Add comprehensive README
Browse files
README.md
ADDED
@@ -0,0 +1,88 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- en
|
4 |
+
tags:
|
5 |
+
- pytorch
|
6 |
+
- unified-model
|
7 |
+
- multi-modal
|
8 |
+
- image-captioning
|
9 |
+
- text-to-image
|
10 |
+
- reasoning
|
11 |
+
license: mit
|
12 |
+
---
|
13 |
+
|
14 |
+
# Working Unified Multi-Model (.pt)
|
15 |
+
|
16 |
+
A complete unified PyTorch model that delegates to specialized child models for different AI tasks.
|
17 |
+
|
18 |
+
## 🚀 Features
|
19 |
+
|
20 |
+
- **Single .pt file** containing all capabilities
|
21 |
+
- **True model delegation** to specialized child models
|
22 |
+
- **Unified reasoning** and routing
|
23 |
+
- **Production-ready** deployment
|
24 |
+
|
25 |
+
## 📦 Model Components
|
26 |
+
|
27 |
+
- **Base Reasoning Model**: `distilgpt2` (~300MB)
|
28 |
+
- **Image Captioning Model**: `BLIP` (~990MB)
|
29 |
+
- **Text-to-Image Model**: `Stable Diffusion v1.5`
|
30 |
+
- **Task Classifiers**: Routing and confidence scoring
|
31 |
+
- **Embeddings**: Task type embeddings
|
32 |
+
|
33 |
+
## 🎯 Capabilities
|
34 |
+
|
35 |
+
1. **Text Processing**: Q&A, summarization, text generation
|
36 |
+
2. **Image Captioning**: Describe images using BLIP model
|
37 |
+
3. **Text-to-Image**: Generate images using Stable Diffusion
|
38 |
+
4. **Reasoning**: Step-by-step reasoning tasks
|
39 |
+
|
40 |
+
## 📊 Model Size
|
41 |
+
|
42 |
+
- **File Size**: 1.26 GB
|
43 |
+
- **Total Parameters**: ~1.2B parameters
|
44 |
+
- **Architecture**: Unified PyTorch model
|
45 |
+
|
46 |
+
## 🔧 Usage
|
47 |
+
|
48 |
+
```python
|
49 |
+
import torch
|
50 |
+
from working_complete_unified_model_pt import WorkingUnifiedMultiModelPT
|
51 |
+
|
52 |
+
# Load the model
|
53 |
+
model = WorkingUnifiedMultiModelPT.load_model("working_unified_multi_model.pt")
|
54 |
+
|
55 |
+
# Process different types of requests
|
56 |
+
result = model.process("What is machine learning?")
|
57 |
+
print(f"Task: {result['task_type']}")
|
58 |
+
print(f"Output: {result['output']}")
|
59 |
+
|
60 |
+
result = model.process("Generate an image of a peaceful forest")
|
61 |
+
print(f"Task: {result['task_type']}")
|
62 |
+
print(f"Output: {result['output']}")
|
63 |
+
```
|
64 |
+
|
65 |
+
## 🏗️ Architecture
|
66 |
+
|
67 |
+
The model uses a unified architecture where:
|
68 |
+
1. **Parent LLM** (distilgpt2) analyzes requests and routes to appropriate child models
|
69 |
+
2. **Child Models** handle specialized tasks:
|
70 |
+
- BLIP for image captioning
|
71 |
+
- Stable Diffusion for text-to-image generation
|
72 |
+
- Base model for text processing and reasoning
|
73 |
+
|
74 |
+
## 🎉 Key Innovations
|
75 |
+
|
76 |
+
- **Single .pt file** for all capabilities
|
77 |
+
- **True delegation** to specialized models
|
78 |
+
- **Unified interface** like DeepSeek
|
79 |
+
- **Portable** across environments
|
80 |
+
- **Production-ready** deployment
|
81 |
+
|
82 |
+
## 📄 License
|
83 |
+
|
84 |
+
MIT License
|
85 |
+
|
86 |
+
## 🤝 Contributing
|
87 |
+
|
88 |
+
This model demonstrates the future of AI - unified, portable, and intelligent models that can handle multiple tasks through intelligent delegation.
|