--- base_model: microsoft/Phi-3.5-mini-instruct library_name: peft license: mit tags: - trl - sft - generated_from_trainer model-index: - name: fine-tuned_phi3.5 results: [] --- # fine-tuned_phi3.5 This model is a fine-tuned version of [microsoft/Phi-3.5-mini-instruct](https://huggingface.co/microsoft/Phi-3.5-mini-instruct) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.2392 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 6 - total_train_batch_size: 24 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.01 - training_steps: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0244 | 10 | 1.4131 | | No log | 0.0487 | 20 | 1.3193 | | 1.4022 | 0.0731 | 30 | 1.2778 | | 1.4022 | 0.0975 | 40 | 1.2651 | | 1.2145 | 0.1219 | 50 | 1.2546 | | 1.2145 | 0.1462 | 60 | 1.2479 | | 1.2145 | 0.1706 | 70 | 1.2449 | | 1.1869 | 0.1950 | 80 | 1.2413 | | 1.1869 | 0.2193 | 90 | 1.2402 | | 1.2108 | 0.2437 | 100 | 1.2392 | ### Framework versions - PEFT 0.12.0 - Transformers 4.44.2 - Pytorch 2.0.0+nv23.05 - Datasets 2.15.0 - Tokenizers 0.19.1