File size: 11,529 Bytes
b4740c6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 |
#!/usr/bin/env python3
"""
Comprehensive Example of Multi-Model Orchestrator
Demonstrates parent-child LLM relationships with CLIP-GPT2 and Stable Diffusion
"""
import asyncio
import json
import time
from pathlib import Path
from simple_orchestrator import SimpleMultiModelOrchestrator, AsyncMultiModelOrchestrator
def create_sample_image():
"""Create a sample image for testing (if no image is available)"""
from PIL import Image, ImageDraw, ImageFont
import numpy as np
# Create a simple test image
img = Image.new('RGB', (512, 512), color='lightblue')
draw = ImageDraw.Draw(img)
# Add some text
try:
# Try to use a default font
font = ImageFont.load_default()
except:
font = None
draw.text((50, 50), "Sample Image", fill='black', font=font)
draw.text((50, 100), "For Testing", fill='black', font=font)
# Add some shapes
draw.rectangle([100, 200, 400, 300], fill='red', outline='black')
draw.ellipse([150, 350, 350, 450], fill='green', outline='black')
# Save the image
sample_path = "sample_image.jpg"
img.save(sample_path)
print(f"Created sample image: {sample_path}")
return sample_path
def example_basic_usage():
"""Example 1: Basic usage of the orchestrator"""
print("="*60)
print("EXAMPLE 1: BASIC USAGE")
print("="*60)
# Initialize orchestrator
orchestrator = SimpleMultiModelOrchestrator()
# Initialize models
print("Initializing models...")
if not orchestrator.initialize_models():
print("Failed to initialize models. Exiting.")
return
# Get status
status = orchestrator.get_status()
print(f"Orchestrator Status: {json.dumps(status, indent=2)}")
# Create sample image if needed
sample_image = create_sample_image()
# Example 1: Image captioning
print("\n--- Image Captioning ---")
try:
caption = orchestrator.generate_caption(sample_image)
print(f"Generated Caption: {caption}")
except Exception as e:
print(f"Caption generation failed: {e}")
# Example 2: Text-to-image generation
print("\n--- Text-to-Image Generation ---")
try:
image_path = orchestrator.generate_image("A beautiful sunset over mountains with a lake")
print(f"Generated Image: {image_path}")
except Exception as e:
print(f"Image generation failed: {e}")
# Example 3: Task routing
print("\n--- Task Routing ---")
try:
# Route caption task
caption = orchestrator.route_task("caption", sample_image)
print(f"Routed Caption: {caption}")
# Route image generation task
image_path = orchestrator.route_task("generate_image", "A cat sitting on a windowsill")
print(f"Routed Image: {image_path}")
except Exception as e:
print(f"Task routing failed: {e}")
def example_multimodal_processing():
"""Example 2: Multimodal processing"""
print("\n" + "="*60)
print("EXAMPLE 2: MULTIMODAL PROCESSING")
print("="*60)
orchestrator = SimpleMultiModelOrchestrator()
if not orchestrator.initialize_models():
print("Failed to initialize models. Exiting.")
return
sample_image = create_sample_image()
# Process multimodal task
print("Processing multimodal task...")
try:
results = orchestrator.process_multimodal_task(
image_path=sample_image,
text_prompt="A serene landscape with mountains and a flowing river"
)
print("Multimodal Results:")
for key, value in results.items():
print(f" {key}: {value}")
except Exception as e:
print(f"Multimodal processing failed: {e}")
async def example_async_processing():
"""Example 3: Async processing for better performance"""
print("\n" + "="*60)
print("EXAMPLE 3: ASYNC PROCESSING")
print("="*60)
orchestrator = AsyncMultiModelOrchestrator()
if not orchestrator.initialize_models():
print("Failed to initialize models. Exiting.")
return
sample_image = create_sample_image()
# Async multimodal processing
print("Processing async multimodal task...")
try:
results = await orchestrator.process_multimodal_async(
image_path=sample_image,
text_prompt="A futuristic cityscape at night with flying cars"
)
print("Async Multimodal Results:")
for key, value in results.items():
print(f" {key}: {value}")
except Exception as e:
print(f"Async multimodal processing failed: {e}")
def example_batch_processing():
"""Example 4: Batch processing multiple tasks"""
print("\n" + "="*60)
print("EXAMPLE 4: BATCH PROCESSING")
print("="*60)
orchestrator = SimpleMultiModelOrchestrator()
if not orchestrator.initialize_models():
print("Failed to initialize models. Exiting.")
return
sample_image = create_sample_image()
# Define batch tasks
caption_tasks = [sample_image] * 3 # Generate 3 captions
image_tasks = [
"A majestic eagle soaring over mountains",
"A cozy coffee shop on a rainy day",
"A vibrant garden with colorful flowers"
]
print("Processing batch tasks...")
# Process caption tasks
print("\n--- Batch Caption Generation ---")
for i, image_path in enumerate(caption_tasks):
try:
caption = orchestrator.generate_caption(image_path)
print(f"Caption {i+1}: {caption}")
except Exception as e:
print(f"Caption {i+1} failed: {e}")
# Process image generation tasks
print("\n--- Batch Image Generation ---")
for i, prompt in enumerate(image_tasks):
try:
image_path = orchestrator.generate_image(prompt)
print(f"Image {i+1}: {image_path}")
except Exception as e:
print(f"Image {i+1} failed: {e}")
def example_error_handling():
"""Example 5: Error handling and recovery"""
print("\n" + "="*60)
print("EXAMPLE 5: ERROR HANDLING")
print("="*60)
orchestrator = SimpleMultiModelOrchestrator()
if not orchestrator.initialize_models():
print("Failed to initialize models. Exiting.")
return
# Test with invalid inputs
print("Testing error handling...")
# Invalid image path
try:
caption = orchestrator.generate_caption("nonexistent_image.jpg")
print(f"Caption: {caption}")
except Exception as e:
print(f"Expected error for invalid image: {e}")
# Empty text prompt
try:
image_path = orchestrator.generate_image("")
print(f"Image: {image_path}")
except Exception as e:
print(f"Expected error for empty prompt: {e}")
# Invalid task type
try:
result = orchestrator.route_task("invalid_task", "test")
print(f"Result: {result}")
except Exception as e:
print(f"Expected error for invalid task: {e}")
def example_task_history():
"""Example 6: Task history and monitoring"""
print("\n" + "="*60)
print("EXAMPLE 6: TASK HISTORY")
print("="*60)
orchestrator = SimpleMultiModelOrchestrator()
if not orchestrator.initialize_models():
print("Failed to initialize models. Exiting.")
return
sample_image = create_sample_image()
# Perform some tasks
print("Performing tasks to build history...")
try:
# Task 1
caption1 = orchestrator.generate_caption(sample_image)
print(f"Task 1 - Caption: {caption1}")
# Task 2
image1 = orchestrator.generate_image("A peaceful forest scene")
print(f"Task 2 - Image: {image1}")
# Task 3
caption2 = orchestrator.generate_caption(sample_image)
print(f"Task 3 - Caption: {caption2}")
except Exception as e:
print(f"Task execution failed: {e}")
# Display task history
print("\n--- Task History ---")
history = orchestrator.get_task_history()
for i, task in enumerate(history):
print(f"\nTask {i+1}:")
print(f" Type: {task['task_type']}")
print(f" Input: {task['input_data']}")
print(f" Output: {task['output']}")
print(f" Processing Time: {task['processing_time']:.2f}s")
print(f" Success: {task.get('error') is None}")
if task.get('error'):
print(f" Error: {task['error']}")
# Save task history
orchestrator.save_task_history("example_task_history.json")
print(f"\nTask history saved to example_task_history.json")
def example_custom_configuration():
"""Example 7: Custom configuration and parameters"""
print("\n" + "="*60)
print("EXAMPLE 7: CUSTOM CONFIGURATION")
print("="*60)
orchestrator = SimpleMultiModelOrchestrator()
if not orchestrator.initialize_models():
print("Failed to initialize models. Exiting.")
return
sample_image = create_sample_image()
# Test different generation parameters
print("Testing different generation parameters...")
# Test with different image generation parameters
try:
# Generate image with custom output path
custom_path = "custom_generated_image.png"
image_path = orchestrator.generate_image(
"A magical castle in the clouds",
output_path=custom_path
)
print(f"Custom path image: {image_path}")
except Exception as e:
print(f"Custom configuration failed: {e}")
def main():
"""Run all examples"""
print("Multi-Model Orchestrator Examples")
print("This script demonstrates various features of the orchestrator.")
print("Note: Some operations may take time and require significant memory.")
try:
# Run examples
example_basic_usage()
example_multimodal_processing()
asyncio.run(example_async_processing())
example_batch_processing()
example_error_handling()
example_task_history()
example_custom_configuration()
print("\n" + "="*60)
print("ALL EXAMPLES COMPLETED SUCCESSFULLY!")
print("="*60)
print("\nGenerated files:")
if Path("sample_image.jpg").exists():
print(" - sample_image.jpg (test image)")
if Path("generated_image_*.png").exists():
print(" - generated_image_*.png (generated images)")
if Path("example_task_history.json").exists():
print(" - example_task_history.json (task history)")
print("\nNext steps:")
print("1. Check the generated images and task history")
print("2. Experiment with different prompts and parameters")
print("3. Integrate the orchestrator into your own applications")
print("4. Add more child models to the system")
except Exception as e:
print(f"\nError during execution: {e}")
print("This might be due to:")
print("- Insufficient memory (try reducing batch sizes)")
print("- Missing dependencies (check multi_model_requirements.txt)")
print("- GPU not available (will use CPU instead)")
print("- Network issues (models need to be downloaded)")
if __name__ == "__main__":
main() |