File size: 10,967 Bytes
492f6af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
import os
import torch
import torch.nn as nn
from typing import Optional
from dataclasses import dataclass
from transformers.utils import ModelOutput
from transformers.modeling_utils import PreTrainedModel
from transformers.configuration_utils import PretrainedConfig
from .build import load_sd_model, load_Florence2_model
from .vlv_utils import initiate_time_steps, normalize


class SDConfig(PretrainedConfig):
    """Configuration class for SDModel."""
    model_type = "sd"
    
    def __init__(self, **kwargs):
        super().__init__(**kwargs)


class MLP(nn.Module):
    def __init__(self, input_dim, output_dim):
        super().__init__()
        self.layers = nn.Sequential(
            nn.Linear(input_dim, output_dim),
            nn.GELU(),
            nn.Linear(output_dim, output_dim),
        )
        
    def forward(self, x):
        return self.layers(x)

@dataclass
class SDOutput(ModelOutput):
    loss: Optional[torch.FloatTensor] = None

class SDModel(PreTrainedModel):
    config_class = SDConfig
    
    def __init__(
        self,
        config=None,
        training_args = None,
    ):
        if config is None:
            config = SDConfig()
        super().__init__(config)
        self.training_args = training_args
        if self.training_args.fp32:
            self._dtype = torch.float32
        else:
            self._dtype = torch.bfloat16
        self._device = torch.device(self.training_args.device if hasattr(self.training_args, 'device') else "cuda" if torch.cuda.is_available() else "cpu")
        
        self.vae, self.tokenizer, self.text_encoder, self.unet, self.scheduler = load_sd_model(training_args)
        torch.cuda.empty_cache()
        self.unet.eval()
        self.text_encoder.eval()
        self.model, self.processor = load_Florence2_model(training_args)

        self.unet = self.unet.to(self._dtype).to(device=self._device)
        self.text_encoder = self.text_encoder.to(self._dtype).to_empty(device=self._device)
        self.model = self.model.to(self._dtype).to_empty(device=self._device)
        self.vae = self.vae.to(torch.float32).to_empty(device=self._device)

        self.batch_size = self.training_args.batch_size 

        hidden_dim = 1024 
        self.language_proj = nn.Sequential(
            nn.Linear(1024, hidden_dim, dtype=self._dtype),
            nn.GELU(),
            nn.Linear(hidden_dim, 1024, dtype=self._dtype)
        ).to_empty(device=self._device)
        for param in self.language_proj.parameters():
            param.requires_grad = True

        self.num_queries = self.training_args.learnable_token_length
        self.query_embed = nn.Parameter(torch.randn(1, self.num_queries, 1024, dtype=self._dtype))
        self.query_embed.requires_grad = True
        
        self.unet.enable_gradient_checkpointing()

    def _unet_pred_noise(self, x_start, t, noise, context):
        t = t.to(dtype=torch.long)
        
        dtype = self.unet.dtype
        x_start = x_start.to(dtype)
        noise = noise.to(dtype)
        context = context.to(dtype)
        
        nt = t.shape[0]
        noised_latent = self.scheduler.add_noise(x_start, noise, t)
        
        pred_noise = self.unet(
            noised_latent, 
            t, 
            encoder_hidden_states=context.expand(nt, -1, -1)
        ).sample

        return pred_noise
    
    def generate_images(self, images):
        batch_size = self.training_args.eval_batch_size
        prompt = ["<MORE_DETAILED_CAPTION>"] * batch_size
        inputs = self.processor(text=prompt, images=images, return_tensors="pt").to(self._device).to(self._dtype)
        
        if inputs["input_ids"] is not None:
            inputs_embeds = self.model.language_model.get_input_embeddings()(inputs["input_ids"]).to(self._dtype)
        if inputs["pixel_values"] is not None:
            image_features = self.model._encode_image(inputs["pixel_values"]).to(self._dtype)
            inputs_embeds, attention_mask = self.model._merge_input_ids_with_image_features(image_features, inputs_embeds)
        if inputs_embeds is not None:
            attention_mask = attention_mask.to(inputs_embeds.dtype)
        encoder_outputs = self.model.language_model.model.encoder(
            inputs_embeds=inputs_embeds,
            attention_mask=attention_mask,
            output_hidden_states=True,
            return_dict=True
        )
        
        decoder_input_embeds = self.query_embed.expand(batch_size, -1, -1)
        decoder_attention_mask = torch.ones(
            (batch_size, self.num_queries), 
            dtype=self._dtype, 
            device=self._device
        )
        
        encoder_hidden_states = encoder_outputs.last_hidden_state.to(self._dtype)
        decoder_input_embeds = decoder_input_embeds.to(self._dtype)
        attention_mask = attention_mask.to(self._dtype)
        
        decoder_outputs = self.model.language_model.model.decoder(
            inputs_embeds=decoder_input_embeds,
            attention_mask=decoder_attention_mask,
            encoder_hidden_states=encoder_hidden_states,
            encoder_attention_mask=attention_mask,
            output_hidden_states=True,
            return_dict=True
        )
        
        last_decoder_hidden_state = decoder_outputs.last_hidden_state
        conditional_context = self.language_proj(last_decoder_hidden_state)

        un_token = self.tokenizer("", padding="max_length", truncation=True,max_length=77, return_tensors="pt").input_ids.to(self._device)
        un_context_embeddings = self.text_encoder(un_token).last_hidden_state
        un_context_embeddings = un_context_embeddings.expand(batch_size, -1, -1)
        if self.training_args.use_text_encoder:
            context_embeddings = self.text_encoder(
                inputs_embeds=conditional_context.to(self._dtype)
            ).last_hidden_state

        latent_shape = (batch_size, 4, self.training_args.image_size // 8, self.training_args.image_size // 8)
        latents = torch.randn(latent_shape, device=self._device, dtype=self._dtype)

        scheduler = self.scheduler
        scheduler.set_timesteps(self.training_args.num_inference_steps)
        with torch.no_grad():
            for t in scheduler.timesteps:
                latent_model_input = torch.cat([latents, latents], dim=0)
                latent_model_input = scheduler.scale_model_input(latent_model_input, t)

                combined_embeddings = torch.cat([un_context_embeddings, context_embeddings], dim=0).to(self._dtype)
                noise_pred = self.unet(
                    latent_model_input, t, encoder_hidden_states=combined_embeddings
                )[0]

                noise_pred_uncond, noise_pred_cond = noise_pred.chunk(2, dim=0)
                noise_pred = noise_pred_uncond + self.training_args.guidance_scale * (noise_pred_cond - noise_pred_uncond)

                latents = scheduler.step(noise_pred, t, latents)[0]

        scaled_latents = latents / 0.18215
        with torch.no_grad():
            decoded_latents = self.vae.decode(scaled_latents.to(torch.float32))[0]

        return decoded_latents
    
    def get_conditional_context(self, images, batch_size=None):
        if batch_size is None:
            batch_size = self.batch_size
        prompt = ["<MORE_DETAILED_CAPTION>"] * batch_size
        inputs = self.processor(text=prompt, images=images, return_tensors="pt").to(self._device).to(self._dtype)
        
        if inputs["input_ids"] is not None:
            inputs_embeds = self.model.language_model.get_input_embeddings()(inputs["input_ids"]).to(self._dtype)
        if inputs["pixel_values"] is not None:
            image_features = self.model._encode_image(inputs["pixel_values"]).to(self._dtype)
            inputs_embeds, attention_mask = self.model._merge_input_ids_with_image_features(image_features, inputs_embeds)
        if inputs_embeds is not None:
            attention_mask = attention_mask.to(inputs_embeds.dtype)
        encoder_outputs = self.model.language_model.model.encoder(
            inputs_embeds=inputs_embeds,
            attention_mask=attention_mask,
            output_hidden_states=True,
            return_dict=True
        )
        
        decoder_input_embeds = self.query_embed.expand(batch_size, -1, -1)
        decoder_attention_mask = torch.ones(
            (batch_size, self.num_queries), 
            dtype=self._dtype, 
            device=self._device
        )
        
        encoder_hidden_states = encoder_outputs.last_hidden_state.to(self._dtype)
        decoder_input_embeds = decoder_input_embeds.to(self._dtype)
        attention_mask = attention_mask.to(self._dtype)
        
        decoder_outputs = self.model.language_model.model.decoder(
            inputs_embeds=decoder_input_embeds,
            attention_mask=decoder_attention_mask,
            encoder_hidden_states=encoder_hidden_states,
            encoder_attention_mask=attention_mask,
            output_hidden_states=True,
            return_dict=True
        )
        
        last_decoder_hidden_state = decoder_outputs.last_hidden_state
        return last_decoder_hidden_state
    
    def forward(
        self,
        image=None,
        filename=None,
        **kwargs,
    ) -> SDOutput:
        images_for_language_model = image
        normalize_images = normalize(image, rescale=True)
        x0=self.vae.encode(normalize_images.to(torch.float32)).latent_dist.sample()
        latent = x0 * 0.18215
        
        total_timestep = self.scheduler.num_train_timesteps

        timesteps = initiate_time_steps(0, total_timestep, self.batch_size, self.training_args).long()
        timesteps = timesteps.to(self._device)
        c, h, w = latent.shape[1:]
        if not self.training_args.use_same_noise_among_timesteps:
            noise = torch.randn((self.batch_size, c, h, w), device=self._device, dtype=self._dtype)
        else:
            noise = torch.randn((1, c, h, w), device=self._device, dtype=self._dtype)
            noise = noise.repeat(self.batch_size, 1, 1, 1)

        conditional_context = self.get_conditional_context(images_for_language_model)
        conditional_context = self.language_proj(conditional_context)

        if self.training_args.use_text_encoder:
            text_encoder_output = self.text_encoder(input_ids=None, inputs_embeds=conditional_context.to(self._dtype))
            pred_noise = self._unet_pred_noise(x_start=latent, t=timesteps, noise=noise, context=text_encoder_output.last_hidden_state.to(self._dtype)).to(self._dtype)
        else:
            pred_noise = self._unet_pred_noise(x_start=latent, t=timesteps, noise=noise, context=conditional_context.to(self._dtype)).to(self._dtype)
        
        if self.training_args.loss == "l1":
            loss = torch.nn.functional.l1_loss(pred_noise, noise)
        else:
            loss = torch.nn.functional.mse_loss(pred_noise, noise)
            
        return SDOutput(loss=loss)