Upload model
Browse files- config.json +44 -0
- configuration.py +37 -0
- model.safetensors +3 -0
- modeling.py +244 -0
config.json
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "models/qa_multi_4_bge_freeze_diclp0.05pp0.3_min1_epoch20_lrate5e-5",
|
3 |
+
"architectures": [
|
4 |
+
"KPRModelForBert"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"auto_map": {
|
8 |
+
"AutoConfig": "configuration.KPRConfigForBert",
|
9 |
+
"AutoModel": "modeling.KPRModelForBert"
|
10 |
+
},
|
11 |
+
"classifier_dropout": null,
|
12 |
+
"entity_embedding_size": 768,
|
13 |
+
"entity_fusion_activation": "sigmoid",
|
14 |
+
"entity_fusion_method": "multihead_attention",
|
15 |
+
"entity_vocab_size": null,
|
16 |
+
"gradient_checkpointing": false,
|
17 |
+
"hidden_act": "gelu",
|
18 |
+
"hidden_dropout_prob": 0.1,
|
19 |
+
"hidden_size": 768,
|
20 |
+
"id2label": {
|
21 |
+
"0": "LABEL_0"
|
22 |
+
},
|
23 |
+
"initializer_range": 0.02,
|
24 |
+
"intermediate_size": 3072,
|
25 |
+
"label2id": {
|
26 |
+
"LABEL_0": 0
|
27 |
+
},
|
28 |
+
"layer_norm_eps": 1e-12,
|
29 |
+
"max_position_embeddings": 512,
|
30 |
+
"model_type": "kpr-bert",
|
31 |
+
"num_attention_heads": 12,
|
32 |
+
"num_entity_fusion_attention_heads": 1,
|
33 |
+
"num_hidden_layers": 12,
|
34 |
+
"pad_token_id": 0,
|
35 |
+
"position_embedding_type": "absolute",
|
36 |
+
"similarity_function": "cosine",
|
37 |
+
"similarity_temperature": 0.02,
|
38 |
+
"torch_dtype": "float32",
|
39 |
+
"transformers_version": "4.35.2",
|
40 |
+
"type_vocab_size": 2,
|
41 |
+
"use_cache": true,
|
42 |
+
"use_entity_position_embeddings": true,
|
43 |
+
"vocab_size": 30522
|
44 |
+
}
|
configuration.py
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers.models.bert import BertConfig
|
2 |
+
from transformers.models.xlm_roberta import XLMRobertaConfig
|
3 |
+
|
4 |
+
|
5 |
+
def _init_function(
|
6 |
+
self,
|
7 |
+
entity_vocab_size: int | None = 10000,
|
8 |
+
entity_embedding_size: int = 768,
|
9 |
+
entity_fusion_method: str = "multihead_attention",
|
10 |
+
use_entity_position_embeddings: bool = True,
|
11 |
+
entity_fusion_activation: str = "softmax",
|
12 |
+
num_entity_fusion_attention_heads: int = 12,
|
13 |
+
similarity_function: str = "dot",
|
14 |
+
similarity_temperature: float = 1.0,
|
15 |
+
*args,
|
16 |
+
**kwargs,
|
17 |
+
):
|
18 |
+
self.entity_vocab_size = entity_vocab_size
|
19 |
+
self.entity_embedding_size = entity_embedding_size
|
20 |
+
self.entity_fusion_method = entity_fusion_method
|
21 |
+
self.use_entity_position_embeddings = use_entity_position_embeddings
|
22 |
+
self.entity_fusion_activation = entity_fusion_activation
|
23 |
+
self.num_entity_fusion_attention_heads = num_entity_fusion_attention_heads
|
24 |
+
self.similarity_function = similarity_function
|
25 |
+
self.similarity_temperature = similarity_temperature
|
26 |
+
|
27 |
+
super(self.__class__, self).__init__(*args, **kwargs)
|
28 |
+
|
29 |
+
|
30 |
+
class KPRConfigForBert(BertConfig):
|
31 |
+
__init__ = _init_function
|
32 |
+
model_type = "kpr-bert"
|
33 |
+
|
34 |
+
|
35 |
+
class KPRConfigForXLMRoberta(XLMRobertaConfig):
|
36 |
+
__init__ = _init_function
|
37 |
+
model_type = "kpr-xlm-roberta"
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:eeb2938c65122bbba652f56f2f77ad285e77f4d5d44aa60e2a3cc16b757801e7
|
3 |
+
size 448988504
|
modeling.py
ADDED
@@ -0,0 +1,244 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import torch.distributed as dist
|
5 |
+
import torch.nn.functional as F
|
6 |
+
from torch import Tensor, nn
|
7 |
+
from transformers import PretrainedConfig
|
8 |
+
from transformers.file_utils import ModelOutput
|
9 |
+
from transformers.models.bert import BertModel, BertPreTrainedModel
|
10 |
+
from transformers.models.xlm_roberta import XLMRobertaModel, XLMRobertaPreTrainedModel
|
11 |
+
|
12 |
+
from .configuration import KPRConfigForBert, KPRConfigForXLMRoberta
|
13 |
+
|
14 |
+
|
15 |
+
class EntityEmbeddings(nn.Module):
|
16 |
+
def __init__(self, config: PretrainedConfig):
|
17 |
+
super().__init__()
|
18 |
+
self.config = config
|
19 |
+
|
20 |
+
if config.entity_vocab_size is not None:
|
21 |
+
self.embeddings = nn.Embedding(config.entity_vocab_size, config.entity_embedding_size, padding_idx=0)
|
22 |
+
self.embeddings.weight.requires_grad = False
|
23 |
+
|
24 |
+
# The 0-th position corresponds to the [CLS] token which does not correspond to any entity
|
25 |
+
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size, padding_idx=0)
|
26 |
+
|
27 |
+
self.dense = nn.Linear(config.entity_embedding_size, config.hidden_size, bias=False)
|
28 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
29 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
30 |
+
|
31 |
+
def forward(self, entity_ids: Tensor | None, entity_embeds: Tensor | None, entity_position_ids: Tensor) -> Tensor:
|
32 |
+
if entity_embeds is not None:
|
33 |
+
entity_embeddings = entity_embeds
|
34 |
+
elif entity_ids is not None:
|
35 |
+
if self.config.entity_vocab_size is None:
|
36 |
+
raise ValueError("Entity embeddings are not constructed because entity_vocab_size is None.")
|
37 |
+
entity_embeddings = self.embeddings(entity_ids)
|
38 |
+
else:
|
39 |
+
raise ValueError("Either entity_ids or entity_embeds need to be provided.")
|
40 |
+
|
41 |
+
entity_embeddings = self.dense(entity_embeddings)
|
42 |
+
|
43 |
+
if self.config.use_entity_position_embeddings:
|
44 |
+
entity_position_embeddings = self.position_embeddings(
|
45 |
+
entity_position_ids
|
46 |
+
) # batch, entities, positions, hidden
|
47 |
+
entity_position_embeddings = torch.sum(entity_position_embeddings, dim=2)
|
48 |
+
entity_position_embeddings = entity_position_embeddings / entity_position_ids.ne(0).sum(dim=2).clamp(
|
49 |
+
min=1
|
50 |
+
).unsqueeze(-1)
|
51 |
+
entity_embeddings = entity_embeddings + entity_position_embeddings
|
52 |
+
|
53 |
+
entity_embeddings = self.LayerNorm(entity_embeddings)
|
54 |
+
entity_embeddings = self.dropout(entity_embeddings)
|
55 |
+
|
56 |
+
return entity_embeddings
|
57 |
+
|
58 |
+
|
59 |
+
class EntityFusionMultiHeadAttention(nn.Module):
|
60 |
+
def __init__(self, config: PretrainedConfig):
|
61 |
+
super().__init__()
|
62 |
+
self.config = config
|
63 |
+
|
64 |
+
self.num_attention_heads = config.num_entity_fusion_attention_heads
|
65 |
+
self.attention_head_size = int(config.hidden_size / self.num_attention_heads)
|
66 |
+
|
67 |
+
self.query = nn.Linear(config.hidden_size, config.hidden_size)
|
68 |
+
self.key = nn.Linear(config.hidden_size, config.hidden_size)
|
69 |
+
self.value = nn.Linear(config.hidden_size, config.hidden_size)
|
70 |
+
|
71 |
+
def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor:
|
72 |
+
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
|
73 |
+
x = x.view(new_x_shape)
|
74 |
+
return x.permute(0, 2, 1, 3)
|
75 |
+
|
76 |
+
def forward(
|
77 |
+
self, query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, key_padding_mask: torch.Tensor
|
78 |
+
) -> tuple[torch.Tensor, torch.Tensor]:
|
79 |
+
query_layer = self.transpose_for_scores(self.query(query))
|
80 |
+
key_layer = self.transpose_for_scores(self.key(key))
|
81 |
+
value_layer = self.transpose_for_scores(self.value(value))
|
82 |
+
|
83 |
+
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
|
84 |
+
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
|
85 |
+
|
86 |
+
dtype = attention_scores.dtype
|
87 |
+
key_padding_mask_scores = key_padding_mask[:, None, None, :]
|
88 |
+
key_padding_mask_scores = key_padding_mask_scores.to(dtype=dtype)
|
89 |
+
key_padding_mask_scores = key_padding_mask_scores * torch.finfo(dtype).min
|
90 |
+
attention_scores = attention_scores + key_padding_mask_scores
|
91 |
+
orig_attention_scores = attention_scores.clone()
|
92 |
+
|
93 |
+
if self.config.entity_fusion_activation == "sigmoid":
|
94 |
+
# https://arxiv.org/abs/2409.04431
|
95 |
+
entity_fusion_sigmoid_bias = key_padding_mask.eq(0).sum(dim=-1, keepdim=True)[:, :, None, None]
|
96 |
+
entity_fusion_sigmoid_bias = entity_fusion_sigmoid_bias.to(dtype)
|
97 |
+
entity_fusion_sigmoid_bias = -torch.log(entity_fusion_sigmoid_bias)
|
98 |
+
|
99 |
+
attention_scores = attention_scores + entity_fusion_sigmoid_bias
|
100 |
+
normalized_attention_scores = torch.sigmoid(attention_scores)
|
101 |
+
else:
|
102 |
+
normalized_attention_scores = nn.functional.softmax(attention_scores, dim=-1)
|
103 |
+
|
104 |
+
context_layer = torch.matmul(normalized_attention_scores, value_layer)
|
105 |
+
|
106 |
+
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
|
107 |
+
new_context_layer_shape = context_layer.size()[:-2] + (self.config.hidden_size,)
|
108 |
+
context_layer = context_layer.view(new_context_layer_shape)
|
109 |
+
|
110 |
+
return (context_layer, orig_attention_scores)
|
111 |
+
|
112 |
+
|
113 |
+
class EntityFusionLayer(nn.Module):
|
114 |
+
def __init__(self, config: PretrainedConfig):
|
115 |
+
super().__init__()
|
116 |
+
self.config = config
|
117 |
+
|
118 |
+
self.entity_embeddings = EntityEmbeddings(config)
|
119 |
+
self.entity_fusion_layer = EntityFusionMultiHeadAttention(config)
|
120 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
121 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
122 |
+
|
123 |
+
self.noop_embeddings = nn.Parameter(torch.zeros(1, 1, config.hidden_size))
|
124 |
+
|
125 |
+
def forward(
|
126 |
+
self,
|
127 |
+
entity_ids: Tensor | None,
|
128 |
+
entity_embeds: Tensor | None,
|
129 |
+
entity_position_ids: Tensor,
|
130 |
+
cls_embeddings: Tensor,
|
131 |
+
) -> tuple[torch.Tensor, torch.Tensor]:
|
132 |
+
entity_embeddings = self.entity_embeddings(entity_ids, entity_embeds, entity_position_ids)
|
133 |
+
|
134 |
+
batch_size = entity_ids.size(0)
|
135 |
+
kv_embeddings = entity_embeddings
|
136 |
+
key_padding_mask = entity_ids.eq(0)
|
137 |
+
cls_embeddings = cls_embeddings.unsqueeze(1)
|
138 |
+
|
139 |
+
noop_embeddings = self.noop_embeddings.expand(batch_size, 1, -1)
|
140 |
+
|
141 |
+
kv_embeddings = torch.cat([noop_embeddings, kv_embeddings], dim=1)
|
142 |
+
noop_padding_mask = torch.zeros(batch_size, 1, device=entity_ids.device, dtype=torch.bool)
|
143 |
+
key_padding_mask = torch.cat([noop_padding_mask, key_padding_mask], dim=1)
|
144 |
+
|
145 |
+
entity_embeddings, attention_scores = self.entity_fusion_layer(
|
146 |
+
cls_embeddings, kv_embeddings, kv_embeddings, key_padding_mask=key_padding_mask
|
147 |
+
)
|
148 |
+
entity_embeddings = self.dropout(entity_embeddings)
|
149 |
+
output_embeddings = entity_embeddings + cls_embeddings
|
150 |
+
output_embeddings = self.LayerNorm(output_embeddings)
|
151 |
+
|
152 |
+
output_embeddings = output_embeddings.squeeze(1)
|
153 |
+
|
154 |
+
return output_embeddings, attention_scores
|
155 |
+
|
156 |
+
|
157 |
+
class KPRMixin:
|
158 |
+
def _forward(self, **inputs: Tensor | dict[str, Tensor]) -> Tensor:
|
159 |
+
if self.training:
|
160 |
+
query_embeddings = self._encode(inputs["queries"])
|
161 |
+
passage_embeddings = self._encode(inputs["passages"])
|
162 |
+
|
163 |
+
query_embeddings = self._dist_gather_tensor(query_embeddings)
|
164 |
+
passage_embeddings = self._dist_gather_tensor(passage_embeddings)
|
165 |
+
|
166 |
+
scores = self._compute_similarity(query_embeddings, passage_embeddings)
|
167 |
+
scores = scores / self.config.similarity_temperature
|
168 |
+
scores = scores.view(query_embeddings.size(0), -1)
|
169 |
+
|
170 |
+
ce_target = torch.arange(scores.size(0), device=scores.device, dtype=torch.long)
|
171 |
+
ce_target = ce_target * (passage_embeddings.size(0) // query_embeddings.size(0))
|
172 |
+
loss = torch.nn.CrossEntropyLoss(reduction="mean")(scores, ce_target)
|
173 |
+
|
174 |
+
return ModelOutput(loss=loss, scores=scores)
|
175 |
+
|
176 |
+
else:
|
177 |
+
return self._encode(inputs)
|
178 |
+
|
179 |
+
def _encode(self, inputs: dict[str, Tensor]) -> Tensor:
|
180 |
+
entity_ids = inputs.pop("entity_ids", None)
|
181 |
+
entity_position_ids = inputs.pop("entity_position_ids", None)
|
182 |
+
entity_embeds = inputs.pop("entity_embeds", None)
|
183 |
+
|
184 |
+
outputs = getattr(self, self.base_model_prefix)(**inputs)
|
185 |
+
output_embeddings = outputs.last_hidden_state[:, 0]
|
186 |
+
|
187 |
+
if self.config.entity_fusion_method != "none":
|
188 |
+
output_embeddings, _ = self.entity_fusion_layer(
|
189 |
+
entity_ids=entity_ids,
|
190 |
+
entity_embeds=entity_embeds,
|
191 |
+
entity_position_ids=entity_position_ids,
|
192 |
+
cls_embeddings=output_embeddings,
|
193 |
+
)
|
194 |
+
|
195 |
+
return output_embeddings
|
196 |
+
|
197 |
+
def _dist_gather_tensor(self, t: torch.Tensor) -> torch.Tensor:
|
198 |
+
t = t.contiguous()
|
199 |
+
tensor_list = [torch.empty_like(t) for _ in range(dist.get_world_size())]
|
200 |
+
dist.all_gather(tensor_list, t)
|
201 |
+
|
202 |
+
tensor_list[dist.get_rank()] = t
|
203 |
+
gathered_tensor = torch.cat(tensor_list, dim=0)
|
204 |
+
|
205 |
+
return gathered_tensor
|
206 |
+
|
207 |
+
def _compute_similarity(self, query_embeddings: Tensor, passage_embeddings: Tensor) -> Tensor:
|
208 |
+
if self.config.similarity_function == "cosine":
|
209 |
+
query_embeddings = F.normalize(query_embeddings, p=2, dim=-1)
|
210 |
+
passage_embeddings = F.normalize(passage_embeddings, p=2, dim=-1)
|
211 |
+
|
212 |
+
return torch.matmul(query_embeddings, passage_embeddings.transpose(-2, -1))
|
213 |
+
|
214 |
+
|
215 |
+
class KPRModelForBert(BertPreTrainedModel, KPRMixin):
|
216 |
+
config_class = KPRConfigForBert
|
217 |
+
|
218 |
+
def __init__(self, config: KPRConfigForBert):
|
219 |
+
BertPreTrainedModel.__init__(self, config)
|
220 |
+
|
221 |
+
self.bert = BertModel(config)
|
222 |
+
if self.config.entity_fusion_method != "none":
|
223 |
+
self.entity_fusion_layer = EntityFusionLayer(config)
|
224 |
+
|
225 |
+
self.post_init()
|
226 |
+
|
227 |
+
def forward(self, *args, **kwargs):
|
228 |
+
return self._forward(*args, **kwargs)
|
229 |
+
|
230 |
+
|
231 |
+
class KPRModelForXLMRoberta(XLMRobertaPreTrainedModel, KPRMixin):
|
232 |
+
config_class = KPRConfigForXLMRoberta
|
233 |
+
|
234 |
+
def __init__(self, config: KPRConfigForXLMRoberta):
|
235 |
+
XLMRobertaPreTrainedModel.__init__(self, config)
|
236 |
+
|
237 |
+
self.roberta = XLMRobertaModel(config)
|
238 |
+
if self.config.entity_fusion_method != "none":
|
239 |
+
self.entity_fusion_layer = EntityFusionLayer(config)
|
240 |
+
|
241 |
+
self.post_init()
|
242 |
+
|
243 |
+
def forward(self, *args, **kwargs):
|
244 |
+
return self._forward(*args, **kwargs)
|