File size: 2,218 Bytes
b4740c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
#!/usr/bin/env python3
"""
Main entry point for Multi-Model Orchestrator
"""

import sys
import argparse
from multi_model_orchestrator import DemoMultiModelOrchestrator, SimpleMultiModelOrchestrator

def main():
    parser = argparse.ArgumentParser(description="Multi-Model Orchestrator")
    parser.add_argument("--demo", action="store_true", help="Run demo mode")
    parser.add_argument("--real", action="store_true", help="Run with real models")
    parser.add_argument("--caption", type=str, help="Generate caption for image")
    parser.add_argument("--generate-image", type=str, help="Generate image from text")
    parser.add_argument("--multimodal", nargs=2, metavar=("IMAGE", "TEXT"), 
                       help="Process multimodal task (image_path text_prompt)")
    
    args = parser.parse_args()
    
    if args.demo:
        # Run demo
        from multi_model_orchestrator.demo_orchestrator import main as demo_main
        demo_main()
    elif args.real:
        # Run with real models
        print("Real model mode - requires model downloads")
        print("Use: python -m multi_model_orchestrator.multi_model_example")
    elif args.caption:
        # Generate caption
        orchestrator = DemoMultiModelOrchestrator()
        orchestrator.initialize_models()
        caption = orchestrator.generate_caption(args.caption)
        print(f"Caption: {caption}")
    elif args.generate_image:
        # Generate image
        orchestrator = DemoMultiModelOrchestrator()
        orchestrator.initialize_models()
        image_path = orchestrator.generate_image(args.generate_image)
        print(f"Generated image: {image_path}")
    elif args.multimodal:
        # Multimodal processing
        image_path, text_prompt = args.multimodal
        orchestrator = DemoMultiModelOrchestrator()
        orchestrator.initialize_models()
        results = orchestrator.process_multimodal_task(image_path, text_prompt)
        print("Results:")
        for key, value in results.items():
            print(f"  {key}: {value}")
    else:
        # Default: run demo
        from multi_model_orchestrator.demo_orchestrator import main as demo_main
        demo_main()

if __name__ == "__main__":
    main()