--- library_name: transformers language: - pl base_model: whisper-small-pl tags: - generated_from_trainer datasets: - leliw/common_voice_17_0_pl metrics: - wer model-index: - name: Whisper Small PL results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 17.0 type: leliw/common_voice_17_0_pl config: pl split: test args: 'config: pl, split: test' metrics: - name: Wer type: wer value: 120.26215182960132 --- # Whisper Small PL This model is a fine-tuned version of [whisper-small-pl](https://huggingface.co/whisper-small-pl) on the Common Voice 17.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.5061 - Wer: 120.2622 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 50 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - training_steps: 1000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.0329 | 0.2 | 200 | 0.5055 | 105.0792 | | 0.0276 | 0.4 | 400 | 0.4741 | 116.0295 | | 0.0147 | 1.185 | 600 | 0.6035 | 97.4604 | | 0.0091 | 1.385 | 800 | 0.6017 | 106.7723 | | 0.0129 | 2.17 | 1000 | 0.5061 | 120.2622 | ### Framework versions - Transformers 4.49.0 - Pytorch 2.6.0+cu124 - Datasets 3.3.1 - Tokenizers 0.21.0