laxsvips commited on
Commit
93c7fe3
·
1 Parent(s): 15b197c

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +48 -6
README.md CHANGED
@@ -28,23 +28,53 @@ It achieves the following results on the evaluation set:
28
 
29
  ## Model description
30
 
31
- More information needed
 
 
32
 
33
  ## Intended uses & limitations
34
 
35
- More information needed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
36
 
37
  ## Training and evaluation data
38
 
39
- More information needed
 
 
40
 
41
  ## Training procedure
42
 
 
 
43
  ### Training hyperparameters
44
 
45
  The following hyperparameters were used during training:
46
- - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5e-05, 'decay_steps': 1250, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False}
47
- - training_precision: float32
 
 
48
 
49
  ### Training results
50
 
@@ -56,10 +86,22 @@ The following hyperparameters were used during training:
56
  | 0.1465 | 0.9364 | 0.1838 | 0.9295 | 3 |
57
  | 0.1168 | 0.9446 | 0.1709 | 0.9350 | 4 |
58
 
 
 
 
 
 
 
 
59
 
60
  ### Framework versions
61
 
62
  - Transformers 4.26.1
63
  - TensorFlow 2.11.0
64
  - Datasets 2.9.0
65
- - Tokenizers 0.13.2
 
 
 
 
 
 
28
 
29
  ## Model description
30
 
31
+ # MiniLM: Small and Fast Pre-trained Models for Language Understanding and Generation
32
+
33
+ MiniLM is a distilled model from the paper "MiniLM: Deep Self-Attention Distillation for Task-Agnostic Compression of Pre-Trained Transformers".
34
 
35
  ## Intended uses & limitations
36
 
37
+ This model has been created as a learning guide on:
38
+ - How to implement a text classification model using Hugging Face Transformers in TensorFlow
39
+ - How to handle imbalanced class distribution
40
+
41
+ # How to use the model
42
+ ```
43
+ from transformers import pipeline
44
+
45
+ model_cpt = "laxsvips/minilm-finetuned-emotion"
46
+ pipe = pipeline("text-classification", model=model_cpt)
47
+ pipe("I am really excited about part 2 of the Hugging Face course")
48
+ predicted_scores = pipe("I am so glad you could help me")
49
+ print(predicted_scores)
50
+ ````
51
+ The results:
52
+ ```
53
+ [[{'label': 'sadness', 'score': 0.003758953418582678},
54
+ {'label': 'joy', 'score': 0.9874302744865417},
55
+ {'label': 'love', 'score': 0.00610917154699564},
56
+ {'label': 'anger', 'score': 9.696640336187556e-05},
57
+ {'label': 'fear', 'score': 0.0006420552381314337},
58
+ {'label': 'surprise', 'score': 0.00196251692250371}]]
59
+ ```
60
 
61
  ## Training and evaluation data
62
 
63
+ [Emotion](https://huggingface.co/datasets/emotion)
64
+
65
+ Emotion is a dataset of English Twitter messages with six basic emotions: anger, fear, joy, love, sadness, and surprise.
66
 
67
  ## Training procedure
68
 
69
+ Refer to the [Colab](https://colab.research.google.com/github/laxmiharikumar/transformers/blob/main/TF_SimpleTrainingWithTransTrainers.ipynb) notebook
70
+
71
  ### Training hyperparameters
72
 
73
  The following hyperparameters were used during training:
74
+ - optimizer: 'Adam',
75
+ - learning_rate': 5e-05,
76
+ - batch_size : 64
77
+ - num_epochs - 5
78
 
79
  ### Training results
80
 
 
86
  | 0.1465 | 0.9364 | 0.1838 | 0.9295 | 3 |
87
  | 0.1168 | 0.9446 | 0.1709 | 0.9350 | 4 |
88
 
89
+ ### Evaluation Metrics
90
+ ```
91
+ {'accuracy': 0.935,
92
+ 'precision': 0.937365614416424,
93
+ 'recall': 0.935,
94
+ 'f1_score': 0.9355424419858925}
95
+ ```
96
 
97
  ### Framework versions
98
 
99
  - Transformers 4.26.1
100
  - TensorFlow 2.11.0
101
  - Datasets 2.9.0
102
+ - Tokenizers 0.13.2
103
+
104
+ ### References
105
+ 1. https://www.youtube.com/watch?v=u--UVvH-LIQ
106
+ 2. https://huggingface.co/docs/transformers
107
+ 3. https://www.tensorflow.org/api_docs/python/tf