File size: 20,231 Bytes
5720d2b 9355881 5720d2b 9355881 5720d2b 9355881 5720d2b 9355881 5720d2b 9355881 5720d2b 9355881 5720d2b 9355881 5720d2b 9355881 5720d2b 9355881 5720d2b 9355881 5720d2b 9355881 5720d2b 9355881 5720d2b 9355881 5720d2b 9355881 5720d2b 9355881 5720d2b 9355881 5720d2b 9355881 5720d2b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 |
from __future__ import annotations
import csv
import json
import os
from dataclasses import dataclass
from pathlib import Path
from typing import NamedTuple
import numpy as np
import torch
import spacy
from marisa_trie import Trie
from transformers import BatchEncoding, BertTokenizer, PreTrainedTokenizerBase
NONE_ID = "<None>"
@dataclass
class Mention:
kb_id: str | None
text: str
start: int
end: int
link_count: int | None
total_link_count: int | None
doc_count: int | None
@property
def span(self) -> tuple[int, int]:
return self.start, self.end
@property
def link_prob(self) -> float | None:
if self.doc_count is None or self.total_link_count is None:
return None
elif self.doc_count > 0:
return min(1.0, self.total_link_count / self.doc_count)
else:
return 0.0
@property
def prior_prob(self) -> float | None:
if self.link_count is None or self.total_link_count is None:
return None
elif self.total_link_count > 0:
return min(1.0, self.link_count / self.total_link_count)
else:
return 0.0
def __repr__(self):
return f"<Mention {self.text} -> {self.kb_id}>"
def get_tokenizer(language: str) -> spacy.tokenizer.Tokenizer:
language_obj = spacy.blank(language)
return language_obj.tokenizer
class DictionaryEntityLinker:
def __init__(
self,
name_trie: Trie,
kb_id_trie: Trie,
data: np.ndarray,
offsets: np.ndarray,
max_mention_length: int,
case_sensitive: bool,
min_link_prob: float | None,
min_prior_prob: float | None,
min_link_count: int | None,
):
self._name_trie = name_trie
self._kb_id_trie = kb_id_trie
self._data = data
self._offsets = offsets
self._max_mention_length = max_mention_length
self._case_sensitive = case_sensitive
self._min_link_prob = min_link_prob
self._min_prior_prob = min_prior_prob
self._min_link_count = min_link_count
self._tokenizer = get_tokenizer("en")
@staticmethod
def load(
data_dir: str,
min_link_prob: float | None = None,
min_prior_prob: float | None = None,
min_link_count: int | None = None,
) -> "DictionaryEntityLinker":
data = np.load(os.path.join(data_dir, "data.npy"))
offsets = np.load(os.path.join(data_dir, "offsets.npy"))
name_trie = Trie()
name_trie.load(os.path.join(data_dir, "name.trie"))
kb_id_trie = Trie()
kb_id_trie.load(os.path.join(data_dir, "kb_id.trie"))
with open(os.path.join(data_dir, "config.json")) as config_file:
config = json.load(config_file)
if min_link_prob is None:
min_link_prob = config.get("min_link_prob", None)
if min_prior_prob is None:
min_prior_prob = config.get("min_prior_prob", None)
if min_link_count is None:
min_link_count = config.get("min_link_count", None)
return DictionaryEntityLinker(
name_trie=name_trie,
kb_id_trie=kb_id_trie,
data=data,
offsets=offsets,
max_mention_length=config["max_mention_length"],
case_sensitive=config["case_sensitive"],
min_link_prob=min_link_prob,
min_prior_prob=min_prior_prob,
min_link_count=min_link_count,
)
def detect_mentions(self, text: str) -> list[Mention]:
tokens = self._tokenizer(text)
end_offsets = frozenset(token.idx + len(token) for token in tokens)
if not self._case_sensitive:
text = text.lower()
ret = []
cur = 0
for token in tokens:
start = token.idx
if cur > start:
continue
for prefix in sorted(
self._name_trie.prefixes(text[start : start + self._max_mention_length]),
key=len,
reverse=True,
):
end = start + len(prefix)
if end in end_offsets:
matched = False
mention_idx = self._name_trie[prefix]
data_start, data_end = self._offsets[mention_idx : mention_idx + 2]
for item in self._data[data_start:data_end]:
if item.size == 4:
kb_idx, link_count, total_link_count, doc_count = item
elif item.size == 1:
(kb_idx,) = item
link_count, total_link_count, doc_count = None, None, None
else:
raise ValueError("Unexpected data array format")
mention = Mention(
kb_id=self._kb_id_trie.restore_key(kb_idx),
text=prefix,
start=start,
end=end,
link_count=link_count,
total_link_count=total_link_count,
doc_count=doc_count,
)
if item.size == 1 or (
mention.link_prob >= self._min_link_prob
and mention.prior_prob >= self._min_prior_prob
and mention.link_count >= self._min_link_count
):
ret.append(mention)
matched = True
if matched:
cur = end
break
return ret
def detect_mentions_batch(self, texts: list[str]) -> list[list[Mention]]:
return [self.detect_mentions(text) for text in texts]
def save(self, data_dir: str) -> None:
"""
Save the entity linker data to the specified directory.
Args:
data_dir: Directory to save the entity linker data
"""
os.makedirs(data_dir, exist_ok=True)
# Save numpy arrays
np.save(os.path.join(data_dir, "data.npy"), self._data)
np.save(os.path.join(data_dir, "offsets.npy"), self._offsets)
# Save tries
self._name_trie.save(os.path.join(data_dir, "name.trie"))
self._kb_id_trie.save(os.path.join(data_dir, "kb_id.trie"))
# Save configuration
with open(os.path.join(data_dir, "config.json"), "w") as config_file:
json.dump(
{
"max_mention_length": self._max_mention_length,
"case_sensitive": self._case_sensitive,
"min_link_prob": self._min_link_prob,
"min_prior_prob": self._min_prior_prob,
"min_link_count": self._min_link_count,
},
config_file,
)
def load_tsv_entity_vocab(file_path: str) -> dict[str, int]:
vocab = {}
with open(file_path, "r", encoding="utf-8") as file:
reader = csv.reader(file, delimiter="\t")
for row in reader:
vocab[row[0]] = int(row[1])
return vocab
def save_tsv_entity_vocab(file_path: str, entity_vocab: dict[str, int]) -> None:
"""
Save entity vocabulary to a TSV file.
Args:
file_path: Path to save the entity vocabulary
entity_vocab: Entity vocabulary to save
"""
os.makedirs(os.path.dirname(file_path), exist_ok=True)
with open(file_path, "w", encoding="utf-8") as f:
writer = csv.writer(f, delimiter="\t")
for entity_id, idx in entity_vocab.items():
writer.writerow([entity_id, idx])
class _Entity(NamedTuple):
entity_id: int
start: int
end: int
@property
def length(self) -> int:
return self.end - self.start
def preprocess_text(
text: str,
mentions: list[Mention] | None,
title: str | None,
title_mentions: list[Mention] | None,
tokenizer: PreTrainedTokenizerBase,
entity_vocab: dict[str, int],
) -> dict[str, list[int]]:
tokens = []
entity_ids = []
entity_position_ids = []
if title is not None:
if title_mentions is None:
title_mentions = []
title_tokens, title_entities = _tokenize_text_with_mentions(title, title_mentions, tokenizer, entity_vocab)
tokens += title_tokens + [tokenizer.sep_token]
for entity in title_entities:
entity_ids.append(entity.entity_id)
entity_position_ids.append(list(range(entity.start, entity.end)))
if mentions is None:
mentions = []
entity_offset = len(tokens)
text_tokens, text_entities = _tokenize_text_with_mentions(text, mentions, tokenizer, entity_vocab)
tokens += text_tokens
for entity in text_entities:
entity_ids.append(entity.entity_id)
entity_position_ids.append(list(range(entity.start + entity_offset, entity.end + entity_offset)))
input_ids = tokenizer.convert_tokens_to_ids(tokens)
return {
"input_ids": input_ids,
"entity_ids": entity_ids,
"entity_position_ids": entity_position_ids,
}
def _tokenize_text_with_mentions(
text: str,
mentions: list[Mention],
tokenizer: PreTrainedTokenizerBase,
entity_vocab: dict[str, int],
) -> tuple[list[str], list[_Entity]]:
"""
Tokenize text while preserving mention boundaries and mapping entities.
Args:
text: Input text to tokenize
mentions: List of detected mentions in the text
tokenizer: Pre-trained tokenizer to use for tokenization
entity_vocab: Mapping from entity KB IDs to entity vocabulary indices
Returns:
Tuple containing:
- List of tokens from the tokenized text
- List of _Entity objects with entity IDs and token positions
"""
target_mentions = [mention for mention in mentions if mention.kb_id is not None and mention.kb_id in entity_vocab]
split_char_positions = {mention.start for mention in target_mentions} | {mention.end for mention in target_mentions}
tokens: list[str] = []
cur = 0
char_to_token_mapping = {}
for char_position in sorted(split_char_positions):
target_text = text[cur:char_position]
tokens += tokenizer.tokenize(target_text)
char_to_token_mapping[char_position] = len(tokens)
cur = char_position
tokens += tokenizer.tokenize(text[cur:])
entities = [
_Entity(
entity_vocab[mention.kb_id],
char_to_token_mapping[mention.start],
char_to_token_mapping[mention.end],
)
for mention in target_mentions
]
return tokens, entities
class KPRBertTokenizer(BertTokenizer):
vocab_files_names = {
**BertTokenizer.vocab_files_names, # Include the parent class files (vocab.txt)
"entity_linker_data_file": "entity_linker/data.npy",
"entity_linker_offsets_file": "entity_linker/offsets.npy",
"entity_linker_name_trie_file": "entity_linker/name.trie",
"entity_linker_kb_id_trie_file": "entity_linker/kb_id.trie",
"entity_linker_config_file": "entity_linker/config.json",
"entity_vocab_file": "entity_vocab.tsv",
"entity_embeddings_file": "entity_embeddings.npy",
}
model_input_names = [
"input_ids",
"token_type_ids",
"attention_mask",
"entity_ids",
"entity_position_ids",
]
def __init__(
self,
vocab_file,
entity_linker_data_file: str,
entity_vocab_file: str,
entity_embeddings_file: str | None = None,
*args,
**kwargs,
):
super().__init__(vocab_file=vocab_file, *args, **kwargs)
entity_linker_dir = str(Path(entity_linker_data_file).parent)
self.entity_linker = DictionaryEntityLinker.load(entity_linker_dir)
self.entity_to_id = load_tsv_entity_vocab(entity_vocab_file)
self.id_to_entity = {v: k for k, v in self.entity_to_id.items()}
self.entity_embeddings = None
if entity_embeddings_file:
# Use memory-mapped loading for large embeddings
self.entity_embeddings = np.load(entity_embeddings_file, mmap_mode="r")
if self.entity_embeddings.shape[0] != len(self.entity_to_id):
raise ValueError(
f"Entity embeddings shape {self.entity_embeddings.shape[0]} does not match "
f"the number of entities {len(self.entity_to_id)}. "
"Make sure `embeddings.py` and `entity_vocab.tsv` are consistent."
)
def _preprocess_text(self, text: str, **kwargs) -> dict[str, list[int | list[int]]]:
mentions = self.entity_linker.detect_mentions(text)
model_inputs = preprocess_text(
text=text,
mentions=mentions,
title=None,
title_mentions=None,
tokenizer=self,
entity_vocab=self.entity_to_id,
)
# Prepare the inputs for the model
# This will add special tokens or truncate the input when specified in kwargs
# We exclude "return_tensors" from kwargs
# to avoid issues in passing the data to BatchEncoding outside this method
prepared_inputs = self.prepare_for_model(
model_inputs["input_ids"],
**{k: v for k, v in kwargs.items() if k != "return_tensors"},
)
model_inputs.update(prepared_inputs)
# Account for special tokens
if kwargs.get("add_special_tokens", True):
if prepared_inputs["input_ids"][0] != self.cls_token_id:
raise ValueError(
"We assume that the input IDs start with the [CLS] token with add_special_tokens = True."
)
# Shift the entity position IDs by 1 to account for the [CLS] token
model_inputs["entity_position_ids"] = [
[pos + 1 for pos in positions] for positions in model_inputs["entity_position_ids"]
]
# If there is no entities in the text, we output padding entity for the model
if not model_inputs["entity_ids"]:
model_inputs["entity_ids"] = [0] # The padding entity id is 0
model_inputs["entity_position_ids"] = [[0]]
# Count the number of special tokens at the end of the input
num_special_tokens_at_end = 0
input_ids = prepared_inputs["input_ids"]
if isinstance(input_ids, torch.Tensor):
input_ids = input_ids.tolist()
for input_id in input_ids[::-1]:
if int(input_id) not in {
self.sep_token_id,
self.pad_token_id,
self.cls_token_id,
}:
break
num_special_tokens_at_end += 1
# Remove entities that are not in truncated input
max_effective_pos = len(model_inputs["input_ids"]) - num_special_tokens_at_end
entity_indices_to_keep = list()
for i, position_ids in enumerate(model_inputs["entity_position_ids"]):
if len(position_ids) > 0 and max(position_ids) < max_effective_pos:
entity_indices_to_keep.append(i)
model_inputs["entity_ids"] = [model_inputs["entity_ids"][i] for i in entity_indices_to_keep]
model_inputs["entity_position_ids"] = [model_inputs["entity_position_ids"][i] for i in entity_indices_to_keep]
if self.entity_embeddings is not None:
model_inputs["entity_embeds"] = self.entity_embeddings[model_inputs["entity_ids"]].astype(np.float32)
return model_inputs
def __call__(self, text: str | list[str], **kwargs) -> BatchEncoding:
for unsupported_arg in ["text_pair", "text_target", "text_pair_target"]:
if unsupported_arg in kwargs:
raise ValueError(
f"Argument '{unsupported_arg}' is not supported by {self.__class__.__name__}. "
"This tokenizer only supports single text inputs. "
)
if isinstance(text, str):
processed_inputs = self._preprocess_text(text, **kwargs)
return BatchEncoding(
processed_inputs,
tensor_type=kwargs.get("return_tensors", None),
prepend_batch_axis=True,
)
processed_inputs_list: list[dict[str, list[int]]] = [self._preprocess_text(t, **kwargs) for t in text]
collated_inputs = {
key: [item[key] for item in processed_inputs_list] for key in processed_inputs_list[0].keys()
}
if kwargs.get("padding"):
collated_inputs = self.pad(
collated_inputs,
padding=kwargs["padding"],
max_length=kwargs.get("max_length"),
pad_to_multiple_of=kwargs.get("pad_to_multiple_of"),
return_attention_mask=kwargs.get("return_attention_mask"),
verbose=kwargs.get("verbose", True),
)
# Pad entity ids
max_num_entities = max(len(ids) for ids in collated_inputs["entity_ids"])
for entity_ids in collated_inputs["entity_ids"]:
entity_ids += [0] * (max_num_entities - len(entity_ids))
# Pad entity position ids
flattened_entity_length = [
len(ids) for ids_list in collated_inputs["entity_position_ids"] for ids in ids_list
]
max_entity_token_length = max(flattened_entity_length) if flattened_entity_length else 0
for entity_position_ids_list in collated_inputs["entity_position_ids"]:
# pad entity_position_ids to max_entity_token_length
for entity_position_ids in entity_position_ids_list:
entity_position_ids += [0] * (max_entity_token_length - len(entity_position_ids))
# pad to max_num_entities
entity_position_ids_list += [[0 for _ in range(max_entity_token_length)]] * (
max_num_entities - len(entity_position_ids_list)
)
# Pad entity embeddings
if "entity_embeds" in collated_inputs:
for i in range(len(collated_inputs["entity_embeds"])):
collated_inputs["entity_embeds"][i] = np.pad(
collated_inputs["entity_embeds"][i],
pad_width=(
(
0,
max_num_entities - len(collated_inputs["entity_embeds"][i]),
),
(0, 0),
),
mode="constant",
constant_values=0,
)
return BatchEncoding(collated_inputs, tensor_type=kwargs.get("return_tensors", None))
def save_vocabulary(self, save_directory: str, filename_prefix: str | None = None) -> tuple[str]:
os.makedirs(save_directory, exist_ok=True)
saved_files = list(super().save_vocabulary(save_directory, filename_prefix))
# Save entity linker data
entity_linker_save_dir = str(
Path(save_directory) / Path(self.vocab_files_names["entity_linker_data_file"]).parent
)
self.entity_linker.save(entity_linker_save_dir)
for file_name in self.vocab_files_names.values():
if file_name.startswith("entity_linker/"):
saved_files.append(file_name)
# Save entity vocabulary
entity_vocab_path = str(Path(save_directory) / self.vocab_files_names["entity_vocab_file"])
save_tsv_entity_vocab(entity_vocab_path, self.entity_to_id)
saved_files.append(self.vocab_files_names["entity_vocab_file"])
if self.entity_embeddings is not None:
entity_embeddings_path = str(Path(save_directory) / self.vocab_files_names["entity_embeddings_file"])
np.save(entity_embeddings_path, self.entity_embeddings)
saved_files.append(self.vocab_files_names["entity_embeddings_file"])
return tuple(saved_files)
|