--- library_name: peft license: bigcode-openrail-m base_model: bigcode/starcoder2-15b tags: - generated_from_trainer datasets: - kevinwsbr/vulnfixes-web model-index: - name: outputs/starcoder-vulnfixes-web results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.8.0.dev0` ```yaml base_model: bigcode/starcoder2-15b # Automatically upload checkpoint and final model to HF # hub_model_id: username/custom_model_name load_in_8bit: false load_in_4bit: true strict: false datasets: - path: kevinwsbr/vulnfixes-web type: alpaca dataset_prepared_path: val_set_size: 0.05 output_dir: ./outputs/starcoder-vulnfixes-web adapter: qlora lora_model_dir: sequence_len: 4096 sample_packing: true pad_to_sequence_len: true lora_r: 32 lora_alpha: 16 lora_dropout: 0.05 lora_target_modules: lora_target_linear: true lora_fan_in_fan_out: wandb_project: starcoder wandb_entity: wandb_watch: wandb_run_id: wandb_log_model: gradient_accumulation_steps: 8 micro_batch_size: 2 num_epochs: 3 optimizer: adamw_bnb_8bit lr_scheduler: cosine learning_rate: 2e-5 train_on_inputs: false group_by_length: false bf16: auto fp16: false tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true warmup_steps: 20 evals_per_epoch: 4 eval_steps: eval_table_size: saves_per_epoch: 4 save_steps: save_total_limit: 2 debug: deepspeed: weight_decay: fsdp: fsdp_config: special_tokens: pad_token: "<|endoftext|>" eos_token: "<|endoftext|>" ```

# outputs/starcoder-vulnfixes-web This model is a fine-tuned version of [bigcode/starcoder2-15b](https://huggingface.co/bigcode/starcoder2-15b) on the kevinwsbr/vulnfixes-web dataset. It achieves the following results on the evaluation set: - Loss: 0.0529 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 20 - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.1499 | 0.0092 | 1 | 0.0645 | | 0.1554 | 0.2569 | 28 | 0.0622 | | 0.0745 | 0.5138 | 56 | 0.0571 | | 0.0616 | 0.7706 | 84 | 0.0559 | | 0.0645 | 1.0275 | 112 | 0.0547 | | 0.0601 | 1.2844 | 140 | 0.0542 | | 0.0688 | 1.5413 | 168 | 0.0537 | | 0.0424 | 1.7982 | 196 | 0.0534 | | 0.086 | 2.0550 | 224 | 0.0532 | | 0.0759 | 2.3119 | 252 | 0.0530 | | 0.0583 | 2.5688 | 280 | 0.0529 | | 0.1087 | 2.8257 | 308 | 0.0529 | ### Framework versions - PEFT 0.14.0 - Transformers 4.49.0 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0