kunaliitkgp09 commited on
Commit
9b78ff6
·
verified ·
1 Parent(s): b7711a3

Add comprehensive README

Browse files
Files changed (1) hide show
  1. README.md +88 -0
README.md ADDED
@@ -0,0 +1,88 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ tags:
5
+ - pytorch
6
+ - unified-model
7
+ - multi-modal
8
+ - image-captioning
9
+ - text-to-image
10
+ - reasoning
11
+ license: mit
12
+ ---
13
+
14
+ # Working Unified Multi-Model (.pt)
15
+
16
+ A complete unified PyTorch model that delegates to specialized child models for different AI tasks.
17
+
18
+ ## 🚀 Features
19
+
20
+ - **Single .pt file** containing all capabilities
21
+ - **True model delegation** to specialized child models
22
+ - **Unified reasoning** and routing
23
+ - **Production-ready** deployment
24
+
25
+ ## 📦 Model Components
26
+
27
+ - **Base Reasoning Model**: `distilgpt2` (~300MB)
28
+ - **Image Captioning Model**: `BLIP` (~990MB)
29
+ - **Text-to-Image Model**: `Stable Diffusion v1.5`
30
+ - **Task Classifiers**: Routing and confidence scoring
31
+ - **Embeddings**: Task type embeddings
32
+
33
+ ## 🎯 Capabilities
34
+
35
+ 1. **Text Processing**: Q&A, summarization, text generation
36
+ 2. **Image Captioning**: Describe images using BLIP model
37
+ 3. **Text-to-Image**: Generate images using Stable Diffusion
38
+ 4. **Reasoning**: Step-by-step reasoning tasks
39
+
40
+ ## 📊 Model Size
41
+
42
+ - **File Size**: 1.26 GB
43
+ - **Total Parameters**: ~1.2B parameters
44
+ - **Architecture**: Unified PyTorch model
45
+
46
+ ## 🔧 Usage
47
+
48
+ ```python
49
+ import torch
50
+ from working_complete_unified_model_pt import WorkingUnifiedMultiModelPT
51
+
52
+ # Load the model
53
+ model = WorkingUnifiedMultiModelPT.load_model("working_unified_multi_model.pt")
54
+
55
+ # Process different types of requests
56
+ result = model.process("What is machine learning?")
57
+ print(f"Task: {result['task_type']}")
58
+ print(f"Output: {result['output']}")
59
+
60
+ result = model.process("Generate an image of a peaceful forest")
61
+ print(f"Task: {result['task_type']}")
62
+ print(f"Output: {result['output']}")
63
+ ```
64
+
65
+ ## 🏗️ Architecture
66
+
67
+ The model uses a unified architecture where:
68
+ 1. **Parent LLM** (distilgpt2) analyzes requests and routes to appropriate child models
69
+ 2. **Child Models** handle specialized tasks:
70
+ - BLIP for image captioning
71
+ - Stable Diffusion for text-to-image generation
72
+ - Base model for text processing and reasoning
73
+
74
+ ## 🎉 Key Innovations
75
+
76
+ - **Single .pt file** for all capabilities
77
+ - **True delegation** to specialized models
78
+ - **Unified interface** like DeepSeek
79
+ - **Portable** across environments
80
+ - **Production-ready** deployment
81
+
82
+ ## 📄 License
83
+
84
+ MIT License
85
+
86
+ ## 🤝 Contributing
87
+
88
+ This model demonstrates the future of AI - unified, portable, and intelligent models that can handle multiple tasks through intelligent delegation.