kursatkomurcu commited on
Commit
6c873bd
·
verified ·
1 Parent(s): 91a7e9e

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +33 -18
README.md CHANGED
@@ -111,27 +111,29 @@ It allows **triplet data creation** even when only partial information (e.g., ju
111
  ## ⚡ Quick Example: Generate an Image from a Single Caption
112
 
113
  ```python
 
114
  import torch
115
  from diffusers import StableDiffusionPipeline, UNet2DConditionModel, AutoencoderKL, DPMSolverMultistepScheduler
116
  from transformers import CLIPTextModel, CLIPTokenizer
117
  from safetensors.torch import load_file as safe_load
 
118
  from PIL import Image
119
- import os
120
 
121
- # Load fine-tuned UNet weights
122
- checkpoint_path = "stable_diffusion/model-001.safetensors"
 
123
 
124
- # Initialize UNet and load weights
125
  base_unet = UNet2DConditionModel.from_pretrained(
126
  "stabilityai/stable-diffusion-2-1-base",
127
  subfolder="unet",
128
  torch_dtype=torch.float16
129
  )
 
 
130
  state_dict = safe_load(checkpoint_path)
131
  base_unet.load_state_dict(state_dict)
132
  unet = base_unet
133
 
134
- # Load VAE, text encoder, tokenizer, scheduler
135
  vae = AutoencoderKL.from_pretrained(
136
  "stabilityai/stable-diffusion-2-1-base",
137
  subfolder="vae",
@@ -151,31 +153,44 @@ scheduler = DPMSolverMultistepScheduler.from_pretrained(
151
  subfolder="scheduler"
152
  )
153
 
154
- # Build the pipeline
 
 
 
155
  pipe = StableDiffusionPipeline(
156
  unet=unet,
157
  vae=vae,
158
  text_encoder=text_encoder,
159
  tokenizer=tokenizer,
160
  scheduler=scheduler,
161
- safety_checker=None,
162
- feature_extractor=None
163
- ).to("cuda")
 
 
164
 
165
- # Single caption prompt
166
- prompt = "A coastal city with large harbors and residential areas visible from space"
 
 
167
 
168
- # Generate the image
169
- result = pipe(prompt, num_inference_steps=50)
170
  image = result.images[0]
171
 
172
- # Save the image
173
- output_dir = "./generated_images"
174
  os.makedirs(output_dir, exist_ok=True)
175
- output_path = os.path.join(output_dir, "sample_generated_image.png")
176
  image.save(output_path)
177
-
178
- print(f"✅ Image generated and saved at {output_path}")
 
 
 
 
 
 
 
 
 
179
 
180
  ```
181
 
 
111
  ## ⚡ Quick Example: Generate an Image from a Single Caption
112
 
113
  ```python
114
+ import os
115
  import torch
116
  from diffusers import StableDiffusionPipeline, UNet2DConditionModel, AutoencoderKL, DPMSolverMultistepScheduler
117
  from transformers import CLIPTextModel, CLIPTokenizer
118
  from safetensors.torch import load_file as safe_load
119
+ import matplotlib.pyplot as plt
120
  from PIL import Image
 
121
 
122
+ # Checkpoint fine-tuned UNet
123
+ checkpoint_dir = "/your/path"
124
+ checkpoint_path = os.path.join(checkpoint_dir, "model.safetensors")
125
 
 
126
  base_unet = UNet2DConditionModel.from_pretrained(
127
  "stabilityai/stable-diffusion-2-1-base",
128
  subfolder="unet",
129
  torch_dtype=torch.float16
130
  )
131
+
132
+ # Fine-tuned weights
133
  state_dict = safe_load(checkpoint_path)
134
  base_unet.load_state_dict(state_dict)
135
  unet = base_unet
136
 
 
137
  vae = AutoencoderKL.from_pretrained(
138
  "stabilityai/stable-diffusion-2-1-base",
139
  subfolder="vae",
 
153
  subfolder="scheduler"
154
  )
155
 
156
+ safety_checker = None
157
+ feature_extractor = None
158
+
159
+ # Stable Diffusion pipeline
160
  pipe = StableDiffusionPipeline(
161
  unet=unet,
162
  vae=vae,
163
  text_encoder=text_encoder,
164
  tokenizer=tokenizer,
165
  scheduler=scheduler,
166
+ safety_checker=safety_checker,
167
+ feature_extractor=feature_extractor
168
+ )
169
+
170
+ pipe = pipe.to("cuda")
171
 
172
+ prompt = "A coastal city with large harbors and residential areas"
173
+
174
+ with torch.cuda.amp.autocast():
175
+ result = pipe(prompt, num_inference_steps=100, guidance_scale=7.5)
176
 
 
 
177
  image = result.images[0]
178
 
179
+ output_dir = "/your/save/path"
 
180
  os.makedirs(output_dir, exist_ok=True)
181
+ output_path = os.path.join(output_dir, "single_prompt_generated.png")
182
  image.save(output_path)
183
+ print(f"✅ The image generated and saved: {output_path}")
184
+
185
+ # 8. Matplotlib ile görselleştir
186
+ if os.path.exists(output_path):
187
+ img = Image.open(output_path)
188
+ plt.figure(figsize=(8, 8))
189
+ plt.imshow(img)
190
+ plt.axis("off")
191
+ plt.show()
192
+ else:
193
+ print(f"The file could not find: {output_path}")
194
 
195
  ```
196