File size: 10,967 Bytes
492f6af |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 |
import os
import torch
import torch.nn as nn
from typing import Optional
from dataclasses import dataclass
from transformers.utils import ModelOutput
from transformers.modeling_utils import PreTrainedModel
from transformers.configuration_utils import PretrainedConfig
from .build import load_sd_model, load_Florence2_model
from .vlv_utils import initiate_time_steps, normalize
class SDConfig(PretrainedConfig):
"""Configuration class for SDModel."""
model_type = "sd"
def __init__(self, **kwargs):
super().__init__(**kwargs)
class MLP(nn.Module):
def __init__(self, input_dim, output_dim):
super().__init__()
self.layers = nn.Sequential(
nn.Linear(input_dim, output_dim),
nn.GELU(),
nn.Linear(output_dim, output_dim),
)
def forward(self, x):
return self.layers(x)
@dataclass
class SDOutput(ModelOutput):
loss: Optional[torch.FloatTensor] = None
class SDModel(PreTrainedModel):
config_class = SDConfig
def __init__(
self,
config=None,
training_args = None,
):
if config is None:
config = SDConfig()
super().__init__(config)
self.training_args = training_args
if self.training_args.fp32:
self._dtype = torch.float32
else:
self._dtype = torch.bfloat16
self._device = torch.device(self.training_args.device if hasattr(self.training_args, 'device') else "cuda" if torch.cuda.is_available() else "cpu")
self.vae, self.tokenizer, self.text_encoder, self.unet, self.scheduler = load_sd_model(training_args)
torch.cuda.empty_cache()
self.unet.eval()
self.text_encoder.eval()
self.model, self.processor = load_Florence2_model(training_args)
self.unet = self.unet.to(self._dtype).to(device=self._device)
self.text_encoder = self.text_encoder.to(self._dtype).to_empty(device=self._device)
self.model = self.model.to(self._dtype).to_empty(device=self._device)
self.vae = self.vae.to(torch.float32).to_empty(device=self._device)
self.batch_size = self.training_args.batch_size
hidden_dim = 1024
self.language_proj = nn.Sequential(
nn.Linear(1024, hidden_dim, dtype=self._dtype),
nn.GELU(),
nn.Linear(hidden_dim, 1024, dtype=self._dtype)
).to_empty(device=self._device)
for param in self.language_proj.parameters():
param.requires_grad = True
self.num_queries = self.training_args.learnable_token_length
self.query_embed = nn.Parameter(torch.randn(1, self.num_queries, 1024, dtype=self._dtype))
self.query_embed.requires_grad = True
self.unet.enable_gradient_checkpointing()
def _unet_pred_noise(self, x_start, t, noise, context):
t = t.to(dtype=torch.long)
dtype = self.unet.dtype
x_start = x_start.to(dtype)
noise = noise.to(dtype)
context = context.to(dtype)
nt = t.shape[0]
noised_latent = self.scheduler.add_noise(x_start, noise, t)
pred_noise = self.unet(
noised_latent,
t,
encoder_hidden_states=context.expand(nt, -1, -1)
).sample
return pred_noise
def generate_images(self, images):
batch_size = self.training_args.eval_batch_size
prompt = ["<MORE_DETAILED_CAPTION>"] * batch_size
inputs = self.processor(text=prompt, images=images, return_tensors="pt").to(self._device).to(self._dtype)
if inputs["input_ids"] is not None:
inputs_embeds = self.model.language_model.get_input_embeddings()(inputs["input_ids"]).to(self._dtype)
if inputs["pixel_values"] is not None:
image_features = self.model._encode_image(inputs["pixel_values"]).to(self._dtype)
inputs_embeds, attention_mask = self.model._merge_input_ids_with_image_features(image_features, inputs_embeds)
if inputs_embeds is not None:
attention_mask = attention_mask.to(inputs_embeds.dtype)
encoder_outputs = self.model.language_model.model.encoder(
inputs_embeds=inputs_embeds,
attention_mask=attention_mask,
output_hidden_states=True,
return_dict=True
)
decoder_input_embeds = self.query_embed.expand(batch_size, -1, -1)
decoder_attention_mask = torch.ones(
(batch_size, self.num_queries),
dtype=self._dtype,
device=self._device
)
encoder_hidden_states = encoder_outputs.last_hidden_state.to(self._dtype)
decoder_input_embeds = decoder_input_embeds.to(self._dtype)
attention_mask = attention_mask.to(self._dtype)
decoder_outputs = self.model.language_model.model.decoder(
inputs_embeds=decoder_input_embeds,
attention_mask=decoder_attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=attention_mask,
output_hidden_states=True,
return_dict=True
)
last_decoder_hidden_state = decoder_outputs.last_hidden_state
conditional_context = self.language_proj(last_decoder_hidden_state)
un_token = self.tokenizer("", padding="max_length", truncation=True,max_length=77, return_tensors="pt").input_ids.to(self._device)
un_context_embeddings = self.text_encoder(un_token).last_hidden_state
un_context_embeddings = un_context_embeddings.expand(batch_size, -1, -1)
if self.training_args.use_text_encoder:
context_embeddings = self.text_encoder(
inputs_embeds=conditional_context.to(self._dtype)
).last_hidden_state
latent_shape = (batch_size, 4, self.training_args.image_size // 8, self.training_args.image_size // 8)
latents = torch.randn(latent_shape, device=self._device, dtype=self._dtype)
scheduler = self.scheduler
scheduler.set_timesteps(self.training_args.num_inference_steps)
with torch.no_grad():
for t in scheduler.timesteps:
latent_model_input = torch.cat([latents, latents], dim=0)
latent_model_input = scheduler.scale_model_input(latent_model_input, t)
combined_embeddings = torch.cat([un_context_embeddings, context_embeddings], dim=0).to(self._dtype)
noise_pred = self.unet(
latent_model_input, t, encoder_hidden_states=combined_embeddings
)[0]
noise_pred_uncond, noise_pred_cond = noise_pred.chunk(2, dim=0)
noise_pred = noise_pred_uncond + self.training_args.guidance_scale * (noise_pred_cond - noise_pred_uncond)
latents = scheduler.step(noise_pred, t, latents)[0]
scaled_latents = latents / 0.18215
with torch.no_grad():
decoded_latents = self.vae.decode(scaled_latents.to(torch.float32))[0]
return decoded_latents
def get_conditional_context(self, images, batch_size=None):
if batch_size is None:
batch_size = self.batch_size
prompt = ["<MORE_DETAILED_CAPTION>"] * batch_size
inputs = self.processor(text=prompt, images=images, return_tensors="pt").to(self._device).to(self._dtype)
if inputs["input_ids"] is not None:
inputs_embeds = self.model.language_model.get_input_embeddings()(inputs["input_ids"]).to(self._dtype)
if inputs["pixel_values"] is not None:
image_features = self.model._encode_image(inputs["pixel_values"]).to(self._dtype)
inputs_embeds, attention_mask = self.model._merge_input_ids_with_image_features(image_features, inputs_embeds)
if inputs_embeds is not None:
attention_mask = attention_mask.to(inputs_embeds.dtype)
encoder_outputs = self.model.language_model.model.encoder(
inputs_embeds=inputs_embeds,
attention_mask=attention_mask,
output_hidden_states=True,
return_dict=True
)
decoder_input_embeds = self.query_embed.expand(batch_size, -1, -1)
decoder_attention_mask = torch.ones(
(batch_size, self.num_queries),
dtype=self._dtype,
device=self._device
)
encoder_hidden_states = encoder_outputs.last_hidden_state.to(self._dtype)
decoder_input_embeds = decoder_input_embeds.to(self._dtype)
attention_mask = attention_mask.to(self._dtype)
decoder_outputs = self.model.language_model.model.decoder(
inputs_embeds=decoder_input_embeds,
attention_mask=decoder_attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=attention_mask,
output_hidden_states=True,
return_dict=True
)
last_decoder_hidden_state = decoder_outputs.last_hidden_state
return last_decoder_hidden_state
def forward(
self,
image=None,
filename=None,
**kwargs,
) -> SDOutput:
images_for_language_model = image
normalize_images = normalize(image, rescale=True)
x0=self.vae.encode(normalize_images.to(torch.float32)).latent_dist.sample()
latent = x0 * 0.18215
total_timestep = self.scheduler.num_train_timesteps
timesteps = initiate_time_steps(0, total_timestep, self.batch_size, self.training_args).long()
timesteps = timesteps.to(self._device)
c, h, w = latent.shape[1:]
if not self.training_args.use_same_noise_among_timesteps:
noise = torch.randn((self.batch_size, c, h, w), device=self._device, dtype=self._dtype)
else:
noise = torch.randn((1, c, h, w), device=self._device, dtype=self._dtype)
noise = noise.repeat(self.batch_size, 1, 1, 1)
conditional_context = self.get_conditional_context(images_for_language_model)
conditional_context = self.language_proj(conditional_context)
if self.training_args.use_text_encoder:
text_encoder_output = self.text_encoder(input_ids=None, inputs_embeds=conditional_context.to(self._dtype))
pred_noise = self._unet_pred_noise(x_start=latent, t=timesteps, noise=noise, context=text_encoder_output.last_hidden_state.to(self._dtype)).to(self._dtype)
else:
pred_noise = self._unet_pred_noise(x_start=latent, t=timesteps, noise=noise, context=conditional_context.to(self._dtype)).to(self._dtype)
if self.training_args.loss == "l1":
loss = torch.nn.functional.l1_loss(pred_noise, noise)
else:
loss = torch.nn.functional.mse_loss(pred_noise, noise)
return SDOutput(loss=loss) |