 |
+
x_has_mx = x_scale is not None
|
424 |
+
if x_has_mx: assert x.stride(-1) == 1, "'x' must be row-major when it has data-type mxfp"
|
425 |
+
if x_scale is not None and not isinstance(x_scale, Tensor):
|
426 |
+
x_scale = Tensor(x_scale)
|
427 |
+
if not isinstance(x, Tensor):
|
428 |
+
x = Tensor(x, dtype=x.dtype)
|
429 |
+
# determine shapes
|
430 |
+
M = x.shape[-2] if gather_indx is None else gather_indx.src_indx.shape[0]
|
431 |
+
batch_size = w.shape[0] if routing_data.expt_hist is None and w.ndim == 3 else 1
|
432 |
+
K, N = w.shape[-2:]
|
433 |
+
assert K == x.shape[-1]
|
434 |
+
if x.ndim == 3 and w.ndim == 3:
|
435 |
+
assert x.shape[0] == w.shape[0]
|
436 |
+
# compute optimization flags
|
437 |
+
out_dtype = precision_config.out_dtype or x.dtype
|
438 |
+
can_use_tma = x.storage.is_tma_compliant() and \
|
439 |
+
w.storage.is_tma_compliant() and \
|
440 |
+
(w_scale is None or w_scale.storage.is_tma_compliant())
|
441 |
+
# hopper w/ mxfp4 doesn't support TMA
|
442 |
+
can_use_tma = can_use_tma and (torch.cuda.get_device_capability()[0] > 9 or bitwidth(w.dtype) != 4)
|
443 |
+
can_use_fused_scatter = scatter_indx is not None and fused_activation.specs.fn is None
|
444 |
+
opt_flags = make_opt_flags(out_dtype, x.dtype, w.dtype, precision_config,
|
445 |
+
M, N, K, routing_data, can_use_tma, can_use_fused_scatter, epilogue.effective_itemsize,
|
446 |
+
)
|
447 |
+
if w_scale is not None and opt_flags.is_persistent and not target_info.has_native_mxfp():
|
448 |
+
raise NotImplementedError("Must use non-persistent kernel for simulated MXFP")
|
449 |
+
if w_scale is not None and w_scale.storage.layout.name is not None and not opt_flags.is_persistent and target_info.has_native_mxfp():
|
450 |
+
raise NotImplementedError("Must use persistent kernel and be TMA-compliant for native MXFP")
|
451 |
+
# determine necessary pre/post processing
|
452 |
+
preprocessing_features = init_preprocessing_features(w, precision_config, opt_flags)
|
453 |
+
postprocessing_features = init_postprocessing_features(routing_data, scatter_indx, opt_flags)
|
454 |
+
# allocate output/scratchpad memory
|
455 |
+
allocation = init_allocation(x, w, precision_config, fused_activation,
|
456 |
+
routing_data, gather_indx, scatter_indx,
|
457 |
+
opt_flags, preprocessing_features, postprocessing_features
|
458 |
+
)
|
459 |
+
memory = apply_allocation(allocation, y)
|
460 |
+
# TMA descriptors require a global memory allocation
|
461 |
+
if opt_flags.is_persistent:
|
462 |
+
triton.set_allocator(get_per_device_per_stream_alloc_fn(x.device))
|
463 |
+
# Intermediate tensors and postprocess kernels for each situation
|
464 |
+
out0, out0_flex = memory["output"], precision_config.flex_ctx.out_data
|
465 |
+
fused_postprocess_activation = FusedActivation(FnSpecs.default(), tuple(), 1)
|
466 |
+
out_scale = None if precision_config.out_scale is None else precision_config.out_scale.data.view(torch.uint8)
|
467 |
+
if postprocessing_features.finalize:
|
468 |
+
if opt_flags.fused_scatter:
|
469 |
+
out0 = memory["output"]
|
470 |
+
else:
|
471 |
+
out0 = memory["scratchpad"]["matmul"]
|
472 |
+
if "mx_out_scale" in memory["scratchpad"]:
|
473 |
+
assert out_scale is not None
|
474 |
+
out_scale = memory["scratchpad"]["mx_out_scale"]
|
475 |
+
out0_flex = OutFlexData() if out0.dtype == torch.float32 else precision_config.flex_ctx.out_data
|
476 |
+
|
477 |
+
fused_activation, fused_postprocess_activation = fused_postprocess_activation, fused_activation
|
478 |
+
out_has_mx = out_scale is not None and out0.element_size() == 1
|
479 |
+
if out_has_mx:
|
480 |
+
if isinstance(out_scale, Tensor):
|
481 |
+
out_scale = Tensor(out_scale)
|
482 |
+
else:
|
483 |
+
out_scale = None
|
484 |
+
# pre-processing
|
485 |
+
x, w, writeback_idxs, writeback_size, finalize_scatter_idxs = apply_preprocessing_features(
|
486 |
+
x, w, gather_indx, scatter_indx, routing_data, opt_flags, preprocessing_features
|
487 |
+
)
|
488 |
+
# matrix multiplication
|
489 |
+
flex = precision_config.flex_ctx
|
490 |
+
bias_stride = None if bias is None else bias.stride(0)
|
491 |
+
num_indx = None if scatter_indx is None else scatter_indx.src_indx.shape[0]
|
492 |
+
# moe metadata
|
493 |
+
expt_data = routing_data.expt_data
|
494 |
+
block_m = opt_flags.block_m
|
495 |
+
expt_hist = None if expt_data is None else expt_data.hist
|
496 |
+
expt_hist_sum = None if expt_data is None else expt_data.token_offs_pad[block_m][-1]
|
497 |
+
expt_token_offs_raw = None if expt_data is None else expt_data.token_offs_raw
|
498 |
+
expt_block_pid_map = None if expt_data is None else expt_data.block_pid_map[block_m]
|
499 |
+
# spmd grid
|
500 |
+
grid_m = triton.cdiv(M, opt_flags.block_m)
|
501 |
+
if expt_block_pid_map is not None:
|
502 |
+
grid_m = routing_data.n_blocks(M, opt_flags.block_m)
|
503 |
+
grid_n = triton.cdiv(N, opt_flags.block_n)
|
504 |
+
max_grid = batch_size * grid_m * grid_n * opt_flags.split_k
|
505 |
+
grid = min(target_info.num_sms() - opt_flags.idle_sms, max_grid) if opt_flags.is_persistent else max_grid
|
506 |
+
# canonicalize storage
|
507 |
+
has_gather = gather_indx is not None
|
508 |
+
x_storage = _canonicalize_storage(x.storage, 2 if has_gather else 3, flex.lhs_data)
|
509 |
+
w_storage = _canonicalize_storage(w.storage, 3, flex.rhs_data)
|
510 |
+
# create tma descriptor for x
|
511 |
+
x_has_tma = ((not has_gather) or (has_gather and target_info.has_tma_gather())) and opt_flags.is_persistent
|
512 |
+
x_block_tma = ([1] if has_gather else [1, opt_flags.block_m]) + [opt_flags.block_k]
|
513 |
+
x_tensor_or_tma = x_storage.make_tma(x_block_tma) if x_has_tma else x_storage.data
|
514 |
+
# create tma descriptor for w
|
515 |
+
w_has_tma = opt_flags.is_persistent
|
516 |
+
w_tensor_or_tma = w_storage.make_tma([1, opt_flags.block_k, opt_flags.block_n]) if w_has_tma else w_storage.data
|
517 |
+
# create tma descriptor for w_scale
|
518 |
+
w_scale_tensor_or_tma = w_scale
|
519 |
+
w_scale_has_tma = opt_flags.is_persistent and w_scale is not None
|
520 |
+
w_scale_tensor_or_tma = w_scale.storage.make_tma([opt_flags.block_n, opt_flags.block_k]) if w_scale_has_tma else w_scale
|
521 |
+
# canonicalize strides
|
522 |
+
x_strides = [0]*(3 - x_storage.data.ndim) + list(x_storage.data.stride())
|
523 |
+
x_scale_strides = x_scale.stride() if x_has_mx else (None, None, None)
|
524 |
+
x_scale_strides = (0, ) * (3 - len(x_scale_strides)) + x_scale_strides
|
525 |
+
w_scale_strides = w_scale.stride() if w_has_mx and not w_scale_has_tma else (None, None, None)
|
526 |
+
w_scale_strides = (0, ) * (3 - len(w_scale_strides)) + w_scale_strides
|
527 |
+
out_scale_strides = out_scale.stride() if out_has_mx else (None, None, None, None)
|
528 |
+
out_scale_strides = (0, ) * (3 - len(out_scale_strides)) + out_scale_strides
|
529 |
+
# launch kernel
|
530 |
+
kernels = get_kernels(epilogue.specs, fused_activation.specs)
|
531 |
+
(kernels._p_matmul_ogs if opt_flags.is_persistent else kernels._matmul_ogs)[(grid,)](
|
532 |
+
flex.out_data.reinterpret(memory["output"]),
|
533 |
+
flex.out_data.reinterpret(out0), *out0.stride(),
|
534 |
+
*((None, out_scale, None) if out_has_mx else out0_flex),
|
535 |
+
*out_scale_strides[-3:],
|
536 |
+
x_tensor_or_tma, x_storage.data, *x_strides,
|
537 |
+
flex.lhs_data.scale,
|
538 |
+
None if x_scale is None else x_scale.data.view(torch.uint8), *x_scale_strides,
|
539 |
+
w_tensor_or_tma, *w_storage.data.stride(), w_storage.data.stride()[-1] != 1,
|
540 |
+
flex.rhs_data.scale,
|
541 |
+
w_scale_tensor_or_tma, *w_scale_strides,
|
542 |
+
bias, bias_stride,
|
543 |
+
x.shape[-2],
|
544 |
+
x.shape[-2] if routing_data.expt_hist is None else None,
|
545 |
+
N, K,
|
546 |
+
betas, gammas,
|
547 |
+
None if gather_indx is None else gather_indx.src_indx,
|
548 |
+
None if scatter_indx is None else scatter_indx.src_indx,
|
549 |
+
num_indx,
|
550 |
+
writeback_idxs, writeback_size,
|
551 |
+
expt_hist, expt_token_offs_raw, expt_hist_sum, expt_block_pid_map,
|
552 |
+
batch_size, grid_m, grid_n,
|
553 |
+
out_alpha,
|
554 |
+
*fused_activation.fn_args, fused_activation.reduction_n,
|
555 |
+
*epilogue.fn_arg_values_matmul,
|
556 |
+
routing_data.n_expts_tot, routing_data.n_expts_act,
|
557 |
+
precision_config.max_num_imprecise_acc,
|
558 |
+
precision_config.allow_tf32,
|
559 |
+
precision_config.flexpoint_saturate_inf,
|
560 |
+
flex.rhs_data.is_per_batch,
|
561 |
+
opt_flags.block_m,
|
562 |
+
opt_flags.block_n,
|
563 |
+
opt_flags.block_k,
|
564 |
+
opt_flags.group_m,
|
565 |
+
XCD_SWIZZLE=opt_flags.xcd_swizzle,
|
566 |
+
SWIZZLE_MX_VALUE=w.storage.layout.name,
|
567 |
+
SWIZZLE_MX_SCALE=None if w_scale is None else w_scale.storage.layout.name,
|
568 |
+
EPILOGUE_SUBTILE=opt_flags.epilogue_subtile,
|
569 |
+
SPLIT_K=opt_flags.split_k,
|
570 |
+
EVEN_K=K % opt_flags.block_k == 0,
|
571 |
+
W_CACHE_MODIFIER=opt_flags.w_cache_modifier,
|
572 |
+
TOKENS_PER_EXPT_FOR_ANNOTATION=routing_data.expected_tokens_per_expt,
|
573 |
+
num_warps=opt_flags.num_warps,
|
574 |
+
num_stages=opt_flags.num_stages,
|
575 |
+
arch=opt_flags.arch,
|
576 |
+
UPCAST_INDICES=should_upcast_indices(x, w, out0),
|
577 |
+
DISABLE_Y_TMA=out0.stride(-2) * out0.dtype.itemsize % 16 != 0,
|
578 |
+
SWAP_XW=preprocessing_features.swap_xw,
|
579 |
+
IS_EPILOGUE_DEQUANT_MXFP8=epilogue.specs.name == FnName.DEQUANTIZE_MXFP8.name,
|
580 |
+
NUM_SMS = grid if opt_flags.is_persistent else 0,
|
581 |
+
**opt_flags.target_kernel_kwargs)
|
582 |
+
# post-processing
|
583 |
+
out = apply_postprocessing_features(scatter_indx, finalize_scatter_idxs, opt_flags, expt_token_offs_raw,
|
584 |
+
num_indx, precision_config, routing_data,
|
585 |
+
postprocessing_features, memory, fused_postprocess_activation, epilogue)
|
586 |
+
# remove split-k
|
587 |
+
out = out.squeeze(0)
|
588 |
+
if not is_input_batched:
|
589 |
+
out = out.view(out.shape[-2], out.shape[-1])
|
590 |
+
return out
|
591 |
+
|
592 |
+
|
593 |
+
# -----------------------------------------------------------------------------
|
594 |
+
# Reference Implementation
|
595 |
+
# -----------------------------------------------------------------------------
|
596 |
+
|
597 |
+
def matmul_ogs_torch(x, w, bias,
|
598 |
+
routing_data: RoutingData = None,
|
599 |
+
gather_indx: GatherIndx = None,
|
600 |
+
scatter_indx: ScatterIndx = None,
|
601 |
+
precision_config: PrecisionConfig = None,
|
602 |
+
betas = None,
|
603 |
+
gammas = None,
|
604 |
+
round_x = None, round_y = None,
|
605 |
+
):
|
606 |
+
is_input_batched = x.ndim == 3
|
607 |
+
assert x.dtype.itemsize > 1
|
608 |
+
assert w.dtype.itemsize > 1
|
609 |
+
if is_input_batched:
|
610 |
+
assert gather_indx is None, "gather not supported in batched mode"
|
611 |
+
assert scatter_indx is None, "scatter not supported in batched mode"
|
612 |
+
assert routing_data is None, "routing not supported in batched mode"
|
613 |
+
assert w.ndim == 3 and w.shape[0] == x.shape[0]
|
614 |
+
if round_x is None:
|
615 |
+
round_x = lambda x: x
|
616 |
+
if round_y is None:
|
617 |
+
round_y = lambda x: x
|
618 |
+
if bias.ndim == 1:
|
619 |
+
bias = bias.view(1, *bias.shape)
|
620 |
+
if w.ndim == 2:
|
621 |
+
w = w.view(1, *w.shape)
|
622 |
+
if x.ndim == 2:
|
623 |
+
x = x.view(1, *x.shape)
|
624 |
+
if routing_data is None:
|
625 |
+
routing_data = RoutingData(None, None, w.shape[0], 1)
|
626 |
+
n_expts_act = routing_data.n_expts_act
|
627 |
+
# memory offsets
|
628 |
+
if routing_data.n_expts_tot > 1 and not is_input_batched:
|
629 |
+
sizes = routing_data.expt_hist
|
630 |
+
off = torch.zeros(sizes.shape[0] + 1, dtype=torch.int32)
|
631 |
+
off[1:] = torch.cumsum(sizes, 0)
|
632 |
+
offs = list(itertools.pairwise(off))
|
633 |
+
else:
|
634 |
+
offs = [[0, x.shape[1]] for _ in range(w.shape[0])]
|
635 |
+
# compute
|
636 |
+
n_rows = x.shape[1] if gather_indx is None else gather_indx.dst_indx.shape[0]
|
637 |
+
y = torch.zeros((x.shape[0], n_rows, w.shape[-1]), device=x.device, dtype=x.dtype)
|
638 |
+
for i, (lo, hi) in enumerate(offs):
|
639 |
+
if gather_indx is None:
|
640 |
+
idx = torch.arange(lo, hi, device=x.device)
|
641 |
+
else:
|
642 |
+
idx = gather_indx.src_indx[lo:hi] // n_expts_act
|
643 |
+
batch = i if is_input_batched else 0
|
644 |
+
out = torch.matmul(round_x(x[batch, idx, :], torch.arange(lo, hi, device="cuda")).float(),
|
645 |
+
w[i].float())
|
646 |
+
if bias is not None:
|
647 |
+
out += bias[i, :] if betas is None else bias[i, :] * betas[lo:hi, None]
|
648 |
+
if gammas is not None:
|
649 |
+
out *= gammas[lo:hi, None]
|
650 |
+
y[batch, lo:hi, :] = round_y(out)
|
651 |
+
if not is_input_batched:
|
652 |
+
y = y.view(y.shape[1], y.shape[2])
|
653 |
+
if scatter_indx is None:
|
654 |
+
return y
|
655 |
+
# accumulate output from all experts
|
656 |
+
n_rows = y.shape[0] // n_expts_act
|
657 |
+
out = torch.zeros((n_rows, y.shape[-1]), dtype=torch.float32, device=x.device)
|
658 |
+
for i, (lo, hi) in enumerate(offs):
|
659 |
+
dst_idx = scatter_indx.dst_indx[lo:hi] // n_expts_act
|
660 |
+
msk = dst_idx != -1
|
661 |
+
out[dst_idx[msk], :] += y[lo:hi, :][msk, :].float()
|
662 |
+
return out
|
torch-ext/triton_kernels/matmul_ogs_details/__pycache__/_common.cpython-310.pyc
ADDED
Binary file (5.09 kB). View file
|
|
torch-ext/triton_kernels/matmul_ogs_details/__pycache__/_finalize_matmul.cpython-310.pyc
ADDED
Binary file (8.89 kB). View file
|
|
torch-ext/triton_kernels/matmul_ogs_details/__pycache__/_matmul_ogs.cpython-310.pyc
ADDED
Binary file (9.11 kB). View file
|
|
torch-ext/triton_kernels/matmul_ogs_details/__pycache__/_p_matmul_ogs.cpython-310.pyc
ADDED
Binary file (12.4 kB). View file
|
|
torch-ext/triton_kernels/matmul_ogs_details/__pycache__/_weight_transpose.cpython-310.pyc
ADDED
Binary file (1.25 kB). View file
|
|
torch-ext/triton_kernels/matmul_ogs_details/__pycache__/fast_contiguous.cpython-310.pyc
ADDED
Binary file (1.2 kB). View file
|
|
torch-ext/triton_kernels/matmul_ogs_details/__pycache__/opt_flags.cpython-310.pyc
ADDED
Binary file (6.38 kB). View file
|
|
torch-ext/triton_kernels/matmul_ogs_details/__pycache__/opt_flags_amd.cpython-310.pyc
ADDED
Binary file (921 Bytes). View file
|
|
torch-ext/triton_kernels/matmul_ogs_details/__pycache__/opt_flags_nvidia.cpython-310.pyc
ADDED
Binary file (2.63 kB). View file
|
|
torch-ext/triton_kernels/matmul_ogs_details/_common.py
ADDED
@@ -0,0 +1,165 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
|
3 |
+
import triton
|
4 |
+
import triton.language as tl
|
5 |
+
from triton.tools.tensor_descriptor import TensorDescriptor
|
6 |
+
|
7 |
+
# -----------------------------------------------------------------------------
|
8 |
+
# Utilities
|
9 |
+
# -----------------------------------------------------------------------------
|
10 |
+
|
11 |
+
|
12 |
+
@tl.constexpr_function
|
13 |
+
def get_scaled_dot_format_string(dtype: tl.dtype):
|
14 |
+
mapping = {
|
15 |
+
tl.float16: "fp16",
|
16 |
+
tl.bfloat16: "bf16",
|
17 |
+
tl.uint8: "e2m1",
|
18 |
+
tl.float8e4nv: "e4m3",
|
19 |
+
tl.float8e5: "e5m2",
|
20 |
+
}
|
21 |
+
return mapping[dtype]
|
22 |
+
|
23 |
+
|
24 |
+
@triton.jit
|
25 |
+
def xcd_swizzle(pid, domain_size, XCD_SWIZZLE: tl.constexpr):
|
26 |
+
"""
|
27 |
+
Swizzle the program id based on integer XCD_SWIZZLE.
|
28 |
+
This is useful for reording how blocks are ordered. A scheduler may, for example,
|
29 |
+
assign sequential blocks 0, 1, 2, 3, ..., 8, 9, 10.. to its 8 hardware units 0, 1, 2, 3, ..., 0, 1, 2.
|
30 |
+
This pattern may not be ideal for memory access, and it may be better to swizzle so the assignment
|
31 |
+
becomes 0, 0, 0, 0, ..., 1, 1, 1, ... In the swizzled arrangement, sequential blocks are assigned to
|
32 |
+
the same hardware unit.
|
33 |
+
"""
|
34 |
+
# Number of pids per group in the new arrangement
|
35 |
+
pids_per_group = domain_size // XCD_SWIZZLE
|
36 |
+
extra_pid_groups = domain_size % XCD_SWIZZLE
|
37 |
+
|
38 |
+
# Compute current current and local pid within the group
|
39 |
+
group = pid % XCD_SWIZZLE
|
40 |
+
local_pid = pid // XCD_SWIZZLE
|
41 |
+
|
42 |
+
# Calculate new pid based on the new grouping
|
43 |
+
new_pid = group * pids_per_group + min(group, extra_pid_groups) + local_pid
|
44 |
+
return new_pid
|
45 |
+
|
46 |
+
|
47 |
+
@triton.jit
|
48 |
+
def swizzle2d(pid, grid_m, grid_n, GROUP_M: tl.constexpr):
|
49 |
+
width = GROUP_M * grid_n
|
50 |
+
group_id = pid // width
|
51 |
+
group_size = min(grid_m - group_id * GROUP_M, GROUP_M)
|
52 |
+
pid_m = group_id * GROUP_M + (pid % group_size)
|
53 |
+
pid_n = (pid % width) // (group_size)
|
54 |
+
return pid_m, pid_n
|
55 |
+
|
56 |
+
|
57 |
+
def make_matmul_repr(base_name, order):
|
58 |
+
|
59 |
+
def matmul_repr(specialization):
|
60 |
+
signature = specialization.signature
|
61 |
+
constants = specialization.constants
|
62 |
+
reorder = lambda L: [L[i] for i in order]
|
63 |
+
layout = lambda stride: "N" if stride in constants else "T"
|
64 |
+
|
65 |
+
def convert_dtype(dtype):
|
66 |
+
if "tensordesc" in dtype:
|
67 |
+
ret = convert_dtype(dtype.split("<")[1].split("[")[0])
|
68 |
+
return ret
|
69 |
+
elif "u8" in dtype:
|
70 |
+
return "mxfp4"
|
71 |
+
elif dtype[0] == "*":
|
72 |
+
return dtype[1:]
|
73 |
+
else:
|
74 |
+
return dtype
|
75 |
+
|
76 |
+
dtypes = "x".join([convert_dtype(f"{signature[i]}") for i in reorder(["Y", "X", "W"])])
|
77 |
+
layouts = "".join([f"{layout(i)}" for i in reorder(["stride_y_n", "stride_x_k", "stride_w_n"])])
|
78 |
+
blocks = "x".join([f"{constants[i]}" for i in ["BLOCK_M", "BLOCK_N", "BLOCK_K", "SPLIT_K"]])
|
79 |
+
# mode = []
|
80 |
+
# if "GatherIndx" not in constants:
|
81 |
+
# mode += ['g']
|
82 |
+
# if "ScatterSrcIndx" not in constants:
|
83 |
+
# mode += ['s']
|
84 |
+
# suffix = "" if not mode else "_o" + (''.join(mode))
|
85 |
+
# if base_name.startswith("_p"):
|
86 |
+
# suffix += "_ptma"
|
87 |
+
return f"{base_name}_{layouts}_{dtypes}_{blocks}"
|
88 |
+
|
89 |
+
return matmul_repr
|
90 |
+
|
91 |
+
|
92 |
+
def matmul_launch_metadata(grid, kernel, args):
|
93 |
+
from ..proton_opts import launch_metadata_allow_sync
|
94 |
+
|
95 |
+
ret = dict()
|
96 |
+
M, N, K = args["M"], args["N"], args["K"]
|
97 |
+
Y, X, W = [t.base if isinstance(t, TensorDescriptor) else t for t in [args["Y"], args["X"], args["W"]]]
|
98 |
+
tokens_per_expt = args.get("TOKENS_PER_EXPT_FOR_ANNOTATION")
|
99 |
+
hist = args["ExptHist"]
|
100 |
+
if hist is not None:
|
101 |
+
# If annotation is given, use that to generate name for profiling.
|
102 |
+
if tokens_per_expt is not None:
|
103 |
+
n_rows = f"{tokens_per_expt}*"
|
104 |
+
elif launch_metadata_allow_sync():
|
105 |
+
n_rows = int(hist.float().mean())
|
106 |
+
else:
|
107 |
+
n_rows = "unknown"
|
108 |
+
|
109 |
+
if launch_metadata_allow_sync():
|
110 |
+
n_tokens = float(hist.sum())
|
111 |
+
n_w_bytes = (W.numel() * W.element_size() // hist.numel()) * (hist > 0).sum()
|
112 |
+
elif tokens_per_expt is not None:
|
113 |
+
n_tokens = tokens_per_expt * args["N_EXPTS_TOT"]
|
114 |
+
# This may not be totally correct (e.g., we might not be using all experts)
|
115 |
+
# but it's better than nothing.
|
116 |
+
n_w_bytes = W.numel() * W.element_size()
|
117 |
+
else:
|
118 |
+
n_tokens = None
|
119 |
+
n_w_bytes = 0
|
120 |
+
|
121 |
+
# If annotation is given, use that to generate name for profiling.
|
122 |
+
tokens_per_expt = args.get("TOKENS_PER_EXPT_FOR_ANNOTATION")
|
123 |
+
n_rows = f"{tokens_per_expt}*" if tokens_per_expt is not None else n_rows
|
124 |
+
else:
|
125 |
+
n_tokens = None
|
126 |
+
n_w_bytes = W.numel() * W.element_size()
|
127 |
+
repr = lambda s, x: f"{s} = {x}" if x is not None else f"E_{len(hist)}({s}) = {n_rows}"
|
128 |
+
nbits = X.dtype.itemsize * 8
|
129 |
+
batch_repr = ""
|
130 |
+
if "batch_size" in args and args["batch_size"] > 1:
|
131 |
+
batch_repr = repr("B", args["batch_size"]) + ", "
|
132 |
+
ret["name"] = f"{kernel.name} [{batch_repr}{repr('M', M)}, {repr('N', N)}, {repr('K', K)}] stg{kernel.num_stages}"
|
133 |
+
ep_subtile = args["EPILOGUE_SUBTILE"]
|
134 |
+
if ep_subtile is not None and ep_subtile > 1:
|
135 |
+
ret["name"] += f" ep/{ep_subtile}"
|
136 |
+
|
137 |
+
if hist is not None and n_tokens is None:
|
138 |
+
return ret # Don't fill metadata because we can't compute them properly.
|
139 |
+
|
140 |
+
fM = M if M is not None else n_tokens
|
141 |
+
fK = K if K is not None else n_tokens
|
142 |
+
ret[f"flops{nbits}"] = 2.0 * fM * N * fK
|
143 |
+
|
144 |
+
gindx = args.get("GatherIndx", None)
|
145 |
+
# sindx = args.get("WriteBackIndx", None)
|
146 |
+
n_x_bytes = X.numel() * X.element_size()
|
147 |
+
n_y_bytes = Y.numel() * Y.element_size()
|
148 |
+
if hist is not None:
|
149 |
+
assert n_tokens is not None
|
150 |
+
n_expts_act = args["N_EXPTS_ACT"]
|
151 |
+
|
152 |
+
if (gindx is not None) and launch_metadata_allow_sync():
|
153 |
+
# recreate inverse GatherIndx.
|
154 |
+
dst = torch.full_like(gindx, -1)
|
155 |
+
idx = torch.arange(len(gindx), device=gindx.device, dtype=torch.int32)
|
156 |
+
mask = (gindx != -1)
|
157 |
+
dst[gindx[mask]] = idx[mask]
|
158 |
+
n_read_rows = (dst.view((-1, n_expts_act)) != -1).any(dim=1).sum()
|
159 |
+
else:
|
160 |
+
n_read_rows = n_tokens
|
161 |
+
n_x_bytes = n_read_rows * X.shape[-1] * X.element_size()
|
162 |
+
n_y_bytes = n_tokens * Y.shape[-1] * Y.element_size()
|
163 |
+
ret["bytes"] = int(n_x_bytes + n_y_bytes + n_w_bytes)
|
164 |
+
|
165 |
+
return ret
|
torch-ext/triton_kernels/matmul_ogs_details/_finalize_matmul.py
ADDED
@@ -0,0 +1,377 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import triton
|
2 |
+
import triton.language as tl
|
3 |
+
from triton_kernels.numerics_details.flexpoint import float_to_flex, load_scale, update_scale
|
4 |
+
from triton_kernels.numerics_details.mxfp_details._downcast_to_mxfp import MXFP_BLOCK_SIZE
|
5 |
+
from triton_kernels.target_info import cuda_capability_geq as _cuda_capability_geq
|
6 |
+
from triton_kernels.target_info import is_hip as _is_hip
|
7 |
+
|
8 |
+
|
9 |
+
# fmt: off
|
10 |
+
@tl.constexpr_function
|
11 |
+
def is_hip():
|
12 |
+
return _is_hip()
|
13 |
+
|
14 |
+
|
15 |
+
@tl.constexpr_function
|
16 |
+
def cuda_capability_geq(x, y):
|
17 |
+
return _cuda_capability_geq(x, y)
|
18 |
+
|
19 |
+
|
20 |
+
@tl.constexpr_function
|
21 |
+
def log2(n):
|
22 |
+
return len(bin(n)) - 3
|
23 |
+
|
24 |
+
|
25 |
+
@tl.constexpr_function
|
26 |
+
def _permute_to_end_order(n: int, axis: int):
|
27 |
+
"""
|
28 |
+
Returns the order of the axes of a tensor to permute `axis` to the end.
|
29 |
+
"""
|
30 |
+
order = tuple(range(n))
|
31 |
+
return order[:axis] + order[(axis + 1):] + (axis, )
|
32 |
+
|
33 |
+
|
34 |
+
@triton.jit
|
35 |
+
def permute_to_end(x, axis: tl.constexpr):
|
36 |
+
"""
|
37 |
+
Permutes `x` so that `axis` is the last axis.
|
38 |
+
"""
|
39 |
+
N: tl.constexpr = len(x.shape)
|
40 |
+
return tl.permute(x, _permute_to_end_order(N, axis).value)
|
41 |
+
|
42 |
+
|
43 |
+
@triton.jit
|
44 |
+
def split_n(x, N: tl.constexpr):
|
45 |
+
"""
|
46 |
+
Given `x`, a tensor of shape AxB...x2x2...x2, split it N times.
|
47 |
+
Return a tuple of the results.
|
48 |
+
"""
|
49 |
+
xs = (x, )
|
50 |
+
for i in tl.static_range(N):
|
51 |
+
next = tl.split(xs[0])
|
52 |
+
for j in tl.static_range(2**i - 1):
|
53 |
+
next = next + tl.split(xs[j + 1])
|
54 |
+
xs = next
|
55 |
+
return xs
|
56 |
+
|
57 |
+
|
58 |
+
@triton.jit
|
59 |
+
def thread_local_absmax(x, BLOCK_SIZE: tl.constexpr = None, NUM_THREADS: tl.constexpr = None):
|
60 |
+
N: tl.constexpr = tl.extra.cuda.num_threads() if NUM_THREADS is None else NUM_THREADS
|
61 |
+
BS: tl.constexpr = x.numel if BLOCK_SIZE is None else BLOCK_SIZE
|
62 |
+
tl.static_assert(BS % N == 0, "BLOCK_SIZE must be divisible by NUM_THREADS")
|
63 |
+
return tl.max(tl.reshape(tl.abs(x), [N, BS // N], can_reorder=True), axis=1)
|
64 |
+
|
65 |
+
|
66 |
+
def _finalize_matmul_launch_metadata(grid, kernel, args):
|
67 |
+
ret = dict()
|
68 |
+
Out, A, ScatterSrcIndx, FinalizeScatterIdxs, K, M, N, EXPT_PER_TOK, NumRows = [
|
69 |
+
args[name]
|
70 |
+
for name in ["Out", "A", "ScatterSrcIndx", "FinalizeScatterIdxs", "K", "M", "N", "EXPT_PER_TOK", "NumRows"]
|
71 |
+
]
|
72 |
+
ret["name"] = f"{kernel.name} [M={M}x{EXPT_PER_TOK} {N=} {K=}]"
|
73 |
+
|
74 |
+
if FinalizeScatterIdxs is not None:
|
75 |
+
M = FinalizeScatterIdxs[-1].item()
|
76 |
+
|
77 |
+
if ScatterSrcIndx is not None:
|
78 |
+
is_active = (ScatterSrcIndx != -1).view((-1, EXPT_PER_TOK))
|
79 |
+
n_active = is_active.sum(dim=1)
|
80 |
+
need_accum = n_active >= (1 if K > 1 else 2)
|
81 |
+
is_active &= need_accum[:, None]
|
82 |
+
active_input_rows = is_active.sum()
|
83 |
+
active_output_rows = need_accum.sum()
|
84 |
+
if EXPT_PER_TOK > 1:
|
85 |
+
# Masked rows are set to zero.
|
86 |
+
active_output_rows += (n_active == 0).sum()
|
87 |
+
else:
|
88 |
+
if NumRows is not None:
|
89 |
+
if isinstance(NumRows, int):
|
90 |
+
active_input_rows = NumRows
|
91 |
+
else:
|
92 |
+
active_input_rows = NumRows.item()
|
93 |
+
else:
|
94 |
+
active_input_rows = M
|
95 |
+
active_output_rows = M
|
96 |
+
|
97 |
+
ret["bytes"] = (active_input_rows * K * A.shape[-1] * A.element_size() +
|
98 |
+
active_output_rows * Out.shape[-1] * Out.element_size())
|
99 |
+
if FinalizeScatterIdxs is not None:
|
100 |
+
ret["bytes"] += FinalizeScatterIdxs.numel() * FinalizeScatterIdxs.element_size()
|
101 |
+
elif ScatterSrcIndx is not None and EXPT_PER_TOK > 1:
|
102 |
+
ret["bytes"] += ScatterSrcIndx.numel() * ScatterSrcIndx.element_size()
|
103 |
+
nbits = Out.dtype.itemsize * 8
|
104 |
+
ret[f"flops{nbits}"] = active_input_rows * K * A.shape[-1]
|
105 |
+
return ret
|
106 |
+
|
107 |
+
|
108 |
+
@tl.constexpr_function
|
109 |
+
def _accumulate_f16_into_f32_and_track_absmax_ptx(n_inputs: int, src_type: str, absmax_reg_name: str | None):
|
110 |
+
"""
|
111 |
+
Generate PTX code to take fp16 inputs and sum them into an f32 accumulator using mixed-precision
|
112 |
+
adds. If `absmax_reg_name` is provided, the absolute maximum value seen so far is tracked inside
|
113 |
+
that register.
|
114 |
+
|
115 |
+
Generates code something like:
|
116 |
+
|
117 |
+
add.f32.f16 $0, $2, $1;
|
118 |
+
add.f32.f16 $0, $3, $0;
|
119 |
+
add.f32.f16 $0, $4, $0;
|
120 |
+
add.f32.f16 $0, $5, $0;
|
121 |
+
|
122 |
+
.reg .f32 b;
|
123 |
+
abs.f32 b, $0;
|
124 |
+
max.f32 my_abs_max, my_abs_max, b;
|
125 |
+
"""
|
126 |
+
# Add the first f16 value to the input $1, store into the output $0.
|
127 |
+
ptx = f"\nadd.f32.{src_type} $0, $2, $1;"
|
128 |
+
# Accumulate the rest of the inputs into the output $0.
|
129 |
+
for i in range(1, n_inputs):
|
130 |
+
ptx += f"\nadd.f32.{src_type} $0, ${2 + i}, $0;"
|
131 |
+
if absmax_reg_name is not None:
|
132 |
+
# Update `absmax_reg_name` with the absolute maximum value seen so far.
|
133 |
+
ptx += f"""
|
134 |
+
.reg .f32 b;
|
135 |
+
abs.f32 b, $0;
|
136 |
+
max.f32 {absmax_reg_name}, {absmax_reg_name}, b;
|
137 |
+
"""
|
138 |
+
# Return the PTX snippet, brace-enclosed so we don't pollute the global namespace.
|
139 |
+
return f"{{{ptx}}}"
|
140 |
+
|
141 |
+
|
142 |
+
@triton.jit
|
143 |
+
def _mixed_precision_accumulate_and_track_absmax(acc, x, axis: tl.constexpr, absmax_reg_name: tl.constexpr = None):
|
144 |
+
"""Given an fp8/bf16/fp16 tensor, accumulate into `acc` along `axis`.
|
145 |
+
Values are first converted to bf16/fp16, packed into 32-bit registers, and then accumulated using
|
146 |
+
mixed-precision adds.
|
147 |
+
|
148 |
+
If `absmax_reg_name` is provided, the absolute maximum value seen so far is tracked inside that
|
149 |
+
register.
|
150 |
+
"""
|
151 |
+
REDUCTION_SIZE: tl.constexpr = x.shape[axis]
|
152 |
+
tl.static_assert(2**log2(REDUCTION_SIZE) == REDUCTION_SIZE,
|
153 |
+
f"Reduction size must be a power of 2, was {REDUCTION_SIZE}")
|
154 |
+
# move `axis` to the last axis and reshape for iterative splitting.
|
155 |
+
x = permute_to_end(x, axis)
|
156 |
+
x = tl.reshape(x, x.shape[:-1] + (2, ) * log2(REDUCTION_SIZE))
|
157 |
+
# Split into a tuple of AxB tensors.
|
158 |
+
xs = split_n(x, log2(REDUCTION_SIZE))
|
159 |
+
if (tl.constexpr(x.dtype == tl.float8e4nv) or tl.constexpr(x.dtype == tl.float8e5)):
|
160 |
+
# Convert fp8 to fp16.
|
161 |
+
fp16_xs = ()
|
162 |
+
for i in tl.static_range(len(xs)):
|
163 |
+
fp16_xs += (xs[i].to(tl.float16), )
|
164 |
+
xs = fp16_xs
|
165 |
+
src_type: tl.constexpr = "f16"
|
166 |
+
elif x.dtype == tl.float16:
|
167 |
+
src_type: tl.constexpr = "f16"
|
168 |
+
elif x.dtype == tl.bfloat16:
|
169 |
+
src_type: tl.constexpr = "bf16"
|
170 |
+
else:
|
171 |
+
tl.static_assert(False, f"Unsupported dtype: {x.dtype}")
|
172 |
+
return tl.inline_asm_elementwise(
|
173 |
+
_accumulate_f16_into_f32_and_track_absmax_ptx(REDUCTION_SIZE, src_type, absmax_reg_name),
|
174 |
+
"=r,r" + (",h" * len(xs)),
|
175 |
+
(acc, ) + xs,
|
176 |
+
dtype=tl.float32,
|
177 |
+
is_pure=True,
|
178 |
+
pack=1,
|
179 |
+
)
|
180 |
+
|
181 |
+
|
182 |
+
def _finalize_matmul_repr(specialization):
|
183 |
+
signature = specialization.signature
|
184 |
+
suffix = "" if "ScatterSrcIndx" in specialization.constants else "_scatter"
|
185 |
+
return f"_finalize_matmul{suffix}_{signature['A'][1:]}"
|
186 |
+
|
187 |
+
|
188 |
+
@triton.jit(repr=_finalize_matmul_repr, launch_metadata=_finalize_matmul_launch_metadata)
|
189 |
+
def _finalize_matmul(
|
190 |
+
Out,
|
191 |
+
OutExpectedScale,
|
192 |
+
OutActualScale,
|
193 |
+
OutChecksumScale,
|
194 |
+
stride_out_mx_m, stride_out_mx_n,
|
195 |
+
A,
|
196 |
+
stride_a_k,
|
197 |
+
stride_a_m,
|
198 |
+
AScale,
|
199 |
+
stride_a_mx_k,
|
200 |
+
stride_a_mx_m,
|
201 |
+
ScatterSrcIndx,
|
202 |
+
FinalizeScatterIdxs,
|
203 |
+
K: tl.constexpr,
|
204 |
+
M,
|
205 |
+
N,
|
206 |
+
NumRows,
|
207 |
+
# fused activation function
|
208 |
+
ACTIVATION_FN: tl.constexpr,
|
209 |
+
activation_fn_args,
|
210 |
+
ACTIVATION_REDUCTION_N: tl.constexpr,
|
211 |
+
# epilogue transform
|
212 |
+
EPILOGUE_FN: tl.constexpr,
|
213 |
+
epilogue_fn_args,
|
214 |
+
EXPT_PER_TOK: tl.constexpr,
|
215 |
+
flexpoint_saturate_inf: tl.constexpr,
|
216 |
+
BLOCK_N: tl.constexpr,
|
217 |
+
STAGES: tl.constexpr,
|
218 |
+
HAS_FUSED_SCRATCHPAD: tl.constexpr,
|
219 |
+
):
|
220 |
+
IN_MXFP8: tl.constexpr = stride_a_mx_k is not None
|
221 |
+
OUT_MXFP8: tl.constexpr = stride_out_mx_m is not None
|
222 |
+
if HAS_FUSED_SCRATCHPAD:
|
223 |
+
# Bump A to the scratchpad region.
|
224 |
+
A += tl.cast(M, tl.int64) * stride_a_m
|
225 |
+
|
226 |
+
USE_FUSED_MIXED_PREC_ACC: tl.constexpr = (cuda_capability_geq(10, 0)
|
227 |
+
and tl.constexpr(A.dtype.element_ty != tl.float32))
|
228 |
+
USE_FUSED_ABSMAX: tl.constexpr = (USE_FUSED_MIXED_PREC_ACC and OutActualScale is not None) and ACTIVATION_FN is None
|
229 |
+
|
230 |
+
THREADS_PER_BLOCK: tl.constexpr = tl.extra.cuda.num_threads()
|
231 |
+
local_max = tl.full([THREADS_PER_BLOCK], 0.0, tl.float32)
|
232 |
+
if USE_FUSED_ABSMAX:
|
233 |
+
local_max = tl.inline_asm_elementwise(
|
234 |
+
"""
|
235 |
+
.reg .f32 my_abs_max;
|
236 |
+
mov.b32 my_abs_max, 0;
|
237 |
+
mov.b32 $0, 0;
|
238 |
+
""", "=r,r", [local_max], dtype=tl.float32, is_pure=False, pack=1)
|
239 |
+
|
240 |
+
out_scale = load_scale(OutExpectedScale)
|
241 |
+
a_scale = load_scale(AScale)
|
242 |
+
|
243 |
+
if FinalizeScatterIdxs is not None:
|
244 |
+
MBound = tl.load(FinalizeScatterIdxs + M + M * EXPT_PER_TOK)
|
245 |
+
if tl.program_id(0) >= MBound:
|
246 |
+
return
|
247 |
+
else:
|
248 |
+
MBound = M
|
249 |
+
|
250 |
+
if NumRows is not None:
|
251 |
+
NumRows = NumRows # remove constexpr
|
252 |
+
if NumRows.dtype.is_ptr():
|
253 |
+
NumRows = tl.load(NumRows)
|
254 |
+
|
255 |
+
if FinalizeScatterIdxs is not None or (ScatterSrcIndx is not None and EXPT_PER_TOK > 1):
|
256 |
+
n_active_experts = 0
|
257 |
+
else:
|
258 |
+
n_active_experts: tl.constexpr = EXPT_PER_TOK
|
259 |
+
|
260 |
+
OUT_BLOCK_N: tl.constexpr = BLOCK_N // ACTIVATION_REDUCTION_N
|
261 |
+
outN = N // ACTIVATION_REDUCTION_N
|
262 |
+
|
263 |
+
for pid_m in tl.range(tl.program_id(0), MBound, tl.num_programs(0)):
|
264 |
+
src_offs = pid_m * EXPT_PER_TOK + tl.arange(0, EXPT_PER_TOK)
|
265 |
+
if FinalizeScatterIdxs is not None:
|
266 |
+
row = tl.load(FinalizeScatterIdxs + pid_m)
|
267 |
+
src_idxs = tl.load(FinalizeScatterIdxs + M + src_offs)
|
268 |
+
n_active_experts = tl.sum((src_idxs != -1).to(tl.int32))
|
269 |
+
elif ScatterSrcIndx is not None and EXPT_PER_TOK > 1:
|
270 |
+
row = pid_m
|
271 |
+
src_idxs = tl.load(ScatterSrcIndx + src_offs)
|
272 |
+
n_active_experts = tl.sum((src_idxs != -1).to(tl.int32))
|
273 |
+
else:
|
274 |
+
row = pid_m
|
275 |
+
src_idxs = src_offs
|
276 |
+
if NumRows is not None:
|
277 |
+
src_idxs = tl.where(src_idxs < NumRows, src_idxs, -1)
|
278 |
+
|
279 |
+
if n_active_experts == 0:
|
280 |
+
for off_n in tl.range(tl.program_id(1) * OUT_BLOCK_N, outN, tl.num_programs(1) * OUT_BLOCK_N):
|
281 |
+
offs_n = off_n + tl.arange(0, OUT_BLOCK_N)
|
282 |
+
n_mask = offs_n < outN
|
283 |
+
tl.store(Out + row * outN + offs_n, tl.zeros([OUT_BLOCK_N], dtype=Out.dtype.element_ty), mask=n_mask)
|
284 |
+
else:
|
285 |
+
for off_n in tl.range(tl.program_id(1) * BLOCK_N, N, tl.num_programs(1) * BLOCK_N, num_stages=STAGES):
|
286 |
+
offs_n = off_n + tl.arange(0, BLOCK_N)
|
287 |
+
n_mask = offs_n < N
|
288 |
+
if IN_MXFP8:
|
289 |
+
MX_SCALE_BLOCK_N: tl.constexpr = BLOCK_N // MXFP_BLOCK_SIZE
|
290 |
+
N_MX_BLOCK: tl.constexpr = tl.cdiv(N, MXFP_BLOCK_SIZE)
|
291 |
+
offs_n_scale = off_n // BLOCK_N * MX_SCALE_BLOCK_N + tl.arange(0, MX_SCALE_BLOCK_N)[None, :]
|
292 |
+
n_mask_scale = offs_n_scale < N_MX_BLOCK
|
293 |
+
|
294 |
+
acc = tl.zeros([BLOCK_N], dtype=tl.float32)
|
295 |
+
if is_hip():
|
296 |
+
if EXPT_PER_TOK > 1:
|
297 |
+
src_idxs_tup = split_n(tl.reshape(src_idxs, (2, ) * log2(EXPT_PER_TOK)), log2(EXPT_PER_TOK))
|
298 |
+
else:
|
299 |
+
# Convert 1D tensor to 1D tuple.
|
300 |
+
src_idxs_tup = tl.split(tl.reshape(tl.join(src_idxs, src_idxs), (2, )))[:1]
|
301 |
+
for i in tl.static_range(0, EXPT_PER_TOK, 1):
|
302 |
+
src_idx = src_idxs_tup[i]
|
303 |
+
if src_idx != -1:
|
304 |
+
As = A + src_idx.to(tl.int64) * stride_a_m + offs_n
|
305 |
+
for ki in tl.static_range(K):
|
306 |
+
acc += tl.load(As, mask=n_mask, other=0.0)
|
307 |
+
As += stride_a_k
|
308 |
+
else:
|
309 |
+
As = A + src_idxs.to(tl.int64)[:, None] * stride_a_m + offs_n[None, :]
|
310 |
+
if IN_MXFP8:
|
311 |
+
AScales = AScale + src_idxs.to(tl.int64)[:, None] * stride_a_mx_m + offs_n_scale[None, :]
|
312 |
+
for ki in tl.static_range(K):
|
313 |
+
a = tl.load(As, mask=(src_idxs != -1)[:, None] & n_mask[None, :], other=0.0)
|
314 |
+
As += stride_a_k
|
315 |
+
if IN_MXFP8:
|
316 |
+
a_mx_scale = tl.load(AScales, mask=(src_idxs != -1)[:, None] & n_mask_scale[None, :])
|
317 |
+
AScales += stride_a_mx_k
|
318 |
+
a_mx_scale = (a_mx_scale.to(tl.uint32) << 23).to(tl.float32, bitcast=True)
|
319 |
+
a_mx_scale = a_mx_scale.reshape([EXPT_PER_TOK, MX_SCALE_BLOCK_N, 1])
|
320 |
+
a = a.to(tl.float32).reshape([EXPT_PER_TOK, MX_SCALE_BLOCK_N, MXFP_BLOCK_SIZE])
|
321 |
+
a = (a_mx_scale * a).reshape([EXPT_PER_TOK, BLOCK_N])
|
322 |
+
acc += tl.sum(a, dtype=tl.float32, axis=0)
|
323 |
+
elif USE_FUSED_MIXED_PREC_ACC:
|
324 |
+
acc = _mixed_precision_accumulate_and_track_absmax(
|
325 |
+
acc, a, axis=0,
|
326 |
+
absmax_reg_name="my_abs_max" if USE_FUSED_ABSMAX and ki == K - 1 else None)
|
327 |
+
else:
|
328 |
+
acc += tl.sum(a, dtype=tl.float32, axis=0)
|
329 |
+
if not IN_MXFP8:
|
330 |
+
acc = acc * a_scale
|
331 |
+
if ACTIVATION_FN is not None:
|
332 |
+
out = ACTIVATION_FN(tl.reshape(acc, (1, BLOCK_N)), *activation_fn_args)
|
333 |
+
out = tl.reshape(out, (OUT_BLOCK_N, ))
|
334 |
+
else:
|
335 |
+
tl.static_assert(ACTIVATION_REDUCTION_N == 1,
|
336 |
+
"Activation reduction must be 1 if no activation fn is provided")
|
337 |
+
out = acc
|
338 |
+
if not USE_FUSED_ABSMAX and OutActualScale is not None:
|
339 |
+
local_max = tl.maximum(local_max, thread_local_absmax(out))
|
340 |
+
if OUT_MXFP8:
|
341 |
+
OUT_MX_SCALE_BLOCK_N: tl.constexpr = OUT_BLOCK_N // MXFP_BLOCK_SIZE
|
342 |
+
OUT_N_MX_BLOCK: tl.constexpr = (outN + MXFP_BLOCK_SIZE - 1) // MXFP_BLOCK_SIZE
|
343 |
+
offs_n_scale = off_n // BLOCK_N * OUT_MX_SCALE_BLOCK_N + tl.arange(0, OUT_MX_SCALE_BLOCK_N)[None, :]
|
344 |
+
n_mask_scale = offs_n_scale < OUT_N_MX_BLOCK
|
345 |
+
acc, acc_scale = EPILOGUE_FN(acc[None, :], n_mask[None, :], *epilogue_fn_args,
|
346 |
+
pid=row * tl.num_programs(1) + tl.program_id(1))
|
347 |
+
tl.static_assert(OUT_BLOCK_N % OUT_MX_SCALE_BLOCK_N == 0, "")
|
348 |
+
tl.store(OutActualScale + row * stride_out_mx_m + offs_n_scale * stride_out_mx_n, acc_scale, mask=n_mask_scale)
|
349 |
+
tl.store(Out + row * outN + offs_n[None, :], acc, mask=n_mask[None, :])
|
350 |
+
else:
|
351 |
+
out = float_to_flex(out, out_scale if OutExpectedScale is not None else None, None, OutChecksumScale,
|
352 |
+
None, Out, flexpoint_saturate_inf)
|
353 |
+
if EPILOGUE_FN is not None:
|
354 |
+
out = EPILOGUE_FN(out, *epilogue_fn_args, target_dtype=Out.dtype.element_ty,
|
355 |
+
pid=row * tl.num_programs(1) + tl.program_id(1))
|
356 |
+
offs_n = off_n // ACTIVATION_REDUCTION_N + tl.arange(0, OUT_BLOCK_N)
|
357 |
+
n_mask = offs_n < outN
|
358 |
+
tl.store(Out + row * outN + offs_n, out, mask=n_mask)
|
359 |
+
|
360 |
+
persisent_m = tl.num_programs(0) < MBound
|
361 |
+
if not persisent_m and n_active_experts == 0:
|
362 |
+
# Skip updating the scale if there were no active experts and this is a non-persistent launch.
|
363 |
+
# The loop ran only once, and inside it we only stored zeros.
|
364 |
+
return
|
365 |
+
|
366 |
+
if USE_FUSED_ABSMAX:
|
367 |
+
local_max = tl.inline_asm_elementwise(
|
368 |
+
"mov.b32 $0, my_abs_max;",
|
369 |
+
"=r,r",
|
370 |
+
[local_max],
|
371 |
+
dtype=tl.float32,
|
372 |
+
is_pure=True,
|
373 |
+
pack=1,
|
374 |
+
)
|
375 |
+
local_max *= a_scale
|
376 |
+
if not OUT_MXFP8:
|
377 |
+
update_scale(local_max, OutActualScale, Out)
|
torch-ext/triton_kernels/matmul_ogs_details/_matmul_ogs.py
ADDED
@@ -0,0 +1,464 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# isort: off
|
2 |
+
# fmt: off
|
3 |
+
import triton
|
4 |
+
import triton.language as tl
|
5 |
+
from triton_kernels.tensor_details.layout_details.blackwell_scale import unswizzle_mx_scale_bw
|
6 |
+
from triton_kernels.tensor_details.layout_details.hopper_scale import unswizzle_mxfp4_scale_hopper
|
7 |
+
from triton_kernels.tensor_details.layout_details.hopper_value import mxfp4_to_bf16_triton
|
8 |
+
from triton_kernels.numerics_details.flexpoint import float_to_flex, load_scale
|
9 |
+
from triton_kernels.numerics_details.mxfp_details._downcast_to_mxfp import MXFP_BLOCK_SIZE
|
10 |
+
from ._common import make_matmul_repr, matmul_launch_metadata, swizzle2d, xcd_swizzle, get_scaled_dot_format_string
|
11 |
+
|
12 |
+
|
13 |
+
@triton.jit
|
14 |
+
def _zero_masked_rows(
|
15 |
+
pid_m, pid_n,
|
16 |
+
Y, stride_y_m, stride_y_n,
|
17 |
+
N,
|
18 |
+
ScatterSrcIndx, num_idxs,
|
19 |
+
BLOCK_M: tl.constexpr, BLOCK_N: tl.constexpr):
|
20 |
+
offs_m = BLOCK_M * pid_m.to(tl.int64) + tl.arange(0, BLOCK_M)
|
21 |
+
offs_n = BLOCK_N * pid_n + tl.arange(0, BLOCK_N)
|
22 |
+
src_idx = tl.load(ScatterSrcIndx + offs_m, mask=offs_m < num_idxs, other=0)
|
23 |
+
YPtrs = Y + offs_m[:, None] * stride_y_m + offs_n[None, :] * stride_y_n
|
24 |
+
mask_n = offs_n < N
|
25 |
+
mask = (src_idx == -1)[:, None] & mask_n[None, :]
|
26 |
+
tl.store(YPtrs, tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32), mask=mask)
|
27 |
+
|
28 |
+
|
29 |
+
_matmul_ogs_repr = make_matmul_repr("_matmul_ogs", [0, 1, 2])
|
30 |
+
@triton.jit(do_not_specialize=["TOKENS_PER_EXPT_FOR_ANNOTATION"],
|
31 |
+
repr=_matmul_ogs_repr, launch_metadata=matmul_launch_metadata)
|
32 |
+
def _matmul_ogs(
|
33 |
+
Y, Out, stride_y_k, stride_y_z, stride_y_m, stride_y_n,
|
34 |
+
YExpectedScale, YActualScale, YChecksumScale,
|
35 |
+
stride_y_mx_z, stride_y_mx_m, stride_y_mx_n,
|
36 |
+
X, XPtr, stride_x_z, stride_x_m, stride_x_k,
|
37 |
+
XScale,
|
38 |
+
XMxScale, stride_x_mx_z, stride_x_mx_m, stride_x_mx_k,
|
39 |
+
W, stride_w_e, stride_w_k, stride_w_n, W_TRANSPOSE: tl.constexpr,
|
40 |
+
WScale,
|
41 |
+
WMxScale, stride_w_mx_e, stride_w_mx_k, stride_w_mx_n,
|
42 |
+
B, stride_b_e, # Bias
|
43 |
+
NRows, M, N, K, # shapes
|
44 |
+
# expt data
|
45 |
+
Betas, Gammas,
|
46 |
+
GatherIndx,
|
47 |
+
ScatterSrcIndx, num_idxs,
|
48 |
+
WriteBackIndx, writeback_size,
|
49 |
+
ExptHist, ExptOffs, ExptOffsSum, ExptData,
|
50 |
+
# true grid size
|
51 |
+
batch_size, grid_m, grid_n,
|
52 |
+
# Out scale
|
53 |
+
out_alpha,
|
54 |
+
# fused activation function
|
55 |
+
ACTIVATION_FN: tl.constexpr, activation_fn_args, ACTIVATION_REDUCTION_N: tl.constexpr,
|
56 |
+
# epilogue transform
|
57 |
+
EPILOGUE_FN: tl.constexpr, epilogue_fn_args,
|
58 |
+
# MoE config
|
59 |
+
N_EXPTS_TOT: tl.constexpr, N_EXPTS_ACT: tl.constexpr,
|
60 |
+
# precision config
|
61 |
+
MAX_NUM_IMPRECISE_ACC: tl.constexpr, ALLOW_TF32: tl.constexpr,
|
62 |
+
FLEXPOINT_SATURATE_INF: tl.constexpr,
|
63 |
+
PER_BATCH_SCALE: tl.constexpr,
|
64 |
+
# optimization config
|
65 |
+
BLOCK_M: tl.constexpr, BLOCK_N: tl.constexpr, BLOCK_K: tl.constexpr,
|
66 |
+
GROUP_M: tl.constexpr, XCD_SWIZZLE: tl.constexpr,
|
67 |
+
# One of ["HOPPER", "BLACKWELL", None]
|
68 |
+
SWIZZLE_MX_VALUE: tl.constexpr,
|
69 |
+
# One of ["HOPPER", "BLACKWELL", None]
|
70 |
+
SWIZZLE_MX_SCALE: tl.constexpr,
|
71 |
+
EPILOGUE_SUBTILE: tl.constexpr,
|
72 |
+
EVEN_K: tl.constexpr, SPLIT_K: tl.constexpr,
|
73 |
+
W_CACHE_MODIFIER: tl.constexpr,
|
74 |
+
NUM_SMS: tl.constexpr,
|
75 |
+
TOKENS_PER_EXPT_FOR_ANNOTATION=None,
|
76 |
+
UPCAST_INDICES: tl.constexpr = False,
|
77 |
+
DISABLE_Y_TMA: tl.constexpr = True,
|
78 |
+
SWAP_XW: tl.constexpr = False,
|
79 |
+
IS_EPILOGUE_DEQUANT_MXFP8: tl.constexpr = False):
|
80 |
+
|
81 |
+
Y = Out # Y is passed for the purposes of annotation; replace it with Out
|
82 |
+
is_w_microscaled: tl.constexpr = WMxScale is not None
|
83 |
+
MX_PACK_DIVISOR: tl.constexpr = MXFP_BLOCK_SIZE
|
84 |
+
if is_w_microscaled:
|
85 |
+
w_type: tl.constexpr = W.dtype.element_ty
|
86 |
+
is_mxfp4: tl.constexpr = w_type == tl.uint8
|
87 |
+
tl.static_assert(w_type == tl.uint8 or (w_type == tl.float8e4nv or w_type == tl.float8e5),
|
88 |
+
"mx_weight_ptr must be uint8 or fp8")
|
89 |
+
tl.static_assert(WMxScale.dtype.element_ty == tl.uint8, "mx_scale_ptr must be uint8")
|
90 |
+
tl.static_assert(BLOCK_K % MX_PACK_DIVISOR == 0, "BLOCK_K must be a multiple of MX_PACK_DIVISOR")
|
91 |
+
tl.static_assert(SWIZZLE_MX_VALUE == "HOPPER_VALUE" or SWIZZLE_MX_VALUE is None, "Only Hopper swizzling is supported for values")
|
92 |
+
else:
|
93 |
+
tl.static_assert(SWIZZLE_MX_VALUE is None)
|
94 |
+
tl.static_assert(SWIZZLE_MX_SCALE is None)
|
95 |
+
is_x_microscaled: tl.constexpr = XMxScale is not None
|
96 |
+
if is_x_microscaled:
|
97 |
+
x_type: tl.constexpr = X.dtype.element_ty
|
98 |
+
tl.static_assert(is_w_microscaled)
|
99 |
+
tl.static_assert(x_type == tl.float8e4nv, "mx_act_ptr must be float8e4nv")
|
100 |
+
tl.static_assert(XMxScale.dtype.element_ty == tl.uint8, "mx_scale_ptr must be uint8")
|
101 |
+
tl.static_assert(BLOCK_K % MX_PACK_DIVISOR == 0, "BLOCK_K must be a multiple of MX_PACK_DIVISOR")
|
102 |
+
is_out_microscaled: tl.constexpr = stride_y_mx_z is not None
|
103 |
+
|
104 |
+
OUT_BLOCK_N: tl.constexpr = BLOCK_N // ACTIVATION_REDUCTION_N
|
105 |
+
yN = N // ACTIVATION_REDUCTION_N
|
106 |
+
|
107 |
+
pid = tl.program_id(0)
|
108 |
+
if ExptOffsSum is not None and XCD_SWIZZLE > 1:
|
109 |
+
# Determine how much padding there is on the expert data. This allows us to
|
110 |
+
# know the true grid size and avoid processing padding tiles.
|
111 |
+
padding_m = grid_m - tl.load(ExptOffsSum)
|
112 |
+
else:
|
113 |
+
padding_m: tl.constexpr = 0
|
114 |
+
|
115 |
+
HAS_FUSED_SCATTER: tl.constexpr = WriteBackIndx is not None
|
116 |
+
index_type: tl.constexpr = tl.int64 if UPCAST_INDICES else tl.int32
|
117 |
+
|
118 |
+
total_actual_tiles = batch_size * (grid_m - padding_m) * grid_n * SPLIT_K
|
119 |
+
if padding_m > 0 and pid >= total_actual_tiles:
|
120 |
+
tl.device_assert(batch_size == 0)
|
121 |
+
pid_mn = pid - total_actual_tiles
|
122 |
+
if pid_mn < padding_m * grid_n:
|
123 |
+
pid_m, pid_n = swizzle2d(pid_mn, padding_m, grid_n, GROUP_M)
|
124 |
+
|
125 |
+
# set masked out rows to 0
|
126 |
+
if HAS_FUSED_SCATTER and N_EXPTS_ACT == 1:
|
127 |
+
_zero_masked_rows(pid_m, pid_n, Y, stride_y_m, stride_y_n, yN, ScatterSrcIndx, num_idxs, BLOCK_M, OUT_BLOCK_N)
|
128 |
+
return
|
129 |
+
|
130 |
+
# swizzle program ids
|
131 |
+
pid_emnk = pid
|
132 |
+
if XCD_SWIZZLE != 1:
|
133 |
+
pid_emnk = xcd_swizzle(pid_emnk, total_actual_tiles, XCD_SWIZZLE)
|
134 |
+
pid_e = pid_emnk // ((grid_m - padding_m) * grid_n * SPLIT_K)
|
135 |
+
pid_mnk = pid_emnk % ((grid_m - padding_m) * grid_n * SPLIT_K)
|
136 |
+
pid_k = pid_mnk % SPLIT_K
|
137 |
+
pid_mn = pid_mnk // SPLIT_K
|
138 |
+
pid_m, pid_n = swizzle2d(pid_mn, (grid_m - padding_m), grid_n, GROUP_M)
|
139 |
+
# For split-k, advance to the output k slice
|
140 |
+
if SPLIT_K > 1:
|
141 |
+
Y += pid_k.to( index_type) * stride_y_k
|
142 |
+
if is_out_microscaled:
|
143 |
+
YActualScale += pid_k.to(index_type) * stride_x_mx_k
|
144 |
+
# set masked out rows to 0
|
145 |
+
if HAS_FUSED_SCATTER and N_EXPTS_ACT == 1:
|
146 |
+
_zero_masked_rows(pid_m, pid_n, Y, stride_y_m, stride_y_n, yN, ScatterSrcIndx, num_idxs, BLOCK_M, OUT_BLOCK_N)
|
147 |
+
# unpack expert data
|
148 |
+
if ExptData is None:
|
149 |
+
tl.static_assert(M is not None)
|
150 |
+
expt_id, start_z, start_m, block_id = pid_e, pid_e, 0, pid_m
|
151 |
+
else:
|
152 |
+
tl.static_assert(M is None)
|
153 |
+
expt_data = tl.load(ExptData + pid_m)
|
154 |
+
if expt_data == -1:
|
155 |
+
return
|
156 |
+
expt_id = expt_data & 0x0000FFFF
|
157 |
+
block_id = expt_data >> 16
|
158 |
+
M = tl.load(ExptHist + expt_id)
|
159 |
+
start_m = tl.load(ExptOffs + expt_id)
|
160 |
+
start_z = 0
|
161 |
+
expt_id, block_id = expt_id.to(index_type), block_id.to(index_type)
|
162 |
+
start_m, start_z = start_m.to(index_type), start_z.to(index_type)
|
163 |
+
pid_n, pid_k = pid_n.to(index_type), pid_k.to(index_type)
|
164 |
+
# A pointers
|
165 |
+
offs_x_m = BLOCK_M * block_id + tl.arange(0, BLOCK_M)
|
166 |
+
offs_x_m = tl.max_contiguous(tl.multiple_of(offs_x_m % M, BLOCK_M), BLOCK_M)
|
167 |
+
X += start_z * stride_x_z
|
168 |
+
if GatherIndx is None:
|
169 |
+
X += start_m * stride_x_m
|
170 |
+
else:
|
171 |
+
GatherIndx += start_m
|
172 |
+
# no needs to bounds-check here because `offs_x_m` wraps around M dim
|
173 |
+
offs_x_m = tl.load(GatherIndx + offs_x_m) // N_EXPTS_ACT
|
174 |
+
offs_k = BLOCK_K * pid_k + tl.arange(0, BLOCK_K)
|
175 |
+
XPtrs = X + offs_x_m.to(index_type)[:, None] * stride_x_m + offs_k.to(index_type)[None, :] * stride_x_k
|
176 |
+
|
177 |
+
# TODO: refactor if/else when triton front end improves
|
178 |
+
if is_w_microscaled:
|
179 |
+
if SWIZZLE_MX_VALUE == "HOPPER_VALUE":
|
180 |
+
tl.static_assert(is_mxfp4, "Only mxfp4 is supported for HOPPER swizzling")
|
181 |
+
tl.static_assert(not is_x_microscaled)
|
182 |
+
# We have pack 2 fp4 values in a byte but we divide the dimension by 2
|
183 |
+
# when swizzling
|
184 |
+
W_K_DIVISOR: tl.constexpr = 1
|
185 |
+
W_K_MULTIPLIER: tl.constexpr = 2
|
186 |
+
W_N_DIVISOR: tl.constexpr = 4
|
187 |
+
else:
|
188 |
+
# We have pack 2 fp4 values in a byte
|
189 |
+
W_K_DIVISOR: tl.constexpr = 2 if is_mxfp4 else 1
|
190 |
+
W_K_MULTIPLIER: tl.constexpr = 1
|
191 |
+
W_N_DIVISOR: tl.constexpr = 1
|
192 |
+
|
193 |
+
PACKED_BLOCK_K_W: tl.constexpr = (BLOCK_K // W_K_DIVISOR) * W_K_MULTIPLIER
|
194 |
+
PACKED_BLOCK_N_W: tl.constexpr = BLOCK_N // W_N_DIVISOR
|
195 |
+
MX_SCALE_BLOCK_K: tl.constexpr = BLOCK_K // MX_PACK_DIVISOR
|
196 |
+
|
197 |
+
WMxScale += expt_id * stride_w_mx_e
|
198 |
+
|
199 |
+
if SWIZZLE_MX_SCALE == "BLACKWELL_SCALE":
|
200 |
+
tl.static_assert(BLOCK_N % 128 == 0)
|
201 |
+
tl.static_assert(MX_SCALE_BLOCK_K % 4 == 0)
|
202 |
+
PACKED_MX_BLOCK: tl.constexpr = (MX_SCALE_BLOCK_K // 4) * 32 * 4 * 4
|
203 |
+
SCALE_BLOCK_N: tl.constexpr = BLOCK_N // 128
|
204 |
+
stride_scale_k: tl.constexpr = 1
|
205 |
+
elif SWIZZLE_MX_SCALE == "HOPPER_SCALE":
|
206 |
+
n_warps: tl.constexpr = tl.extra.cuda.num_warps()
|
207 |
+
tl.static_assert(BLOCK_N % (2 * n_warps * 2 * 8) == 0)
|
208 |
+
tl.static_assert(MX_SCALE_BLOCK_K % 2 == 0)
|
209 |
+
PACKED_MX_BLOCK: tl.constexpr = MX_SCALE_BLOCK_K * 32
|
210 |
+
SCALE_BLOCK_N: tl.constexpr = BLOCK_N // 32
|
211 |
+
stride_scale_k = stride_w_mx_k
|
212 |
+
else:
|
213 |
+
PACKED_MX_BLOCK: tl.constexpr = MX_SCALE_BLOCK_K
|
214 |
+
SCALE_BLOCK_N: tl.constexpr = BLOCK_N
|
215 |
+
stride_scale_k = stride_w_mx_k
|
216 |
+
offs_n_scale = (pid_n * SCALE_BLOCK_N + tl.arange(0, SCALE_BLOCK_N)) % N
|
217 |
+
offs_n_scale = tl.max_contiguous(tl.multiple_of(offs_n_scale, SCALE_BLOCK_N), SCALE_BLOCK_N)
|
218 |
+
# K dimension must be the last dimension for the scales
|
219 |
+
offs_k_scale = PACKED_MX_BLOCK * pid_k + tl.arange(0, PACKED_MX_BLOCK)
|
220 |
+
WMxScalePtrs = WMxScale + offs_k_scale.to(index_type)[None, :] * stride_scale_k + offs_n_scale.to(index_type)[:, None] * stride_w_mx_n
|
221 |
+
else:
|
222 |
+
WMxScalePtrs = None
|
223 |
+
offs_k_scale = None
|
224 |
+
W_K_DIVISOR: tl.constexpr = 1
|
225 |
+
W_K_MULTIPLIER: tl.constexpr = 1
|
226 |
+
W_N_DIVISOR: tl.constexpr = 1
|
227 |
+
PACKED_BLOCK_K_W: tl.constexpr = BLOCK_K
|
228 |
+
PACKED_BLOCK_N_W: tl.constexpr = BLOCK_N
|
229 |
+
|
230 |
+
# B pointers
|
231 |
+
offs_w_n = pid_n * PACKED_BLOCK_N_W + tl.arange(0, PACKED_BLOCK_N_W)
|
232 |
+
offs_w_n = tl.max_contiguous(tl.multiple_of(offs_w_n % (N // W_N_DIVISOR), PACKED_BLOCK_N_W), PACKED_BLOCK_N_W)
|
233 |
+
|
234 |
+
if is_x_microscaled:
|
235 |
+
XMxScale += start_z.to(index_type) * stride_x_mx_z
|
236 |
+
if GatherIndx is None:
|
237 |
+
XMxScale += start_m * stride_x_mx_m
|
238 |
+
offs_x_k_scale = MX_SCALE_BLOCK_K * pid_k + tl.arange(0, MX_SCALE_BLOCK_K)
|
239 |
+
XMxScalePtrs = XMxScale + offs_x_m.to(index_type)[:, None] * stride_x_mx_m + offs_x_k_scale.to(index_type)[None, :] * stride_x_mx_k
|
240 |
+
else:
|
241 |
+
XMxScalePtrs = None
|
242 |
+
|
243 |
+
offs_w_k = PACKED_BLOCK_K_W * pid_k + tl.arange(0, PACKED_BLOCK_K_W)
|
244 |
+
W += expt_id * stride_w_e
|
245 |
+
WPtrs = W + (offs_w_k.to(index_type)[:, None] * stride_w_k + offs_w_n.to(index_type)[None, :] * stride_w_n)
|
246 |
+
# compute output
|
247 |
+
acc = tl.zeros((BLOCK_M, BLOCK_N), dtype=tl.float32)
|
248 |
+
for k in range(K, BLOCK_K * pid_k, -(BLOCK_K * SPLIT_K)):
|
249 |
+
if EVEN_K:
|
250 |
+
mask_k = tl.full([BLOCK_K], True, dtype=tl.int1)
|
251 |
+
mask_k_w = tl.full([PACKED_BLOCK_K_W], True, dtype=tl.int1)
|
252 |
+
if is_w_microscaled and SWIZZLE_MX_SCALE is None:
|
253 |
+
mask_k_scale = tl.full([PACKED_MX_BLOCK], True, dtype=tl.int1)
|
254 |
+
if is_x_microscaled:
|
255 |
+
mask_x_k_scale = tl.full([MX_SCALE_BLOCK_K], True, dtype=tl.int1)
|
256 |
+
else:
|
257 |
+
mask_k = offs_k < k
|
258 |
+
mask_k_w = offs_w_k < ((k // W_K_DIVISOR) * W_K_MULTIPLIER)
|
259 |
+
if is_w_microscaled and SWIZZLE_MX_SCALE is None:
|
260 |
+
mask_k_scale = offs_k_scale * MX_PACK_DIVISOR < k
|
261 |
+
if is_x_microscaled:
|
262 |
+
mask_x_k_scale = offs_x_k_scale * MX_PACK_DIVISOR < k
|
263 |
+
|
264 |
+
x = tl.load(XPtrs, mask=mask_k[None, :], other=0.0)
|
265 |
+
w = tl.load(WPtrs, mask=mask_k_w[:, None], other=0.0, cache_modifier=W_CACHE_MODIFIER)
|
266 |
+
if is_w_microscaled:
|
267 |
+
x_format: tl.constexpr = get_scaled_dot_format_string(x.dtype)
|
268 |
+
w_format: tl.constexpr = get_scaled_dot_format_string(w.dtype)
|
269 |
+
|
270 |
+
if is_x_microscaled:
|
271 |
+
x_scales = tl.load(XMxScalePtrs, mask=mask_x_k_scale[None, :])
|
272 |
+
elif x_format == "fp16" or x_format == "bf16":
|
273 |
+
x_scales: tl.constexpr = None
|
274 |
+
else:
|
275 |
+
# Scale of 1 in E8M0 format
|
276 |
+
x_scales = tl.full((BLOCK_M, MX_SCALE_BLOCK_K), 127, dtype=tl.uint8)
|
277 |
+
|
278 |
+
if SWIZZLE_MX_SCALE == "BLACKWELL_SCALE":
|
279 |
+
w_scales = unswizzle_mx_scale_bw(tl.load(WMxScalePtrs))
|
280 |
+
elif SWIZZLE_MX_SCALE == "HOPPER_SCALE":
|
281 |
+
# Handshake with the swizzling code
|
282 |
+
num_warps: tl.constexpr = tl.extra.cuda.num_warps()
|
283 |
+
w_scales = unswizzle_mxfp4_scale_hopper(tl.load(WMxScalePtrs), mx_axis=1, num_warps=num_warps)
|
284 |
+
else:
|
285 |
+
w_scales = tl.load(WMxScalePtrs, mask=mask_k_scale[None, :])
|
286 |
+
|
287 |
+
if SWIZZLE_MX_VALUE == "HOPPER_VALUE":
|
288 |
+
# Handshake with the swizzling code
|
289 |
+
tl.static_assert(x_format == "bf16")
|
290 |
+
tl.static_assert(w_format == "e2m1")
|
291 |
+
w = mxfp4_to_bf16_triton(w.trans(), w_scales, 1)
|
292 |
+
tl.static_assert(w.dtype == tl.bfloat16)
|
293 |
+
acc = acc.trans()
|
294 |
+
x = x.trans()
|
295 |
+
# w = w.trans()
|
296 |
+
acc = tl.dot(w, x, acc, max_num_imprecise_acc=MAX_NUM_IMPRECISE_ACC, allow_tf32=ALLOW_TF32)
|
297 |
+
acc = acc.trans()
|
298 |
+
else:
|
299 |
+
acc = tl.dot_scaled(x, x_scales, x_format, w, w_scales, w_format, acc=acc, fast_math=True)
|
300 |
+
if SWIZZLE_MX_SCALE == "BLACKWELL_SCALE":
|
301 |
+
WMxScalePtrs += (MX_SCALE_BLOCK_K // 4 * SPLIT_K) * stride_w_mx_k
|
302 |
+
else:
|
303 |
+
WMxScalePtrs += (PACKED_MX_BLOCK * SPLIT_K) * stride_w_mx_k
|
304 |
+
if is_x_microscaled:
|
305 |
+
XMxScalePtrs += (MX_SCALE_BLOCK_K * SPLIT_K) * stride_x_mx_k
|
306 |
+
else:
|
307 |
+
acc = tl.dot(x, w, acc, max_num_imprecise_acc=MAX_NUM_IMPRECISE_ACC, allow_tf32=ALLOW_TF32)
|
308 |
+
XPtrs += (BLOCK_K * SPLIT_K) * stride_x_k
|
309 |
+
WPtrs += (PACKED_BLOCK_K_W * SPLIT_K) * stride_w_k
|
310 |
+
# bias + scale
|
311 |
+
offs_m = BLOCK_M * block_id + tl.arange(0, BLOCK_M)
|
312 |
+
offs_y_n = BLOCK_N * pid_n + tl.arange(0, BLOCK_N)
|
313 |
+
mask_m = offs_m < M
|
314 |
+
mask_n = offs_y_n < N
|
315 |
+
if B is not None:
|
316 |
+
BPtrs = B + expt_id * stride_b_e + offs_y_n
|
317 |
+
if pid_k == 0:
|
318 |
+
bias = tl.load(BPtrs, mask=mask_n, other=0)
|
319 |
+
else:
|
320 |
+
bias = tl.full([BLOCK_N], 0, dtype=tl.float32)
|
321 |
+
else:
|
322 |
+
bias = tl.full([BLOCK_N], 0, dtype=tl.float32)
|
323 |
+
if Betas is not None:
|
324 |
+
betas = tl.load(Betas + start_m + offs_m, mask=mask_m, other=0.0)
|
325 |
+
else:
|
326 |
+
betas = tl.full([BLOCK_M], 1, dtype=tl.float32)
|
327 |
+
if Gammas is not None:
|
328 |
+
gammas = tl.load(Gammas + start_m + offs_m, mask=mask_m, other=0.0)
|
329 |
+
else:
|
330 |
+
gammas = tl.full([BLOCK_M], 1, dtype=tl.float32)
|
331 |
+
# flexpoint
|
332 |
+
x_scale = load_scale(XScale)
|
333 |
+
if PER_BATCH_SCALE:
|
334 |
+
w_scale = load_scale(WScale + expt_id)
|
335 |
+
else:
|
336 |
+
w_scale = load_scale(WScale)
|
337 |
+
acc *= x_scale * w_scale
|
338 |
+
acc = acc + bias[None, :] * betas[:, None]
|
339 |
+
if out_alpha is not None:
|
340 |
+
acc *= out_alpha
|
341 |
+
if ACTIVATION_FN is not None:
|
342 |
+
out = ACTIVATION_FN(acc, *activation_fn_args)
|
343 |
+
tl.static_assert(out.shape[1] == OUT_BLOCK_N, f"Activation fn out.shape[1] ({out.shape[1]}) doesn't match computed OUT_BLOCK_N ({OUT_BLOCK_N})")
|
344 |
+
offs_y_n = OUT_BLOCK_N * pid_n + tl.arange(0, OUT_BLOCK_N)
|
345 |
+
mask_n = offs_y_n < yN
|
346 |
+
else:
|
347 |
+
tl.static_assert(ACTIVATION_REDUCTION_N == 1, "Activation reduction must be 1 if no activation fn is provided")
|
348 |
+
out = acc
|
349 |
+
out *= gammas[:, None]
|
350 |
+
# write-back
|
351 |
+
Y += start_z.to(index_type) * stride_y_z
|
352 |
+
if WriteBackIndx is not None:
|
353 |
+
WriteBackIndx += start_m
|
354 |
+
dst_idx = tl.load(WriteBackIndx + offs_m, mask=start_m + offs_m < writeback_size, other=-1)
|
355 |
+
mask_m = mask_m & (dst_idx != -1)
|
356 |
+
offs_y_m = dst_idx
|
357 |
+
else:
|
358 |
+
Y += start_m * stride_y_m
|
359 |
+
offs_y_m = offs_m
|
360 |
+
|
361 |
+
YPtrs = Y + offs_y_m.to(index_type)[:, None] * stride_y_m + offs_y_n.to(index_type)[None, :] * stride_y_n
|
362 |
+
mask = mask_m[:, None] & mask_n[None, :]
|
363 |
+
if is_out_microscaled:
|
364 |
+
MX_SCALE_BLOCK_N: tl.constexpr = BLOCK_N // MXFP_BLOCK_SIZE
|
365 |
+
N_MX_BLOCK: tl.constexpr = tl.cdiv(N, MXFP_BLOCK_SIZE)
|
366 |
+
tl.static_assert(EPILOGUE_FN is not None)
|
367 |
+
out, out_scale = EPILOGUE_FN(out, mask, *epilogue_fn_args)
|
368 |
+
tl.static_assert(BLOCK_N % MX_SCALE_BLOCK_N == 0, "")
|
369 |
+
offs_y_n_scale = MX_SCALE_BLOCK_N * pid_n + tl.arange(0, MX_SCALE_BLOCK_N)
|
370 |
+
mask_n_scale = offs_y_n_scale < N_MX_BLOCK
|
371 |
+
YActualScale += start_z.to(index_type) * stride_y_mx_z
|
372 |
+
if WriteBackIndx is None:
|
373 |
+
YActualScale += start_m * stride_y_mx_m
|
374 |
+
YActualScalePtrs = YActualScale + offs_y_m.to(index_type)[:, None] * stride_y_mx_m + offs_y_n_scale.to(index_type)[None, :] * stride_y_mx_n
|
375 |
+
else:
|
376 |
+
YActualScalePtrs = YActualScale + (offs_y_m - NRows).to(index_type)[:, None] * stride_y_mx_m + offs_y_n_scale.to(index_type)[None, :] * stride_y_mx_n
|
377 |
+
tl.store(YActualScalePtrs, out_scale, mask=mask_m[:, None] & mask_n_scale[None, :])
|
378 |
+
else:
|
379 |
+
out = float_to_flex(out, YExpectedScale, YActualScale, YChecksumScale, mask, Y, FLEXPOINT_SATURATE_INF)
|
380 |
+
if EPILOGUE_FN is not None and not IS_EPILOGUE_DEQUANT_MXFP8:
|
381 |
+
out = EPILOGUE_FN(out, *epilogue_fn_args, target_dtype=YPtrs.dtype.element_ty)
|
382 |
+
tl.store(YPtrs, out, mask=mask)
|
383 |
+
|
384 |
+
|
385 |
+
# Imagine N_EXPTS_ACT = 4, n_final_rows = 5, and n_scratchpad_rows = 8.
|
386 |
+
# Also imagine scatter_indx.src_indx is:
|
387 |
+
# (number of active experts per final row)
|
388 |
+
# -1 -1 0 -1 1
|
389 |
+
# -1 2 -1 -1 1
|
390 |
+
# 1 3 -1 -1 2
|
391 |
+
# -1 4 5 6 3
|
392 |
+
# -1 -1 -1 -1 0 (this row is unused)
|
393 |
+
#
|
394 |
+
# Then, row 0 and 1 can be written directly to the final tensor.
|
395 |
+
# In this case, WriteBackIndx looks like:
|
396 |
+
# [0] = 0 : intermediate row 0 is written directly to final row 0
|
397 |
+
# [1] = 5+1=6 : scratchpad starts at offset 5
|
398 |
+
# [2] = 1 : intermediate row 2 is written directly to final row 1
|
399 |
+
# [3] = 5+3=8
|
400 |
+
# [4] = 5+4=9
|
401 |
+
# [5] = 5+5=10
|
402 |
+
# [6] = 5+6=11
|
403 |
+
# [7] = -1 : unused (there are only seven intermediate rows)
|
404 |
+
@triton.jit
|
405 |
+
def _compute_writeback_idx(
|
406 |
+
WriteBackIndx,
|
407 |
+
FinalizeScatterIdxs,
|
408 |
+
ScatterDstIndx, ScatterSrcIndx,
|
409 |
+
n_final_rows, n_scratchpad_rows,
|
410 |
+
BLOCK_M: tl.constexpr,
|
411 |
+
N_EXPTS_ACT: tl.constexpr,
|
412 |
+
):
|
413 |
+
tl.static_assert(N_EXPTS_ACT > 1)
|
414 |
+
|
415 |
+
pid_m = tl.program_id(0)
|
416 |
+
offs_m = pid_m * BLOCK_M + tl.arange(0, BLOCK_M)
|
417 |
+
mask_m = offs_m < n_scratchpad_rows
|
418 |
+
dst_idxs = tl.load(ScatterDstIndx + offs_m, mask=mask_m, other=-1)
|
419 |
+
# Load corresponding rows in ScatterSrcIndx.
|
420 |
+
mask = dst_idxs != -1
|
421 |
+
src_offs = (dst_idxs // N_EXPTS_ACT) * N_EXPTS_ACT
|
422 |
+
src_offs = src_offs[:, None] + tl.arange(0, N_EXPTS_ACT)[None, :]
|
423 |
+
src_idxs = tl.load(ScatterSrcIndx + src_offs, mask=mask[:, None], other=-1)
|
424 |
+
# Compute the number of actually active experts.
|
425 |
+
is_src_active = (src_idxs != -1).to(tl.int32)
|
426 |
+
has_one_active = tl.sum(is_src_active, axis=1) == 1
|
427 |
+
# Compute the writeback index.
|
428 |
+
wb_idx = tl.where(has_one_active, dst_idxs // N_EXPTS_ACT, n_final_rows + offs_m)
|
429 |
+
wb_idx = tl.where(mask, wb_idx, -1)
|
430 |
+
tl.store(WriteBackIndx + offs_m, wb_idx, mask=mask_m)
|
431 |
+
|
432 |
+
if pid_m >= ((n_final_rows + BLOCK_M - 1) // BLOCK_M):
|
433 |
+
return
|
434 |
+
|
435 |
+
mask_m = offs_m < n_final_rows
|
436 |
+
src_offs = offs_m[:, None] * N_EXPTS_ACT + tl.arange(0, N_EXPTS_ACT)[None, :]
|
437 |
+
src_idxs = tl.load(ScatterSrcIndx + src_offs, mask=mask_m[:, None], other=-1)
|
438 |
+
is_src_active = (src_idxs != -1).to(tl.int32)
|
439 |
+
num_src_active = tl.sum(is_src_active, axis=1)
|
440 |
+
|
441 |
+
need_finalize_scatter = mask_m & (num_src_active != 1)
|
442 |
+
finalize_scatter_count = tl.sum(need_finalize_scatter.to(tl.int32))
|
443 |
+
if finalize_scatter_count == 0:
|
444 |
+
return
|
445 |
+
pp_off = tl.atomic_add(FinalizeScatterIdxs + n_final_rows + n_scratchpad_rows, finalize_scatter_count)
|
446 |
+
|
447 |
+
# need_finalize_scatter = [1, 0, 0, 1, 1, 0, 1, 0, 1]
|
448 |
+
# arange = [0, 1, 2, 3, 4, 5, 6, 7, 8]
|
449 |
+
arange = tl.arange(0, BLOCK_M)
|
450 |
+
# idxs = [0, _, _, 3, 4, _, 6, _, 8]
|
451 |
+
last = BLOCK_M - 1
|
452 |
+
idxs = tl.where(need_finalize_scatter, arange, last)
|
453 |
+
# idxs = [0, 3, 4, 6, 8, _, _, _, _]
|
454 |
+
idxs = tl.sort(idxs)
|
455 |
+
# r = offs_m
|
456 |
+
# d = [r[0], r[3], r[4], r[6], r[8], r[-1], r[-1], r[-1], r[-1]]
|
457 |
+
d = tl.gather(offs_m, idxs, axis=0)
|
458 |
+
s = tl.gather(src_idxs, idxs.expand_dims(1).broadcast_to(src_idxs.shape), axis=0)
|
459 |
+
# store destination indices
|
460 |
+
Ptr = FinalizeScatterIdxs + pp_off
|
461 |
+
tl.store(Ptr + arange, d, mask=arange < finalize_scatter_count)
|
462 |
+
# store src indices
|
463 |
+
Ptr = FinalizeScatterIdxs + n_final_rows + pp_off * N_EXPTS_ACT
|
464 |
+
tl.store(Ptr + N_EXPTS_ACT * arange[:, None] + tl.arange(0, N_EXPTS_ACT)[None, :], s, mask=(arange < finalize_scatter_count)[:, None])
|
torch-ext/triton_kernels/matmul_ogs_details/_p_matmul_ogs.py
ADDED
@@ -0,0 +1,505 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# isort: off
|
2 |
+
# fmt: off
|
3 |
+
import torch
|
4 |
+
import triton
|
5 |
+
import triton.language as tl
|
6 |
+
from triton_kernels import target_info
|
7 |
+
from triton_kernels.tensor_details.layout_details.blackwell_scale import unswizzle_mx_scale_bw
|
8 |
+
from triton_kernels.numerics_details.flexpoint import (
|
9 |
+
float_to_flex,
|
10 |
+
load_scale,
|
11 |
+
nan_propagating_absmax_reduce,
|
12 |
+
compute_scale,
|
13 |
+
)
|
14 |
+
from triton_kernels.numerics_details.mxfp_details._downcast_to_mxfp import MXFP_BLOCK_SIZE
|
15 |
+
from ._common import make_matmul_repr, matmul_launch_metadata, swizzle2d, xcd_swizzle, get_scaled_dot_format_string
|
16 |
+
|
17 |
+
|
18 |
+
@tl.constexpr_function
|
19 |
+
def cuda_capability_geq(major, minor):
|
20 |
+
return target_info.cuda_capability_geq(major, minor)
|
21 |
+
|
22 |
+
@tl.constexpr_function
|
23 |
+
def get_dtype(tensor_or_desc: tl.tensor | tl.tensor_descriptor) -> tl.dtype:
|
24 |
+
if isinstance(tensor_or_desc, tl.tensor):
|
25 |
+
return tensor_or_desc.dtype.element_ty
|
26 |
+
elif isinstance(tensor_or_desc, tl.tensor_descriptor):
|
27 |
+
return tensor_or_desc.dtype
|
28 |
+
else:
|
29 |
+
raise ValueError(f"Invalid type: {type(tensor_or_desc)}")
|
30 |
+
|
31 |
+
|
32 |
+
@triton.jit
|
33 |
+
def _tma_load_2d(desc, offs, transpose: tl.constexpr = False):
|
34 |
+
if len(desc.shape) == 2 and len(offs) == 3:
|
35 |
+
tl.device_assert(offs[0] == 0, "2D TMA load requires Z offset to be 0")
|
36 |
+
offs = offs[1:]
|
37 |
+
if transpose:
|
38 |
+
offs = offs[:-2] + [offs[-1], offs[-2]]
|
39 |
+
res = desc.load(offs)
|
40 |
+
res = tl.reshape(res, desc.block_shape[-2:])
|
41 |
+
if transpose:
|
42 |
+
res = tl.trans(res)
|
43 |
+
return res
|
44 |
+
|
45 |
+
|
46 |
+
# Helper function to recreate a TMA desc with the same fields, but with a new pointer and optional new shape.
|
47 |
+
@triton.jit
|
48 |
+
def _update_tensor_desc(desc, ptr, shape=None):
|
49 |
+
return tl.make_tensor_descriptor(
|
50 |
+
ptr,
|
51 |
+
shape=shape or desc.shape,
|
52 |
+
# last dim must be constexpr 1; reflecting the old descriptor drops the constexpr
|
53 |
+
strides=desc.strides[:-1] + [tl.constexpr(1)],
|
54 |
+
block_shape=desc.block_shape,
|
55 |
+
)
|
56 |
+
|
57 |
+
|
58 |
+
@triton.jit
|
59 |
+
def _load_tile_attrs(
|
60 |
+
tile_id, num_tiles, grid_m, grid_n, padding_m,
|
61 |
+
M, ExptData, ExptHist, ExptOffs,
|
62 |
+
BLOCK_M: tl.constexpr, BLOCK_N: tl.constexpr, SPLIT_K: tl.constexpr,
|
63 |
+
GROUP_M: tl.constexpr, XCD_SWIZZLE: tl.constexpr):
|
64 |
+
# unpack and swizzle program ids
|
65 |
+
pid_emnk = tile_id
|
66 |
+
if XCD_SWIZZLE != 1:
|
67 |
+
pid_emnk = xcd_swizzle(pid_emnk, num_tiles // SPLIT_K, XCD_SWIZZLE)
|
68 |
+
pid_e = pid_emnk // ((grid_m - padding_m) * grid_n * SPLIT_K)
|
69 |
+
pid_mnk = pid_emnk % ((grid_m - padding_m) * grid_n * SPLIT_K)
|
70 |
+
if SPLIT_K > 1:
|
71 |
+
pid_k = pid_mnk % SPLIT_K
|
72 |
+
pid_mn = pid_mnk // SPLIT_K
|
73 |
+
else:
|
74 |
+
pid_k: tl.constexpr = 0
|
75 |
+
pid_mn = pid_mnk
|
76 |
+
pid_m, pid_n = swizzle2d(pid_mn, (grid_m - padding_m), grid_n, GROUP_M)
|
77 |
+
|
78 |
+
# unpack expert data
|
79 |
+
if ExptData is None:
|
80 |
+
tl.static_assert(M is not None)
|
81 |
+
expt_id, start_z, start_m, block_id, eM = pid_e, pid_e, 0, pid_m, -1
|
82 |
+
else:
|
83 |
+
tl.static_assert(M is None)
|
84 |
+
expt_data = tl.load(ExptData + pid_m)
|
85 |
+
expt_id = expt_data & 0x0000FFFF
|
86 |
+
block_id = expt_data >> 16
|
87 |
+
eM = tl.load(ExptHist + expt_id)
|
88 |
+
start_m = tl.load(ExptOffs + expt_id)
|
89 |
+
start_z = 0
|
90 |
+
|
91 |
+
off_m = BLOCK_M * block_id
|
92 |
+
off_n = BLOCK_N * pid_n
|
93 |
+
|
94 |
+
return expt_id, start_z, start_m, eM, off_m, off_n, pid_k
|
95 |
+
|
96 |
+
|
97 |
+
@triton.jit
|
98 |
+
def _load_writeback_idx_and_mask(WriteBackIndx, writeback_size, offs, mask):
|
99 |
+
mask = mask & (offs < writeback_size)
|
100 |
+
offs = tl.load(WriteBackIndx + offs, mask=mask, other=-1)
|
101 |
+
mask = offs != -1
|
102 |
+
return (offs, mask)
|
103 |
+
|
104 |
+
|
105 |
+
_matmul_ogs_repr = make_matmul_repr("_p_matmul_ogs", [0, 1, 2])
|
106 |
+
@triton.jit(do_not_specialize=["TOKENS_PER_EXPT_FOR_ANNOTATION"],
|
107 |
+
repr=_matmul_ogs_repr, launch_metadata=matmul_launch_metadata)
|
108 |
+
def _p_matmul_ogs(
|
109 |
+
Y, Out, stride_y_k, stride_y_z, stride_y_m, stride_y_n,
|
110 |
+
YExpectedScale, YActualScale, YChecksumScale,
|
111 |
+
stride_y_mx_z, stride_y_mx_m, stride_y_mx_n,
|
112 |
+
X, XPtr, stride_x_z, stride_x_m, stride_x_k,
|
113 |
+
XScale,
|
114 |
+
XMxScale, stride_x_mx_z, stride_x_mx_m, stride_x_mx_k,
|
115 |
+
W, stride_w_e, stride_w_k, stride_w_n, W_TRANSPOSE: tl.constexpr,
|
116 |
+
WScale,
|
117 |
+
MxScale, stride_mx_e, stride_mx_k, stride_mx_n,
|
118 |
+
B, stride_b_e, # Bias
|
119 |
+
NRows, M, N, K, # shapes
|
120 |
+
# expt data
|
121 |
+
Betas, Gammas,
|
122 |
+
GatherIndx,
|
123 |
+
ScatterSrcIndx, num_idxs,
|
124 |
+
WriteBackIndx, writeback_size,
|
125 |
+
ExptHist, ExptOffs, ExptOffsSum, ExptData,
|
126 |
+
# true grid size
|
127 |
+
batch_size, grid_m, grid_n,
|
128 |
+
# Out scale
|
129 |
+
out_alpha,
|
130 |
+
# fused activation function
|
131 |
+
ACTIVATION_FN: tl.constexpr, activation_fn_args, ACTIVATION_REDUCTION_N: tl.constexpr,
|
132 |
+
# epilogue transform
|
133 |
+
EPILOGUE_FN: tl.constexpr, epilogue_fn_args,
|
134 |
+
# MoE config
|
135 |
+
N_EXPTS_TOT: tl.constexpr, N_EXPTS_ACT: tl.constexpr,
|
136 |
+
# precision config
|
137 |
+
MAX_NUM_IMPRECISE_ACC: tl.constexpr, ALLOW_TF32: tl.constexpr,
|
138 |
+
FLEXPOINT_SATURATE_INF: tl.constexpr,
|
139 |
+
PER_BATCH_SCALE: tl.constexpr,
|
140 |
+
# optimization config
|
141 |
+
BLOCK_M: tl.constexpr, BLOCK_N: tl.constexpr, BLOCK_K: tl.constexpr,
|
142 |
+
GROUP_M: tl.constexpr, XCD_SWIZZLE: tl.constexpr,
|
143 |
+
# NYI: Must be None
|
144 |
+
SWIZZLE_MX_VALUE: tl.constexpr,
|
145 |
+
# One of ["BLACKWELL", None]
|
146 |
+
SWIZZLE_MX_SCALE: tl.constexpr,
|
147 |
+
EPILOGUE_SUBTILE: tl.constexpr,
|
148 |
+
EVEN_K: tl.constexpr, SPLIT_K: tl.constexpr,
|
149 |
+
W_CACHE_MODIFIER: tl.constexpr,
|
150 |
+
NUM_SMS: tl.constexpr,
|
151 |
+
TOKENS_PER_EXPT_FOR_ANNOTATION=None,
|
152 |
+
UPCAST_INDICES:tl.constexpr=False,
|
153 |
+
DISABLE_Y_TMA: tl.constexpr=False,
|
154 |
+
SWAP_XW: tl.constexpr = False,
|
155 |
+
IS_EPILOGUE_DEQUANT_MXFP8: tl.constexpr = False):
|
156 |
+
tl.static_assert(SWIZZLE_MX_VALUE is None, "NYI. Value swizzling")
|
157 |
+
Y = Out # Y is passed for the purposes of annotation; replace it with Out
|
158 |
+
|
159 |
+
is_microscaled_format: tl.constexpr = MxScale is not None
|
160 |
+
MX_PACK_DIVISOR: tl.constexpr = MXFP_BLOCK_SIZE
|
161 |
+
if is_microscaled_format:
|
162 |
+
w_type: tl.constexpr = get_dtype(W)
|
163 |
+
tl.static_assert(w_type == tl.uint8 or (w_type == tl.float8e4nv or w_type == tl.float8e5),
|
164 |
+
"mx_weight_ptr must be uint8")
|
165 |
+
tl.static_assert(get_dtype(MxScale) == tl.uint8, "mx_scale_ptr must be uint8")
|
166 |
+
tl.static_assert(BLOCK_K % MX_PACK_DIVISOR == 0, "BLOCK_K must be a multiple of MX_PACK_DIVISOR")
|
167 |
+
tl.static_assert(SWIZZLE_MX_SCALE == "BLACKWELL_SCALE" or SWIZZLE_MX_SCALE is None, "Only Blackwell swizzling is supported for scales")
|
168 |
+
|
169 |
+
# We have pack 2 fp4 values in a byte
|
170 |
+
W_PACK_DIVISOR: tl.constexpr = 2 if w_type == tl.uint8 else 1
|
171 |
+
PACKED_BLOCK_K_W: tl.constexpr = BLOCK_K // W_PACK_DIVISOR
|
172 |
+
MX_SCALE_BLOCK_K: tl.constexpr = BLOCK_K // MX_PACK_DIVISOR
|
173 |
+
else:
|
174 |
+
W_PACK_DIVISOR: tl.constexpr = 1
|
175 |
+
MX_SCALE_BLOCK_K: tl.constexpr = 1
|
176 |
+
PACKED_BLOCK_K_W: tl.constexpr = BLOCK_K
|
177 |
+
tl.static_assert(SWIZZLE_MX_SCALE is None)
|
178 |
+
|
179 |
+
if ExptOffsSum is not None:
|
180 |
+
# Determine how much padding there is on the expert data. This allows us to
|
181 |
+
# know the true grid size and avoid processing padding tiles.
|
182 |
+
padding_m = grid_m - tl.load(ExptOffsSum)
|
183 |
+
else:
|
184 |
+
padding_m: tl.constexpr = 0
|
185 |
+
|
186 |
+
HAS_FUSED_SCATTER: tl.constexpr = WriteBackIndx is not None
|
187 |
+
index_type: tl.constexpr = tl.int64
|
188 |
+
|
189 |
+
if EPILOGUE_SUBTILE is None:
|
190 |
+
SUBTILE_FACTOR: tl.constexpr = 1
|
191 |
+
else:
|
192 |
+
SUBTILE_FACTOR: tl.constexpr = EPILOGUE_SUBTILE
|
193 |
+
EPILOGUE_BLOCK_N: tl.constexpr = BLOCK_N // SUBTILE_FACTOR
|
194 |
+
OUT_BLOCK_N: tl.constexpr = EPILOGUE_BLOCK_N // ACTIVATION_REDUCTION_N
|
195 |
+
yN = N // ACTIVATION_REDUCTION_N
|
196 |
+
|
197 |
+
# set masked out rows to 0
|
198 |
+
if HAS_FUSED_SCATTER and N_EXPTS_ACT == 1:
|
199 |
+
# Iterate with reversed pids so that later pids will get more tiles if the number of
|
200 |
+
# tiles isn't evenly divisible by the number of SMs.
|
201 |
+
# The main loop after this iterates in the forward direction such that earlier
|
202 |
+
# pids get more tiles if the number of tiles isn't evenly divisible.
|
203 |
+
# This helps balance the work across the SMs.
|
204 |
+
for pid_mnk in range(NUM_SMS - tl.program_id(0) - 1, batch_size * grid_m * grid_n * SPLIT_K, NUM_SMS):
|
205 |
+
pid_k = pid_mnk % SPLIT_K
|
206 |
+
pid_mn = pid_mnk // SPLIT_K
|
207 |
+
pid_m, pid_n = swizzle2d(pid_mn, grid_m, grid_n, GROUP_M)
|
208 |
+
|
209 |
+
z = tl.zeros([BLOCK_M, BLOCK_N // ACTIVATION_REDUCTION_N], dtype=tl.float32)
|
210 |
+
offs_m = z.shape[0] * pid_m + tl.arange(0, z.shape[0])
|
211 |
+
offs_n = z.shape[1] * pid_n + tl.arange(0, z.shape[1])
|
212 |
+
src_idx = tl.load(ScatterSrcIndx + offs_m, mask=offs_m < num_idxs, other=0)
|
213 |
+
YPtrs = Y + offs_m.to(index_type)[:, None] * stride_y_m + offs_n[None, :] * stride_y_n
|
214 |
+
mask_n = offs_n < yN
|
215 |
+
mask = (src_idx == -1)[:, None] & mask_n[None, :]
|
216 |
+
tl.store(YPtrs + pid_k * stride_y_k, z, mask=mask)
|
217 |
+
|
218 |
+
USE_FLEXPOINT_SCALE: tl.constexpr = YActualScale is not None or YChecksumScale is not None
|
219 |
+
|
220 |
+
USE_GATHER_TMA: tl.constexpr = GatherIndx is not None and cuda_capability_geq(10, 0)
|
221 |
+
X_USE_LOAD_TMA: tl.constexpr = GatherIndx is None and isinstance(X, tl.tensor_descriptor)
|
222 |
+
USE_SCATTER_TMA: tl.constexpr = (cuda_capability_geq(10, 0) and HAS_FUSED_SCATTER) and not DISABLE_Y_TMA
|
223 |
+
INT_MAX: tl.constexpr = 2147483647
|
224 |
+
|
225 |
+
if USE_SCATTER_TMA:
|
226 |
+
y_desc = tl.make_tensor_descriptor(
|
227 |
+
Y,
|
228 |
+
# No masking on the M dimension because we manually mask by setting indices to INT_MAX
|
229 |
+
shape=[INT_MAX - 1, yN],
|
230 |
+
strides=[stride_y_m, stride_y_n],
|
231 |
+
block_shape=[1, OUT_BLOCK_N],
|
232 |
+
)
|
233 |
+
|
234 |
+
k_tiles = tl.cdiv(K, BLOCK_K * SPLIT_K)
|
235 |
+
num_tiles = batch_size * (grid_m - padding_m) * grid_n * SPLIT_K
|
236 |
+
|
237 |
+
# If true, do not share loop-carried variables between the prologue and the
|
238 |
+
# epilogue to enable better pipelining with mmav5
|
239 |
+
INDEPENDENT_EPILOGUE: tl.constexpr = cuda_capability_geq(10, 0)
|
240 |
+
|
241 |
+
# start negative; will be incremented at the top of the loop
|
242 |
+
if INDEPENDENT_EPILOGUE:
|
243 |
+
tile_id1 = tl.program_id(0) - NUM_SMS
|
244 |
+
|
245 |
+
# Keep track of local max for updating flexpoint scales.
|
246 |
+
THREADS_PER_BLOCK: tl.constexpr = tl.extra.cuda.num_threads()
|
247 |
+
local_absmax = tl.full([THREADS_PER_BLOCK], 0.0, tl.uint32)
|
248 |
+
|
249 |
+
DISALLOW_ACC_MULTI_BUFFER: tl.constexpr = is_microscaled_format and BLOCK_M * BLOCK_N >= 128 * 256
|
250 |
+
# Enable warp specialization when all loads are TMA loads.
|
251 |
+
WARP_SPECIALIZE: tl.constexpr = (USE_GATHER_TMA or X_USE_LOAD_TMA)
|
252 |
+
|
253 |
+
for tile_id in tl.range(tl.program_id(0), num_tiles, NUM_SMS, flatten=True, disallow_acc_multi_buffer=DISALLOW_ACC_MULTI_BUFFER, warp_specialize=WARP_SPECIALIZE):
|
254 |
+
expt_id, start_z, start_m, eM, off_m, off_n, pid_k = _load_tile_attrs(
|
255 |
+
tile_id, num_tiles, grid_m, grid_n, padding_m,
|
256 |
+
M, ExptData, ExptHist, ExptOffs,
|
257 |
+
BLOCK_M, BLOCK_N, SPLIT_K,
|
258 |
+
GROUP_M, XCD_SWIZZLE)
|
259 |
+
|
260 |
+
# Base pointers and offsets.
|
261 |
+
if not USE_GATHER_TMA and not X_USE_LOAD_TMA:
|
262 |
+
XBase = X + start_z.to(index_type) * stride_x_z
|
263 |
+
offs_x_k = tl.arange(0, BLOCK_K)[None, :] * stride_x_k
|
264 |
+
if SPLIT_K > 1:
|
265 |
+
offs_x_k += pid_k.to(index_type) * BLOCK_K * stride_x_k
|
266 |
+
|
267 |
+
if not X_USE_LOAD_TMA:
|
268 |
+
offs_m = off_m + tl.arange(0, BLOCK_M)
|
269 |
+
mask_m = offs_m < (M if M is not None else eM)
|
270 |
+
if USE_GATHER_TMA:
|
271 |
+
# Mask the gather indices and load -1 instead. TMA will handle OOB accesses.
|
272 |
+
if ExptData is None:
|
273 |
+
offs_x_m = tl.load(GatherIndx + start_m.to(index_type) + offs_m, mask=mask_m)
|
274 |
+
# Bump rows to account for the Z offset.
|
275 |
+
offs_x_m += start_z * (stride_x_z // stride_x_m)
|
276 |
+
offs_x_m = tl.where(mask_m, offs_x_m, -1)
|
277 |
+
else:
|
278 |
+
offs_x_m = tl.load(GatherIndx + start_m.to(index_type) + offs_m,
|
279 |
+
mask=mask_m, other=-N_EXPTS_ACT) // N_EXPTS_ACT
|
280 |
+
else:
|
281 |
+
if M is not None:
|
282 |
+
offs_m = tl.max_contiguous(tl.multiple_of(offs_m % M, BLOCK_M), BLOCK_M)
|
283 |
+
else:
|
284 |
+
offs_m = tl.max_contiguous(tl.multiple_of(offs_m % eM, BLOCK_M), BLOCK_M)
|
285 |
+
# no needs to bounds-check here because `offs_m` wraps around M dim
|
286 |
+
offs_m = tl.load(GatherIndx + start_m.to(index_type) + offs_m) // N_EXPTS_ACT
|
287 |
+
offs_x_m = offs_m.to(index_type)[:, None] * stride_x_m
|
288 |
+
|
289 |
+
acc = tl.zeros((BLOCK_N, BLOCK_M) if SWAP_XW else (BLOCK_M, BLOCK_N), dtype=tl.float32)
|
290 |
+
for ki in tl.range(k_tiles, disallow_acc_multi_buffer=DISALLOW_ACC_MULTI_BUFFER):
|
291 |
+
off_k = pid_k * BLOCK_K + ki * BLOCK_K * SPLIT_K
|
292 |
+
off_k_w = pid_k * PACKED_BLOCK_K_W + ki * PACKED_BLOCK_K_W * SPLIT_K
|
293 |
+
off_k_mx = pid_k * MX_SCALE_BLOCK_K + ki * MX_SCALE_BLOCK_K * SPLIT_K
|
294 |
+
|
295 |
+
if USE_GATHER_TMA:
|
296 |
+
x = X.gather(offs_x_m, off_k)
|
297 |
+
elif X_USE_LOAD_TMA:
|
298 |
+
x = _tma_load_2d(X, [start_z, start_m + off_m, off_k])
|
299 |
+
else:
|
300 |
+
XPtrs = XBase + offs_x_m + offs_x_k
|
301 |
+
XBase += BLOCK_K * SPLIT_K * stride_x_k
|
302 |
+
mask_k = tl.arange(0, BLOCK_K) < K - off_k
|
303 |
+
if EVEN_K:
|
304 |
+
if SPLIT_K > 1:
|
305 |
+
x = tl.load(XPtrs, mask=mask_k[None, :], other=0.0)
|
306 |
+
else:
|
307 |
+
x = tl.load(XPtrs)
|
308 |
+
else:
|
309 |
+
x = tl.load(XPtrs, mask=mask_k[None, :], other=0.0)
|
310 |
+
|
311 |
+
w = _tma_load_2d(W, [expt_id, off_k_w, off_n], transpose=W_TRANSPOSE)
|
312 |
+
|
313 |
+
if is_microscaled_format:
|
314 |
+
x_format: tl.constexpr = get_scaled_dot_format_string(x.dtype)
|
315 |
+
mx_format: tl.constexpr = get_scaled_dot_format_string(w.dtype)
|
316 |
+
if x_format == "fp16" or x_format == "bf16":
|
317 |
+
x_scales: tl.constexpr = None
|
318 |
+
else:
|
319 |
+
x_scales = tl.full((BLOCK_M, BLOCK_K // MX_PACK_DIVISOR), 127, dtype=tl.uint8)
|
320 |
+
if SWIZZLE_MX_SCALE == "BLACKWELL_SCALE":
|
321 |
+
flattened_expt_n_idx = expt_id * ((N + 127) // 128) + (off_n // 128)
|
322 |
+
w_scales = MxScale.load([0, flattened_expt_n_idx, pid_k * MX_SCALE_BLOCK_K // 4 + ki * (MX_SCALE_BLOCK_K // 4 * SPLIT_K), 0, 0])
|
323 |
+
w_scales = w_scales.reshape((w_scales.shape[1], w_scales.shape[2] * w_scales.shape[-2] * w_scales.shape[-1]))
|
324 |
+
w_scales = unswizzle_mx_scale_bw(w_scales)
|
325 |
+
else:
|
326 |
+
w_scales = _tma_load_2d(MxScale, [expt_id, off_k_mx, off_n]).T
|
327 |
+
if SWAP_XW:
|
328 |
+
acc = tl.dot_scaled(w.T, w_scales, mx_format, x.T, x_scales, x_format, acc=acc, fast_math=True)
|
329 |
+
else:
|
330 |
+
acc = tl.dot_scaled(x, x_scales, x_format, w, w_scales, mx_format, acc=acc, fast_math=True)
|
331 |
+
else:
|
332 |
+
if SWAP_XW:
|
333 |
+
acc = tl.dot(w.T, x.T, acc, max_num_imprecise_acc=MAX_NUM_IMPRECISE_ACC, allow_tf32=ALLOW_TF32)
|
334 |
+
else:
|
335 |
+
acc = tl.dot(x, w, acc, max_num_imprecise_acc=MAX_NUM_IMPRECISE_ACC, allow_tf32=ALLOW_TF32)
|
336 |
+
|
337 |
+
if INDEPENDENT_EPILOGUE:
|
338 |
+
tile_id1 += NUM_SMS
|
339 |
+
expt_id1, start_z1, start_m1, eM1, off_m1, off_n1, pid_k1 = _load_tile_attrs(
|
340 |
+
tile_id1, num_tiles, grid_m, grid_n, padding_m,
|
341 |
+
M, ExptData, ExptHist, ExptOffs,
|
342 |
+
BLOCK_M, BLOCK_N, SPLIT_K,
|
343 |
+
GROUP_M, XCD_SWIZZLE)
|
344 |
+
else:
|
345 |
+
tile_id1, expt_id1, start_z1, start_m1, eM1 = tile_id, expt_id, start_z, start_m, eM
|
346 |
+
off_m1, off_n1, pid_k1 = off_m, off_n, pid_k
|
347 |
+
|
348 |
+
# Determine output row offsets and mask
|
349 |
+
offs_m = off_m1 + tl.arange(0, BLOCK_M)
|
350 |
+
mask_m = offs_m < M if M is not None else offs_m < eM1
|
351 |
+
if HAS_FUSED_SCATTER:
|
352 |
+
offs_y_m, mask_m = _load_writeback_idx_and_mask(
|
353 |
+
WriteBackIndx, writeback_size, start_m1 + offs_m, mask_m)
|
354 |
+
# Later, mask out the acc for computing flexpoint scales.
|
355 |
+
MASK_ACC: tl.constexpr = USE_FLEXPOINT_SCALE
|
356 |
+
|
357 |
+
if USE_SCATTER_TMA and SPLIT_K > 1:
|
358 |
+
# Compute the split k offset in number of rows, and add it to offs_y_m.
|
359 |
+
# This allows us to write to the correct slice in the output tensor while using
|
360 |
+
# a 2D TMA scatter.
|
361 |
+
tl.device_assert(stride_y_k // stride_y_m == tl.cdiv(stride_y_k, stride_y_m))
|
362 |
+
split_k_row_offs = pid_k1 * (stride_y_k // stride_y_m)
|
363 |
+
offs_y_m = tl.where(mask_m, offs_y_m + split_k_row_offs, offs_y_m)
|
364 |
+
else:
|
365 |
+
offs_y_m = start_m1 + offs_m
|
366 |
+
|
367 |
+
if USE_GATHER_TMA:
|
368 |
+
MASK_ACC: tl.constexpr = False
|
369 |
+
else:
|
370 |
+
# Later, mask out the acc for computing flexpoint scales.
|
371 |
+
MASK_ACC: tl.constexpr = USE_FLEXPOINT_SCALE
|
372 |
+
|
373 |
+
# TMA is faster on Blackwell if a SWAP_XW transpose is not needed, or when we need registers to mask out the acc.
|
374 |
+
# Contrary to the SWAP_XW case, having a fused activation function tends to make TMA faster again.
|
375 |
+
# For the ideal optimization, this would depend on what the activation function is doing.
|
376 |
+
Y_USE_TMA: tl.constexpr = (MASK_ACC or cuda_capability_geq(10, 0)) and not (
|
377 |
+
DISABLE_Y_TMA or (SWAP_XW and ACTIVATION_FN is None))
|
378 |
+
|
379 |
+
YBase = Y + start_z1.to(index_type) * stride_y_z + start_m1.to(index_type) * stride_y_m
|
380 |
+
if USE_SCATTER_TMA:
|
381 |
+
if ExptData is None: # start_z1 may change; update the descriptor
|
382 |
+
y_desc = _update_tensor_desc(y_desc, YBase)
|
383 |
+
elif not HAS_FUSED_SCATTER and Y_USE_TMA:
|
384 |
+
y_desc = tl.make_tensor_descriptor(
|
385 |
+
YBase + pid_k1.to(index_type) * stride_y_k,
|
386 |
+
shape=[M if M is not None else eM1, yN],
|
387 |
+
strides=[stride_y_m, stride_y_n],
|
388 |
+
block_shape=[BLOCK_M, OUT_BLOCK_N],
|
389 |
+
)
|
390 |
+
|
391 |
+
# bias + scale
|
392 |
+
offs_y_n = off_n1 + tl.arange(0, BLOCK_N)
|
393 |
+
mask_n = offs_y_n < N
|
394 |
+
if B is not None:
|
395 |
+
BPtrs = B + expt_id1 * stride_b_e + offs_y_n
|
396 |
+
if pid_k1 == 0:
|
397 |
+
bias = tl.load(BPtrs, mask=mask_n, other=0)
|
398 |
+
else:
|
399 |
+
bias = tl.full([BLOCK_N], 0, dtype=tl.float32)
|
400 |
+
else:
|
401 |
+
bias = tl.full([BLOCK_N], 0, dtype=tl.float32)
|
402 |
+
if Betas is not None:
|
403 |
+
betas = tl.load(Betas + start_m1 + offs_m, mask=mask_m, other=0.0)
|
404 |
+
else:
|
405 |
+
betas = tl.full([BLOCK_M], 1, dtype=tl.float32)
|
406 |
+
if Gammas is not None:
|
407 |
+
gammas = tl.load(Gammas + start_m1 + offs_m, mask=mask_m, other=0.0)
|
408 |
+
else:
|
409 |
+
gammas = tl.full([BLOCK_M], 1, dtype=tl.float32)
|
410 |
+
x_scale = load_scale(XScale)
|
411 |
+
if PER_BATCH_SCALE:
|
412 |
+
w_scale = load_scale(WScale + expt_id1)
|
413 |
+
else:
|
414 |
+
w_scale = load_scale(WScale)
|
415 |
+
|
416 |
+
accs = (acc,)
|
417 |
+
biases = (bias,)
|
418 |
+
|
419 |
+
if SUBTILE_FACTOR >= 2:
|
420 |
+
acc0, acc1 = acc.reshape(BLOCK_M, 2, BLOCK_N // 2).permute(0, 2, 1).split()
|
421 |
+
accs = (acc0, acc1)
|
422 |
+
bias0, bias1 = bias.reshape(2, BLOCK_N // 2).permute(1, 0).split()
|
423 |
+
biases = (bias0, bias1)
|
424 |
+
|
425 |
+
if SUBTILE_FACTOR >= 4:
|
426 |
+
acc00, acc01 = acc0.reshape(BLOCK_M, 2, BLOCK_N // 4).permute(0, 2, 1).split()
|
427 |
+
acc10, acc11 = acc1.reshape(BLOCK_M, 2, BLOCK_N // 4).permute(0, 2, 1).split()
|
428 |
+
accs = (acc00, acc01, acc10, acc11)
|
429 |
+
bias00, bias01 = bias0.reshape(2, BLOCK_N // 4).permute(1, 0).split()
|
430 |
+
bias10, bias11 = bias1.reshape(2, BLOCK_N // 4).permute(1, 0).split()
|
431 |
+
biases = (bias00, bias01, bias10, bias11)
|
432 |
+
|
433 |
+
tl.static_assert(EPILOGUE_BLOCK_N == BLOCK_N // SUBTILE_FACTOR)
|
434 |
+
tl.static_assert(len(accs) == SUBTILE_FACTOR)
|
435 |
+
|
436 |
+
for a_i in tl.static_range(len(accs)):
|
437 |
+
acc_tile = accs[a_i]
|
438 |
+
acc_tile *= x_scale * w_scale
|
439 |
+
|
440 |
+
if SWAP_XW:
|
441 |
+
acc_tile = acc_tile.T
|
442 |
+
|
443 |
+
acc_tile = acc_tile + biases[a_i][None, :] * betas[:, None]
|
444 |
+
if out_alpha is not None:
|
445 |
+
acc_tile *= out_alpha
|
446 |
+
|
447 |
+
if ACTIVATION_FN is not None:
|
448 |
+
out = ACTIVATION_FN(acc_tile, *activation_fn_args)
|
449 |
+
tl.static_assert(out.shape[1] == OUT_BLOCK_N, f"Activation fn out.shape[1] ({out.shape[1]}) doesn't match computed OUT_BLOCK_N ({OUT_BLOCK_N})")
|
450 |
+
else:
|
451 |
+
tl.static_assert(ACTIVATION_REDUCTION_N == 1, "Activation reduction must be 1 if no activation fn is provided")
|
452 |
+
out = acc_tile
|
453 |
+
|
454 |
+
out *= gammas[:, None]
|
455 |
+
|
456 |
+
if MASK_ACC:
|
457 |
+
out = tl.where(mask_m[:, None], out, 0.0)
|
458 |
+
# Flexpoint
|
459 |
+
out_view = tl.reshape(
|
460 |
+
out, [out.numel // THREADS_PER_BLOCK, THREADS_PER_BLOCK], can_reorder=True)
|
461 |
+
local_absmax = tl.maximum(local_absmax, nan_propagating_absmax_reduce(out_view, axis=0))
|
462 |
+
out = float_to_flex(
|
463 |
+
out, YExpectedScale,
|
464 |
+
None, # ActualScale: local absmax is tracked and updated after the loop
|
465 |
+
YChecksumScale,
|
466 |
+
None, # mask: out is manually masked to 0
|
467 |
+
Y, FLEXPOINT_SATURATE_INF)
|
468 |
+
if EPILOGUE_FN is not None:
|
469 |
+
out = EPILOGUE_FN(out, *epilogue_fn_args, target_dtype=Y.dtype.element_ty, pid=len(accs)*tile_id1 + a_i)
|
470 |
+
|
471 |
+
out_off_n = off_n1 // ACTIVATION_REDUCTION_N + a_i * OUT_BLOCK_N
|
472 |
+
if USE_SCATTER_TMA:
|
473 |
+
# Convert -1 offsets to INT_MAX. We do this by clearing the leading bit. Note that
|
474 |
+
# there shouldn't be any other negative values.
|
475 |
+
offs_y_m = (offs_y_m.to(tl.uint32, bitcast=True) & 0x7FFFFFFF).to(tl.int32, bitcast=True)
|
476 |
+
y_desc.scatter(out.to(Y.dtype.element_ty), offs_y_m, out_off_n)
|
477 |
+
elif not HAS_FUSED_SCATTER and Y_USE_TMA:
|
478 |
+
y_desc.store([off_m1, out_off_n], out.to(Y.dtype.element_ty))
|
479 |
+
else:
|
480 |
+
offs_y_n = out_off_n + tl.arange(0, OUT_BLOCK_N)
|
481 |
+
mask_n = offs_y_n < yN
|
482 |
+
|
483 |
+
YPtrs = Y + pid_k1.to(index_type) * stride_y_k + start_z1.to(index_type) * stride_y_z + offs_y_m.to(index_type)[:, None] * stride_y_m + offs_y_n[None, :] * stride_y_n
|
484 |
+
mask = mask_m[:, None] & mask_n[None, :]
|
485 |
+
tl.store(YPtrs, out, mask=mask)
|
486 |
+
|
487 |
+
|
488 |
+
# Update the flexpoint scales
|
489 |
+
if YActualScale is not None:
|
490 |
+
tl.atomic_max(YActualScale, compute_scale(local_absmax.to(tl.float32, bitcast=True), Y), sem="relaxed")
|
491 |
+
|
492 |
+
|
493 |
+
_per_device_alloc_fns = {}
|
494 |
+
def get_per_device_per_stream_alloc_fn(device):
|
495 |
+
if device not in _per_device_alloc_fns:
|
496 |
+
_per_stream_tensors = {}
|
497 |
+
def alloc_fn(size: int, alignment: int, stream):
|
498 |
+
assert alignment == 128
|
499 |
+
if stream not in _per_stream_tensors or _per_stream_tensors[stream].numel() < size:
|
500 |
+
_per_stream_tensors[stream] = torch.empty(size, device=device, dtype=torch.int8)
|
501 |
+
_per_stream_tensors[stream].__hibernate__ = {"type": "ignore"}
|
502 |
+
return _per_stream_tensors[stream]
|
503 |
+
|
504 |
+
_per_device_alloc_fns[device] = alloc_fn
|
505 |
+
return _per_device_alloc_fns[device]
|
torch-ext/triton_kernels/matmul_ogs_details/opt_flags.py
ADDED
@@ -0,0 +1,298 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# isort: off
|
2 |
+
# fmt: off
|
3 |
+
from dataclasses import dataclass
|
4 |
+
import triton
|
5 |
+
from triton_kernels.target_info import get_cdna_version
|
6 |
+
import torch
|
7 |
+
from .opt_flags_details import opt_flags_amd, opt_flags_nvidia
|
8 |
+
|
9 |
+
|
10 |
+
@dataclass
|
11 |
+
class OptFlags:
|
12 |
+
block_m: int
|
13 |
+
block_n: int
|
14 |
+
block_k: int
|
15 |
+
num_warps: int
|
16 |
+
num_stages: int
|
17 |
+
group_m: int
|
18 |
+
xcd_swizzle: int
|
19 |
+
w_cache_modifier: str
|
20 |
+
split_k: int
|
21 |
+
fused_scatter: bool
|
22 |
+
is_persistent: bool
|
23 |
+
idle_sms: int
|
24 |
+
epilogue_subtile: int | None
|
25 |
+
arch: str
|
26 |
+
target_kernel_kwargs: dict
|
27 |
+
|
28 |
+
def __post_init__(self):
|
29 |
+
if self.fused_scatter and self.split_k != 1:
|
30 |
+
raise ValueError("Not supported")
|
31 |
+
|
32 |
+
|
33 |
+
|
34 |
+
def make_default_opt_flags_amd(
|
35 |
+
out_dtype,
|
36 |
+
lhs_dtype,
|
37 |
+
rhs_dtype,
|
38 |
+
precision_config,
|
39 |
+
m,
|
40 |
+
n,
|
41 |
+
k,
|
42 |
+
routing_data,
|
43 |
+
can_use_persistent_tma,
|
44 |
+
can_use_fused_scatter,
|
45 |
+
enforce_bitwise_invariance,
|
46 |
+
epilogue_effective_itemsize,
|
47 |
+
constraints,
|
48 |
+
):
|
49 |
+
constraints_supported = ["block_m", "block_k", "split_k", "fused_scatter", "is_persistent", "epilogue_subtile"]
|
50 |
+
assert not any([c not in constraints_supported for c in constraints]), constraints.keys()
|
51 |
+
# tokens per expert
|
52 |
+
if routing_data is None:
|
53 |
+
tokens_per_expt = m
|
54 |
+
elif routing_data.expected_tokens_per_expt is None:
|
55 |
+
tokens_per_expt = max(1, m // routing_data.n_expts_tot)
|
56 |
+
else:
|
57 |
+
tokens_per_expt = routing_data.expected_tokens_per_expt
|
58 |
+
|
59 |
+
is_cdna4 = get_cdna_version() == 4
|
60 |
+
# block_m
|
61 |
+
if constraints.get("block_m", None):
|
62 |
+
block_m = constraints["block_m"]
|
63 |
+
elif enforce_bitwise_invariance:
|
64 |
+
block_m = 256 if is_cdna4 else 128
|
65 |
+
elif tokens_per_expt >= 512 and n >= 2048:
|
66 |
+
block_m = 256 if is_cdna4 else 128
|
67 |
+
elif is_cdna4 and m >= 512:
|
68 |
+
block_m = 128
|
69 |
+
else:
|
70 |
+
block_m = max(32, min(triton.next_power_of_2(tokens_per_expt), 64))
|
71 |
+
|
72 |
+
if routing_data is not None:
|
73 |
+
grid_m = routing_data.n_blocks(m, block_m)
|
74 |
+
else:
|
75 |
+
grid_m = triton.cdiv(m, block_m)
|
76 |
+
# group_m:
|
77 |
+
group_m = 4
|
78 |
+
# number of xcds
|
79 |
+
num_xcds = 8
|
80 |
+
xcd_swizzle = num_xcds
|
81 |
+
# block_nk:
|
82 |
+
block_n, block_k = opt_flags_amd.compute_block_nk(
|
83 |
+
n, block_m, grid_m, num_xcds, lhs_dtype, rhs_dtype, precision_config
|
84 |
+
)
|
85 |
+
# Replace block_k if provided in constraints.
|
86 |
+
# TODO: Does opt_flags_amd.compute_block_nk need to be refactored?
|
87 |
+
if constraints.get("block_k", None) is not None:
|
88 |
+
block_k = constraints["block_k"]
|
89 |
+
is_persistent = constraints.get("is_persistent", False)
|
90 |
+
# split_k:
|
91 |
+
if constraints.get("split_k", None) is not None:
|
92 |
+
split_k = constraints["split_k"]
|
93 |
+
elif is_persistent or enforce_bitwise_invariance:
|
94 |
+
split_k = 1
|
95 |
+
else:
|
96 |
+
grid_size = grid_m * ((n + block_n - 1) // block_n)
|
97 |
+
n_cu = torch.cuda.get_device_properties(0).multi_processor_count
|
98 |
+
split_k = max(1, n_cu // grid_size)
|
99 |
+
# w_cache_modifier:
|
100 |
+
w_cache_modifier = ".cg" if block_m <= 32 else None
|
101 |
+
# num_warps, num_stages
|
102 |
+
num_warps = 2 if (m is not None and m <= 16) else 8
|
103 |
+
num_stages = 2
|
104 |
+
# AMD-specific
|
105 |
+
target_kernel_kwargs = {"waves_per_eu": 0, "matrix_instr_nonkdim": 16, "kpack": 1}
|
106 |
+
ret = OptFlags(
|
107 |
+
block_m=block_m,
|
108 |
+
block_n=block_n,
|
109 |
+
block_k=block_k,
|
110 |
+
num_warps=num_warps,
|
111 |
+
num_stages=num_stages,
|
112 |
+
group_m=group_m,
|
113 |
+
xcd_swizzle=xcd_swizzle,
|
114 |
+
w_cache_modifier=w_cache_modifier,
|
115 |
+
split_k=split_k,
|
116 |
+
fused_scatter=constraints.get('fused_scatter', False),
|
117 |
+
is_persistent=is_persistent,
|
118 |
+
idle_sms=0,
|
119 |
+
epilogue_subtile=constraints.get('epilogue_subtile', None),
|
120 |
+
arch=None,
|
121 |
+
target_kernel_kwargs=target_kernel_kwargs,
|
122 |
+
)
|
123 |
+
# check constraints
|
124 |
+
assert all(getattr(ret, ck) == cv for ck, cv in constraints.items() if cv is not None), f"{ret} != {constraints}"
|
125 |
+
return ret
|
126 |
+
|
127 |
+
def make_default_opt_flags_nvidia(
|
128 |
+
out_dtype,
|
129 |
+
lhs_dtype,
|
130 |
+
rhs_dtype,
|
131 |
+
precision_config,
|
132 |
+
m,
|
133 |
+
n,
|
134 |
+
k,
|
135 |
+
routing_data,
|
136 |
+
can_use_persistent_tma,
|
137 |
+
can_use_fused_scatter,
|
138 |
+
enforce_bitwise_invariance,
|
139 |
+
epilogue_effective_itemsize,
|
140 |
+
constraints,
|
141 |
+
):
|
142 |
+
constraints_supported = ["block_m", "block_k", "split_k", "fused_scatter", "is_persistent", "epilogue_subtile", "num_stages", "idle_sms"]
|
143 |
+
assert not any([c not in constraints_supported for c in constraints]), constraints.keys()
|
144 |
+
# tokens per expert
|
145 |
+
if routing_data is None:
|
146 |
+
tokens_per_expt = m
|
147 |
+
elif routing_data.expected_tokens_per_expt is None:
|
148 |
+
tokens_per_expt = max(1, m // routing_data.n_expts_tot)
|
149 |
+
else:
|
150 |
+
tokens_per_expt = routing_data.expected_tokens_per_expt
|
151 |
+
# pid swizzling
|
152 |
+
group_m = 8
|
153 |
+
xcd_swizzle = 1
|
154 |
+
# block_m
|
155 |
+
if constraints.get("block_m", None):
|
156 |
+
block_m = constraints["block_m"]
|
157 |
+
elif enforce_bitwise_invariance:
|
158 |
+
block_m = 128
|
159 |
+
else:
|
160 |
+
min_block_m = 64 if torch.cuda.get_device_capability()[0] == 10 else 16
|
161 |
+
block_m = max(min_block_m, min(triton.next_power_of_2(tokens_per_expt), 128))
|
162 |
+
# block n
|
163 |
+
arch = None
|
164 |
+
block_n = opt_flags_nvidia.compute_block_n(n, arch, precision_config)
|
165 |
+
# is_persistent
|
166 |
+
grid_size = opt_flags_nvidia.compute_grid_size(routing_data, m, n, block_m, block_n)
|
167 |
+
n_sms = torch.cuda.get_device_properties(0).multi_processor_count
|
168 |
+
tiles_per_sm = grid_size / n_sms
|
169 |
+
supports_persistent = can_use_persistent_tma and (arch is None or int(arch[2:-1]) >= 9)
|
170 |
+
if constraints.get("is_persistent", None) is not None:
|
171 |
+
is_persistent = constraints["is_persistent"]
|
172 |
+
else:
|
173 |
+
has_simple_epilogue = precision_config.max_num_imprecise_acc is None
|
174 |
+
is_persistent = supports_persistent and has_simple_epilogue and (tiles_per_sm >= 2.0 or lhs_dtype.itemsize <= 1) and out_dtype.itemsize < 4
|
175 |
+
# TEMP CHANGE
|
176 |
+
if precision_config.act_scale is not None or precision_config.out_scale is not None:
|
177 |
+
is_persistent = False
|
178 |
+
# block k
|
179 |
+
if constraints.get("block_k", None) is not None:
|
180 |
+
block_k = constraints["block_k"]
|
181 |
+
else:
|
182 |
+
block_k = opt_flags_nvidia.compute_block_k(m, k, is_persistent, lhs_dtype, rhs_dtype, precision_config)
|
183 |
+
# split_k
|
184 |
+
if constraints.get("split_k", None) is not None:
|
185 |
+
split_k = constraints["split_k"]
|
186 |
+
elif is_persistent or enforce_bitwise_invariance or precision_config.act_scale is not None or precision_config.out_scale is not None:
|
187 |
+
split_k = 1
|
188 |
+
else:
|
189 |
+
estimated_actual_grid_size = opt_flags_nvidia.compute_grid_size(None, m, n, block_m, block_n)
|
190 |
+
split_k = opt_flags_nvidia.compute_split_k(block_k, k, estimated_actual_grid_size)
|
191 |
+
if split_k > 1:
|
192 |
+
# With split_k, results are written in f32. Use that for the following computations.
|
193 |
+
out_dtype = torch.float32
|
194 |
+
compute_num_stages_args = (
|
195 |
+
precision_config,
|
196 |
+
is_persistent,
|
197 |
+
block_m,
|
198 |
+
block_n,
|
199 |
+
block_k,
|
200 |
+
out_dtype,
|
201 |
+
lhs_dtype,
|
202 |
+
rhs_dtype,
|
203 |
+
)
|
204 |
+
|
205 |
+
if constraints.get("epilogue_subtile", None) is not None:
|
206 |
+
subtiles_to_check = [constraints["epilogue_subtile"]]
|
207 |
+
else:
|
208 |
+
subtiles_to_check = [1, 2, 4]
|
209 |
+
num_stages = -1
|
210 |
+
for ep in subtiles_to_check:
|
211 |
+
ns = opt_flags_nvidia.compute_num_stages(*compute_num_stages_args, ep, epilogue_effective_itemsize)
|
212 |
+
if ns > num_stages:
|
213 |
+
epilogue_subtile, num_stages = ep, ns
|
214 |
+
assert num_stages >= 1
|
215 |
+
if constraints.get("num_stages", None):
|
216 |
+
num_stages = constraints["num_stages"]
|
217 |
+
|
218 |
+
# fused scatter scratchpad
|
219 |
+
if constraints.get("fused_scatter", None) is not None:
|
220 |
+
fused_scatter = constraints["fused_scatter"]
|
221 |
+
else:
|
222 |
+
fused_scatter = can_use_fused_scatter and split_k == 1
|
223 |
+
# Handshake with the HBM swizzling
|
224 |
+
num_warps = opt_flags_nvidia.compute_num_warps(block_m, block_n, precision_config)
|
225 |
+
ret = OptFlags(
|
226 |
+
block_m=block_m,
|
227 |
+
block_n=block_n,
|
228 |
+
block_k=block_k,
|
229 |
+
num_warps=num_warps,
|
230 |
+
num_stages=num_stages,
|
231 |
+
group_m=group_m,
|
232 |
+
xcd_swizzle=xcd_swizzle,
|
233 |
+
w_cache_modifier=None,
|
234 |
+
split_k=split_k,
|
235 |
+
fused_scatter=fused_scatter,
|
236 |
+
is_persistent=is_persistent,
|
237 |
+
epilogue_subtile=epilogue_subtile,
|
238 |
+
arch=arch,
|
239 |
+
target_kernel_kwargs=dict(),
|
240 |
+
idle_sms=constraints.get("idle_sms", 0),
|
241 |
+
)
|
242 |
+
# check constraints
|
243 |
+
assert all(getattr(ret, ck) == cv for ck, cv in constraints.items() if cv is not None), f"{ret} != {constraints}"
|
244 |
+
return ret
|
245 |
+
|
246 |
+
# --------------
|
247 |
+
# User Interface
|
248 |
+
# --------------
|
249 |
+
|
250 |
+
_opt_flags_constraints: dict = dict()
|
251 |
+
_opt_flags: OptFlags | None = None
|
252 |
+
|
253 |
+
def update_opt_flags_constraints(constraints: dict[str, int]):
|
254 |
+
global _opt_flags_constraints
|
255 |
+
_opt_flags_constraints.update(constraints)
|
256 |
+
|
257 |
+
def reset_opt_flags_constraints():
|
258 |
+
global _opt_flags_constraints
|
259 |
+
_opt_flags_constraints = dict()
|
260 |
+
|
261 |
+
def set_opt_flags(opt_flags: OptFlags):
|
262 |
+
global _opt_flags
|
263 |
+
assert not _opt_flags_constraints, "setting constraints is incompatible with manual flags override"
|
264 |
+
assert not _opt_flags, "opt_flags already set; please reset to None first"
|
265 |
+
_opt_flags = opt_flags
|
266 |
+
|
267 |
+
class InapplicableConstraint(Exception):
|
268 |
+
pass
|
269 |
+
|
270 |
+
def make_opt_flags(
|
271 |
+
out_dtype,
|
272 |
+
lhs_dtype,
|
273 |
+
rhs_dtype,
|
274 |
+
precision_config,
|
275 |
+
m,
|
276 |
+
n,
|
277 |
+
k,
|
278 |
+
routing_data,
|
279 |
+
can_use_persistent_tma,
|
280 |
+
can_use_fused_scatter,
|
281 |
+
epilogue_effective_itemsize,
|
282 |
+
):
|
283 |
+
if _opt_flags_constraints.get("is_persistent", False) and not can_use_persistent_tma:
|
284 |
+
raise InapplicableConstraint("cannot enforce `is_persistent=True` constraint")
|
285 |
+
enforce_bitwise_invariance = precision_config.enforce_bitwise_invariance
|
286 |
+
if _opt_flags is not None:
|
287 |
+
assert not _opt_flags_constraints
|
288 |
+
return _opt_flags
|
289 |
+
args = [out_dtype, lhs_dtype, rhs_dtype, precision_config, m, n, k,
|
290 |
+
routing_data, can_use_persistent_tma, can_use_fused_scatter,
|
291 |
+
enforce_bitwise_invariance, epilogue_effective_itemsize,
|
292 |
+
_opt_flags_constraints]
|
293 |
+
backend = triton.runtime.driver.active.get_current_target().backend
|
294 |
+
if backend == "hip":
|
295 |
+
return make_default_opt_flags_amd(*args)
|
296 |
+
if backend == "cuda":
|
297 |
+
return make_default_opt_flags_nvidia(*args)
|
298 |
+
assert False
|
torch-ext/triton_kernels/matmul_ogs_details/opt_flags_details/opt_flags_amd.py
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import triton
|
3 |
+
from triton_kernels.target_info import get_cdna_version
|
4 |
+
from triton_kernels.tensor import bitwidth
|
5 |
+
|
6 |
+
|
7 |
+
def compute_block_nk(n, block_m, grid_m, num_xcds, lhs_dtype, rhs_dtype, precision_config):
|
8 |
+
lhs_width = bitwidth(lhs_dtype) / 8
|
9 |
+
rhs_width = bitwidth(rhs_dtype) / 8
|
10 |
+
|
11 |
+
# block_n:
|
12 |
+
n_cu = torch.cuda.get_device_properties(0).multi_processor_count
|
13 |
+
if n is not None:
|
14 |
+
if n <= 128 and (n & (n - 1)) == 0:
|
15 |
+
block_n = n
|
16 |
+
else:
|
17 |
+
block_n = max(32, min(256, triton.next_power_of_2(grid_m * n * num_xcds // n_cu)))
|
18 |
+
elif block_m > 64:
|
19 |
+
block_n = 256
|
20 |
+
else:
|
21 |
+
block_n = 128
|
22 |
+
|
23 |
+
if get_cdna_version() == 4 and block_m == 128:
|
24 |
+
block_n = 512
|
25 |
+
|
26 |
+
# block_k needs to match the cacheline size (128B)
|
27 |
+
block_k = int(128 // min(lhs_width, rhs_width))
|
28 |
+
|
29 |
+
# TODO: block_k = 128 seems to work better for now.
|
30 |
+
# perhaps due to increased number of k loops to pipeline
|
31 |
+
if precision_config.weight_scale is not None and get_cdna_version() != 4:
|
32 |
+
block_k = 128
|
33 |
+
return block_n, block_k
|
torch-ext/triton_kernels/matmul_ogs_details/opt_flags_details/opt_flags_nvidia.py
ADDED
@@ -0,0 +1,111 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import triton
|
3 |
+
from triton_kernels import target_info
|
4 |
+
from triton_kernels.tensor import get_layout, bitwidth, FP4
|
5 |
+
from triton_kernels.tensor_details.layout import HopperMXScaleLayout
|
6 |
+
from triton_kernels.numerics_details.mxfp_details._downcast_to_mxfp import MXFP_BLOCK_SIZE
|
7 |
+
|
8 |
+
|
9 |
+
def compute_grid_size(routing_data, m, n, block_m, block_n):
|
10 |
+
if routing_data is not None:
|
11 |
+
grid_m = routing_data.n_blocks(m, block_m)
|
12 |
+
else:
|
13 |
+
grid_m = triton.cdiv(m, block_m)
|
14 |
+
grid_n = (n + block_n - 1) // block_n
|
15 |
+
return grid_m * grid_n
|
16 |
+
|
17 |
+
|
18 |
+
def compute_block_n(n: int, arch, precision_config):
|
19 |
+
# block_n:
|
20 |
+
layout = get_layout(precision_config.weight_scale)
|
21 |
+
if isinstance(layout, HopperMXScaleLayout) and layout.num_warps == 4:
|
22 |
+
return 128
|
23 |
+
elif precision_config.max_num_imprecise_acc is None and n > 128:
|
24 |
+
return 256
|
25 |
+
else:
|
26 |
+
return max(16, min(128, triton.next_power_of_2(n)))
|
27 |
+
|
28 |
+
|
29 |
+
def compute_block_k(m: int, k: int | None, is_persistent: bool, lhs_dtype, rhs_dtype, precision_config):
|
30 |
+
lhs_width = bitwidth(lhs_dtype)
|
31 |
+
rhs_width = bitwidth(rhs_dtype)
|
32 |
+
# block_k needs to match the cacheline size (1024 bits)
|
33 |
+
block_k = int(1024 // min(lhs_width, rhs_width))
|
34 |
+
has_native_mxfp = target_info.cuda_capability_geq(10, 0)
|
35 |
+
if rhs_width == 4 and not has_native_mxfp:
|
36 |
+
block_k = 128
|
37 |
+
elif k is not None:
|
38 |
+
block_k = max(32, min(triton.next_power_of_2(k), block_k))
|
39 |
+
has_mx_weight_scale = precision_config is not None and precision_config.weight_scale is not None
|
40 |
+
if has_native_mxfp and is_persistent and has_mx_weight_scale:
|
41 |
+
block_k = min(block_k, 128)
|
42 |
+
return block_k
|
43 |
+
|
44 |
+
|
45 |
+
def compute_split_k(block_k: int, k: int | None, grid_size: int) -> int:
|
46 |
+
device_props = torch.cuda.get_device_properties(0)
|
47 |
+
n_sms = device_props.multi_processor_count
|
48 |
+
split_k = n_sms // grid_size
|
49 |
+
if k is not None:
|
50 |
+
# avoid split_k for small k
|
51 |
+
num_block_k = triton.cdiv(k, block_k)
|
52 |
+
split_k = min(split_k, num_block_k // 4)
|
53 |
+
split_k = max(split_k, 1)
|
54 |
+
return split_k
|
55 |
+
|
56 |
+
|
57 |
+
def compute_num_warps(block_m, block_n, precision_config):
|
58 |
+
layout = get_layout(precision_config.weight_scale)
|
59 |
+
if isinstance(layout, HopperMXScaleLayout):
|
60 |
+
return layout.num_warps
|
61 |
+
return max(block_m * block_n // 4096, 4)
|
62 |
+
|
63 |
+
|
64 |
+
def compute_num_stages(
|
65 |
+
precision_config,
|
66 |
+
is_persistent,
|
67 |
+
block_m,
|
68 |
+
block_n,
|
69 |
+
block_k,
|
70 |
+
out_dtype,
|
71 |
+
lhs_dtype,
|
72 |
+
rhs_dtype,
|
73 |
+
epilogue_subtile,
|
74 |
+
epilogue_effective_itemsize,
|
75 |
+
):
|
76 |
+
if precision_config.max_num_imprecise_acc is not None:
|
77 |
+
return 3
|
78 |
+
weight_size = bitwidth(rhs_dtype) / 8
|
79 |
+
stage_size = block_m * block_k * lhs_dtype.itemsize + block_k * block_n * weight_size
|
80 |
+
device_props = torch.cuda.get_device_properties(0)
|
81 |
+
smem_capacity = device_props.shared_memory_per_block_optin
|
82 |
+
has_native_mxfp = target_info.cuda_capability_geq(10, 0)
|
83 |
+
if has_native_mxfp and getattr(precision_config, "weight_scale", None) is not None:
|
84 |
+
if rhs_dtype == FP4:
|
85 |
+
# 4-bit e2m1 weights are padded 2x
|
86 |
+
# https://docs.nvidia.com/cuda/parallel-thread-execution/#packing-format-used-for-matrix-a-and-b-by-kind-mxf8f6f4-in-shared-memory
|
87 |
+
stage_size += block_k * block_n * weight_size
|
88 |
+
|
89 |
+
if is_persistent:
|
90 |
+
# Per-stage wait barrier
|
91 |
+
stage_size += 8
|
92 |
+
if target_info.cuda_capability_geq(10, 0):
|
93 |
+
acc_size = epilogue_effective_itemsize or out_dtype.itemsize
|
94 |
+
else:
|
95 |
+
acc_size = out_dtype.itemsize
|
96 |
+
if target_info.cuda_capability_geq(10, 0) and epilogue_subtile is not None:
|
97 |
+
acc_block_n = block_n // epilogue_subtile
|
98 |
+
else:
|
99 |
+
acc_block_n = block_n
|
100 |
+
# pipelined TMA store local to global, or
|
101 |
+
# pipelined layout conversion before store of the accumulator
|
102 |
+
# note: layout conversion has some padding
|
103 |
+
smem_capacity -= int((block_m + 4) * acc_block_n * acc_size)
|
104 |
+
if precision_config.weight_scale is not None:
|
105 |
+
# mx scales
|
106 |
+
stage_size += block_n * (block_k // int(MXFP_BLOCK_SIZE))
|
107 |
+
elif has_native_mxfp:
|
108 |
+
# mx scales
|
109 |
+
stage_size += block_n * (block_k // int(MXFP_BLOCK_SIZE))
|
110 |
+
num_stages = min(4, smem_capacity // int(stage_size))
|
111 |
+
return num_stages
|
torch-ext/triton_kernels/numerics.py
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from dataclasses import dataclass
|
3 |
+
|
4 |
+
MAX_FINITE_FLOAT8E5 = 57344.0
|
5 |
+
MAX_FINITE_FLOAT8E4NV = 448.0
|
6 |
+
MAX_FINITE_FLOAT8E4B8 = 240.0
|
7 |
+
|
8 |
+
|
9 |
+
@dataclass(frozen=True)
|
10 |
+
class BaseFlexData:
|
11 |
+
dtype: torch.dtype | None = None
|
12 |
+
|
13 |
+
def view(self, x: torch.Tensor):
|
14 |
+
if self.dtype is None:
|
15 |
+
return x
|
16 |
+
return x.view(self.dtype)
|
17 |
+
|
18 |
+
def reinterpret(self, x):
|
19 |
+
if self.dtype is None or x.dtype.itemsize > 1:
|
20 |
+
return x
|
21 |
+
return x.view(self.dtype)
|
22 |
+
|
23 |
+
|
24 |
+
@dataclass(frozen=True)
|
25 |
+
class InFlexData(BaseFlexData):
|
26 |
+
scale: torch.Tensor | None = None
|
27 |
+
|
28 |
+
@property
|
29 |
+
def is_per_batch(self):
|
30 |
+
return False if self.scale is None else len(self.scale) > 1
|
31 |
+
|
32 |
+
|
33 |
+
@dataclass(frozen=True)
|
34 |
+
class OutFlexData(BaseFlexData):
|
35 |
+
expected_scale: torch.Tensor | None = None
|
36 |
+
actual_scale: torch.Tensor | None = None
|
37 |
+
checksum_scale: torch.Tensor | None = None
|
38 |
+
|
39 |
+
def __iter__(self):
|
40 |
+
yield self.expected_scale
|
41 |
+
yield self.actual_scale
|
42 |
+
yield self.checksum_scale
|
torch-ext/triton_kernels/numerics_details/__init__.py
ADDED
File without changes
|