--- language: vie datasets: - legacy-datasets/common_voice - vlsp2020_vinai_100h - AILAB-VNUHCM/vivos - doof-ferb/vlsp2020_vinai_100h - doof-ferb/fpt_fosd - doof-ferb/infore1_25hours - linhtran92/viet_bud500 - doof-ferb/LSVSC - doof-ferb/vais1000 - doof-ferb/VietMed_labeled - NhutP/VSV-1100 - doof-ferb/Speech-MASSIVE_vie - doof-ferb/BibleMMS_vie - capleaf/viVoice metrics: - wer pipeline_tag: automatic-speech-recognition tags: - transcription - audio - speech - chunkformer - asr - automatic-speech-recognition license: cc-by-nc-4.0 model-index: - name: ChunkFormer Large Vietnamese results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: common-voice-vietnamese type: common_voice args: vi metrics: - name: Test WER type: wer value: 6.66 - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: VIVOS type: vivos args: vi metrics: - name: Test WER type: wer value: 4.18 - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: VLSP - Task 1 type: vlsp args: vi metrics: - name: Test WER type: wer value: 14.09 --- # **ChunkFormer-Large-Vie: Large-Scale Pretrained ChunkFormer for Vietnamese Automatic Speech Recognition** [![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/chunkformer-masked-chunking-conformer-for/speech-recognition-on-common-voice-vi)](https://paperswithcode.com/sota/speech-recognition-on-common-voice-vi?p=chunkformer-masked-chunking-conformer-for) [![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/chunkformer-masked-chunking-conformer-for/speech-recognition-on-vivos)](https://paperswithcode.com/sota/speech-recognition-on-vivos?p=chunkformer-masked-chunking-conformer-for) [![License: CC BY-NC 4.0](https://img.shields.io/badge/License-CC%20BY--NC%204.0-lightgrey.svg)](https://creativecommons.org/licenses/by-nc/4.0/) [![GitHub](https://img.shields.io/badge/GitHub-ChunkFormer-blue)](https://github.com/khanld/chunkformer) [![Paper](https://img.shields.io/badge/Paper-ICASSP%202025-green)](https://arxiv.org/abs/2502.14673) [![Model size](https://img.shields.io/badge/Params-110M-lightgrey#model-badge)](#description) **!!!ATTENTION: Input audio must be MONO (1 channel) at 16,000 sample rate** --- ## Table of contents 1. [Model Description](#description) 2. [Documentation and Implementation](#implementation) 3. [Benchmark Results](#benchmark) 4. [Usage](#usage) 6. [Citation](#citation) 7. [Contact](#contact) --- ## Model Description **ChunkFormer-Large-Vie** is a large-scale Vietnamese Automatic Speech Recognition (ASR) model based on the **ChunkFormer** architecture, introduced at **ICASSP 2025**. The model has been fine-tuned on approximately **3000 hours** of public Vietnamese speech data sourced from diverse datasets. A list of datasets can be found [**HERE**](dataset.tsv). **!!! Please note that only the \[train-subset\] was used for tuning the model.** --- ## Documentation and Implementation The [Documentation]() and [Implementation](https://github.com/khanld/chunkformer) of ChunkFormer are publicly available. --- ## Benchmark Results We evaluate the models using **Word Error Rate (WER)**. To ensure consistency and fairness in comparison, we manually apply **Text Normalization**, including the handling of numbers, uppercase letters, and punctuation. 1. **Public Models**: | STT | Model | #Params | Vivos | Common Voice | VLSP - Task 1 | Avg. | |-----|------------------------------------------------------------------------|---------|-------|--------------|---------------|------| | 1 | **ChunkFormer** | 110M | 4.18 | 6.66 | 14.09 | **8.31** | | 2 | [vinai/PhoWhisper-large](https://huggingface.co/vinai/PhoWhisper-large) | 1.55B | 4.67 | 8.14 | 13.75 | 8.85 | | 3 | [nguyenvulebinh/wav2vec2-base-vietnamese-250h](https://huggingface.co/nguyenvulebinh/wav2vec2-base-vietnamese-250h) | 95M | 10.77 | 18.34 | 13.33 | 14.15 | | 4 | [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3) | 1.55B | 8.81 | 15.45 | 20.41 | 14.89 | | 5 | [khanhld/wav2vec2-base-vietnamese-160h](https://huggingface.co/khanhld/wav2vec2-base-vietnamese-160h) | 95M | 15.05 | 10.78 | 31.62 | 19.16 | | 6 | [homebrewltd/Ichigo-whisper-v0.1](https://huggingface.co/homebrewltd/Ichigo-whisper-v0.1) | 22M | 13.46 | 23.52 | 21.64 | 19.54 | 2. **Private Models (API)**: | STT | Model | VLSP - Task 1 | |-----|--------|---------------| | 1 | **ChunkFormer** | **14.1** | | 2 | Viettel | 14.5 | | 3 | Google | 19.5 | | 4 | FPT | 28.8 | --- ## Quick Usage To use the ChunkFormer model for Vietnamese Automatic Speech Recognition, follow these steps: 1. **Download the ChunkFormer Repository** ```bash git clone https://github.com/khanld/chunkformer.git cd chunkformer pip install -r requirements.txt ``` 2. **Download the Model Checkpoint from Hugging Face** ```bash pip install huggingface_hub huggingface-cli download khanhld/chunkformer-large-vie --local-dir "./chunkformer-large-vie" ``` or ```bash git lfs install git clone https://huggingface.co/khanhld/chunkformer-large-vie ``` This will download the model checkpoint to the checkpoints folder inside your chunkformer directory. 3. **Run the model** ```bash python decode.py \ --model_checkpoint path/to/local/chunkformer-large-vie \ --long_form_audio path/to/audio.wav \ --total_batch_duration 14400 \ #in second, default is 1800 --chunk_size 64 \ --left_context_size 128 \ --right_context_size 128 ``` Example Output: ``` [00:00:01.200] - [00:00:02.400]: this is a transcription example [00:00:02.500] - [00:00:03.700]: testing the long-form audio ``` **Advanced Usage** can be found [HERE](https://github.com/khanld/chunkformer/tree/main?tab=readme-ov-file#usage) --- ## Citation If you use this work in your research, please cite: ```bibtex @inproceedings{chunkformer, title={ChunkFormer: Masked Chunking Conformer For Long-Form Speech Transcription}, author={Khanh Le, Tuan Vu Ho, Dung Tran and Duc Thanh Chau}, booktitle={ICASSP}, year={2025} } ``` --- ## Contact - khanhld218@gmail.com - [![GitHub](https://img.shields.io/badge/github-%23121011.svg?style=for-the-badge&logo=github&logoColor=white)](https://github.com/khanld) - [![LinkedIn](https://img.shields.io/badge/linkedin-%230077B5.svg?style=for-the-badge&logo=linkedin&logoColor=white)](https://www.linkedin.com/in/khanhld257/)