File size: 7,240 Bytes
b4740c6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 |
#!/usr/bin/env python3
"""
Script to upload Multi-Model Orchestrator to Hugging Face Hub
"""
import os
import shutil
from pathlib import Path
from huggingface_hub import HfApi, create_repo, upload_folder
import subprocess
def build_package():
"""Build the Python package"""
print("🔨 Building package...")
# Clean previous builds
if os.path.exists("build"):
shutil.rmtree("build")
if os.path.exists("dist"):
shutil.rmtree("dist")
if os.path.exists("*.egg-info"):
for egg_info in Path(".").glob("*.egg-info"):
shutil.rmtree(egg_info)
# Build package
subprocess.run([sys.executable, "setup.py", "sdist", "bdist_wheel"], check=True)
print("✅ Package built successfully!")
def upload_to_huggingface():
"""Upload the package to Hugging Face Hub"""
print("🚀 Uploading to Hugging Face Hub...")
# Initialize Hugging Face API
api = HfApi()
# Repository name
repo_name = "kunaliitkgp09/multi-model-orchestrator"
try:
# Create repository if it doesn't exist
create_repo(repo_name, exist_ok=True)
print(f"✅ Repository {repo_name} ready")
# Upload all files
upload_folder(
folder_path=".",
repo_id=repo_name,
ignore_patterns=[
"*.pyc",
"__pycache__",
"*.egg-info",
"build",
"dist",
".git",
".gitignore",
"multi_model_env",
"*.png",
"*.jpg",
"*.jpeg",
"demo_task_history.json",
"task_history.json",
"generated_image_*"
]
)
print(f"🎉 Successfully uploaded to https://huggingface.co/{repo_name}")
except Exception as e:
print(f"❌ Error uploading to Hugging Face: {e}")
return False
return True
def create_model_card():
"""Create a model card for the repository"""
model_card_content = """---
language:
- en
license: mit
library_name: multi-model-orchestrator
tags:
- ai
- machine-learning
- multimodal
- image-captioning
- text-to-image
- orchestration
- transformers
- pytorch
---
# Multi-Model Orchestrator
A sophisticated multi-model orchestration system that manages parent-child LLM relationships, specifically integrating CLIP-GPT2 image captioner and Flickr30k text-to-image models.
## 🚀 Features
### **Parent Orchestrator**
- **Intelligent Task Routing**: Automatically routes tasks to appropriate child models
- **Model Management**: Handles loading, caching, and lifecycle of child models
- **Error Handling**: Robust error handling and recovery mechanisms
- **Task History**: Comprehensive logging and monitoring of all operations
- **Async Support**: Both synchronous and asynchronous processing modes
### **Child Models**
- **CLIP-GPT2 Image Captioner**: Converts images to descriptive text captions
- **Flickr30k Text-to-Image**: Generates images from text descriptions
- **Extensible Architecture**: Easy to add new child models
## 📦 Installation
```bash
pip install git+https://huggingface.co/kunaliitkgp09/multi-model-orchestrator
```
## 🎯 Quick Start
```python
from multi_model_orchestrator import SimpleMultiModelOrchestrator
# Initialize orchestrator
orchestrator = SimpleMultiModelOrchestrator()
orchestrator.initialize_models()
# Generate caption from image
caption = orchestrator.generate_caption("sample_image.jpg")
print(f"Caption: {caption}")
# Generate image from text
image_path = orchestrator.generate_image("A beautiful sunset over mountains")
print(f"Generated image: {image_path}")
```
## 🔗 Model Integration
### **Child Model 1: CLIP-GPT2 Image Captioner**
- **Model**: `kunaliitkgp09/clip-gpt2-image-captioner`
- **Task**: Image-to-text captioning
- **Performance**: ~40% accuracy on test samples
### **Child Model 2: Flickr30k Text-to-Image**
- **Model**: `kunaliitkgp09/flickr30k-text-to-image`
- **Task**: Text-to-image generation
- **Performance**: Fine-tuned on Flickr30k dataset
## 📊 Usage Examples
### **Multimodal Processing**
```python
# Process both image and text together
results = orchestrator.process_multimodal_task(
image_path="sample_image.jpg",
text_prompt="A serene landscape with mountains"
)
print("Caption:", results["caption"])
print("Generated Image:", results["generated_image"])
```
### **Async Processing**
```python
from multi_model_orchestrator import AsyncMultiModelOrchestrator
import asyncio
async def async_example():
orchestrator = AsyncMultiModelOrchestrator()
orchestrator.initialize_models()
results = await orchestrator.process_multimodal_async(
image_path="sample_image.jpg",
text_prompt="A futuristic cityscape"
)
return results
asyncio.run(async_example())
```
## 🎯 Use Cases
- **Content Creation**: Generate captions and images for social media
- **Research and Development**: Model performance comparison and prototyping
- **Production Systems**: Automated content generation pipelines
- **Educational Applications**: AI model demonstration and learning
## 📈 Performance Metrics
- **Processing Time**: Optimized for real-time applications
- **Memory Usage**: Efficient GPU/CPU memory management
- **Success Rate**: Robust error handling and recovery
- **Extensibility**: Easy integration of new child models
## 🤝 Contributing
Contributions are welcome! Please feel free to submit pull requests or open issues for:
- New child model integrations
- Performance improvements
- Bug fixes
- Documentation enhancements
## 📄 License
This project is licensed under the MIT License.
## 🙏 Acknowledgments
- **CLIP-GPT2 Model**: [kunaliitkgp09/clip-gpt2-image-captioner](https://huggingface.co/kunaliitkgp09/clip-gpt2-image-captioner)
- **Stable Diffusion Model**: [kunaliitkgp09/flickr30k-text-to-image](https://huggingface.co/kunaliitkgp09/flickr30k-text-to-image)
- **Hugging Face**: For providing the model hosting platform
- **PyTorch**: For the deep learning framework
- **Transformers**: For the model loading and processing utilities
---
**Happy Orchestrating! 🚀**
"""
with open("README.md", "w") as f:
f.write(model_card_content)
print("✅ Model card created!")
def main():
"""Main upload process"""
print("🚀 Starting upload process to Hugging Face Hub...")
# Create model card
create_model_card()
# Build package
try:
build_package()
except Exception as e:
print(f"❌ Error building package: {e}")
return
# Upload to Hugging Face
success = upload_to_huggingface()
if success:
print("\n🎉 Upload completed successfully!")
print("🔗 View your repository at: https://huggingface.co/kunaliitkgp09/multi-model-orchestrator")
print("\n📦 Install with:")
print("pip install git+https://huggingface.co/kunaliitkgp09/multi-model-orchestrator")
else:
print("\n❌ Upload failed. Please check the error messages above.")
if __name__ == "__main__":
import sys
main() |