File size: 11,112 Bytes
e81b12e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
from typing import Dict
from ai_edge_litert import interpreter as interpreter_lib
import numpy as np
import sys
from collections.abc import Sequence
from transformers import AutoProcessor
from PIL import Image
import requests


import torch
from transformers import AutoModelForVision2Seq


def _get_mask(shape: Sequence[int], k: int):
    """Gets the mask for the input to the model.

    Args:
    shape: The shape of the mask input to the model.
    k: all elements below the k-th diagonal are set to 0.

    Returns:
    The mask for the input to the model. All the elements in the mask are set
    to -inf except that all the elements below the k-th diagonal are set to 0.
    """
    mask = np.ones(shape, dtype=np.float32) * float("-inf")
    mask = np.triu(mask, k=k)
    return mask


class LiteRTLlmPipeline:

  def __init__(self, interpreter, processor):
    """Initializes the pipeline."""
    self._interpreter = interpreter
    self._processor = processor

    self._prefill_runner = None
    self._decode_runner = self._interpreter.get_signature_runner("decode")

  def _init_prefill_runner(self, num_input_tokens: int):
    """Initializes all the variables related to the prefill runner.

    This method initializes the following variables:
      - self._prefill_runner: The prefill runner based on the input size.
      - self._max_seq_len: The maximum sequence length supported by the model.

    Args:
      num_input_tokens: The number of input tokens.
    """
    if not self._interpreter:
      raise ValueError("Interpreter is not initialized.")

    # Prefill runner related variables will be initialized in `predict_text` and
    # `compute_log_likelihood`.
    self._prefill_runner = self._get_prefill_runner(num_input_tokens)
    # input_token_shape has shape (batch, max_seq_len)
    input_token_shape = self._prefill_runner.get_input_details()["tokens"][
        "shape"
    ]
    if len(input_token_shape) == 1:
      self._max_seq_len = input_token_shape[0]
    else:
      self._max_seq_len = input_token_shape[1]

    # SmolLM: kv cache input has shape [batch=1, cache_size, num_kv_heads, head_dim].
    kv_cache_shape = self._prefill_runner.get_input_details()["kv_cache_k_0"][
        "shape"
    ]
    self._max_kv_cache_seq_len = kv_cache_shape[1]

  def _init_kv_cache(self) -> dict[str, np.ndarray]:
    if self._prefill_runner is None:
      raise ValueError("Prefill runner is not initialized.")
    kv_cache = {}
    for input_key in self._prefill_runner.get_input_details().keys():
      if "kv_cache" in input_key:
        kv_cache[input_key] = np.zeros(
            self._prefill_runner.get_input_details()[input_key]["shape"],
            dtype=np.float32,
        )
        kv_cache[input_key] = np.zeros(
            self._prefill_runner.get_input_details()[input_key]["shape"],
            dtype=np.float32,
        )
    return kv_cache

  def _get_prefill_runner(self, num_input_tokens: int) :
    """Gets the prefill runner with the best suitable input size.

    Args:
      num_input_tokens: The number of input tokens.

    Returns:
      The prefill runner with the smallest input size.
    """
    best_signature = None
    delta = sys.maxsize
    max_prefill_len = -1
    for key in self._interpreter.get_signature_list().keys():
      if "prefill" not in key or 'pixel' not in key:
        continue
      input_pos = self._interpreter.get_signature_runner(key).get_input_details()[
          "input_pos"
      ]
      # input_pos["shape"] has shape (max_seq_len, )
      seq_size = input_pos["shape"][0]
      max_prefill_len = max(max_prefill_len, seq_size)
      if num_input_tokens <= seq_size and seq_size - num_input_tokens < delta:
        delta = seq_size - num_input_tokens
        best_signature = key
    if best_signature is None:
      raise ValueError(
          "The largest prefill length supported is %d, but we have %d number of input tokens"
          %(max_prefill_len, num_input_tokens)
      )
    return self._interpreter.get_signature_runner(best_signature)

  def _run_prefill(
      self, prefill_token_ids: Sequence[int], pixel_values: np.ndarray,
  ) -> dict[str, np.ndarray]:
    """Runs prefill and returns the kv cache.

    Args:
      prefill_token_ids: The token ids of the prefill input.

    Returns:
      The updated kv cache.
    """
    if not self._prefill_runner:
      raise ValueError("Prefill runner is not initialized.")
    prefill_token_length = len(prefill_token_ids)
    if prefill_token_length == 0:
      return self._init_kv_cache()

    # Prepare the input to be [1, max_seq_len].
    input_token_ids = [0] * self._max_seq_len
    input_token_ids[:prefill_token_length] = prefill_token_ids
    input_token_ids = np.asarray(input_token_ids, dtype=np.int32)
    input_token_ids = np.expand_dims(input_token_ids, axis=0)

    # Prepare the input position to be [max_seq_len].
    input_pos = [0] * self._max_seq_len
    input_pos[:prefill_token_length] = range(prefill_token_length)
    input_pos = np.asarray(input_pos, dtype=np.int32)

    # Initialize kv cache.
    prefill_inputs = self._init_kv_cache()
    # Prepare the tokens and input position inputs.
    prefill_inputs.update({
        "tokens": input_token_ids,
        "input_pos": input_pos,
        "pixel_values": pixel_values,
    })
    if "mask" in self._prefill_runner.get_input_details().keys():
      # For prefill, mask has shape [batch=1, 1, seq_len, kv_cache_size].
      # We want mask[0, 0, i, j] = 0 for j<=i and -inf otherwise.
      prefill_inputs["mask"] = _get_mask(
          shape=self._prefill_runner.get_input_details()["mask"]["shape"],
          k=1,
      )
    prefill_outputs = self._prefill_runner(**prefill_inputs)
    if "logits" in prefill_outputs:
      # Prefill outputs includes logits and kv cache. We only output kv cache.
      prefill_outputs.pop("logits")

    return prefill_outputs

  def _greedy_sampler(self, logits: np.ndarray) -> int:
    return int(np.argmax(logits))


  def _run_decode(
      self,
      start_pos: int,
      start_token_id: int,
      kv_cache: dict[str, np.ndarray],
      max_decode_steps: int,
  ) -> str:
    """Runs decode and outputs the token ids from greedy sampler.

    Args:
      start_pos: The position of the first token of the decode input.
      start_token_id: The token id of the first token of the decode input.
      kv_cache: The kv cache from the prefill.
      max_decode_steps: The max decode steps.

    Returns:
      The token ids from the greedy sampler.
    """
    next_pos = start_pos
    next_token = start_token_id
    decode_text = []
    decode_inputs = kv_cache

    for _ in range(max_decode_steps):
      decode_inputs.update({
          "tokens": np.array([[next_token]], dtype=np.int32),
          "input_pos": np.array([next_pos], dtype=np.int32),
      })
      if "mask" in self._decode_runner.get_input_details().keys():
        # For decode, mask has shape [batch=1, 1, 1, kv_cache_size].
        # We want mask[0, 0, 0, j] = 0 for j<=next_pos and -inf otherwise.
        decode_inputs["mask"] = _get_mask(
            shape=self._decode_runner.get_input_details()["mask"]["shape"],
            k=next_pos + 1,
        )
      decode_outputs = self._decode_runner(**decode_inputs)
      # Output logits has shape (batch=1, 1, vocab_size). We only take the first
      # element.
      logits = decode_outputs.pop("logits")[0][0]
      next_token = self._greedy_sampler(logits)
      if next_token == self._processor.tokenizer.eos_token_id:
        break
      decode_text.append(self._processor.tokenizer.decode(next_token, skip_special_tokens=True))
      if len(decode_text[-1]) == 0:
        # Break out the loop if we hit the special token.
        break

      print(decode_text[-1], end='', flush=True)
      # Decode outputs includes logits and kv cache. We already poped out
      # logits, so the rest is kv cache. We pass the updated kv cache as input
      # to the next decode step.
      decode_inputs = decode_outputs
      next_pos += 1

    print() # print a new line at the end.
    return ''.join(decode_text)

  def generate(self, inputs: Dict, max_decode_steps: int | None = None) -> str:
  
    token_ids = inputs["input_ids"][0]
    pixel_values = inputs["pixel_values"][0]

    # Initialize the prefill runner with the suitable input size.
    self._init_prefill_runner(len(token_ids))

    # Run prefill.
    # Prefill up to the seond to the last token of the prompt, because the last
    # token of the prompt will be used to bootstrap decode.
    prefill_token_length = len(token_ids) - 1

    print('Running prefill')
    kv_cache = self._run_prefill(token_ids[:prefill_token_length], pixel_values)
    # Run decode.
    print('Running decode')
    actual_max_decode_steps = self._max_kv_cache_seq_len - prefill_token_length - 1
    if max_decode_steps is not None:
      actual_max_decode_steps = min(actual_max_decode_steps, max_decode_steps)
    decode_text = self._run_decode(
        prefill_token_length,
        token_ids[prefill_token_length],
        kv_cache,
        actual_max_decode_steps,
    )
    return decode_text


if __name__ == "__main__":
    
    model_id = './models/SmolVLM-256M-Instruct'
    tflite_model_path = './models/SmolVLM-256M-Instruct-tflite/smalvlm-256m-instruct_q8_ekv2048.tflite'

    interpreter = interpreter_lib.InterpreterWithCustomOps(
        custom_op_registerers=["pywrap_genai_ops.GenAIOpsRegisterer"],
        model_path=tflite_model_path,
        num_threads=2,
        experimental_default_delegate_latest_features=True)
    
    processor = AutoProcessor.from_pretrained(model_id, do_image_splitting=True)
    image_url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/car.jpg?download=true"
    image = Image.open(requests.get(image_url, stream=True).raw)
    # image = Image.open("/home/dragynir/ai_vlm/cats.jpg")
    # image = Image.open("/home/dragynir/ai_vlm/car.jpg")

    messages = [
        {
            "role": "user",
            "content": [
                {"type": "image"},
                {"type": "text", "text": "What in the image?"}
            ]
        },
    ]
    prompt = processor.apply_chat_template(messages, add_generation_prompt=True)
    print(prompt)
    inputs = processor(text=prompt, images=[image], return_tensors="pt")

    # Tflite model inference
    pipeline = LiteRTLlmPipeline(interpreter, processor)
    tflite_text = pipeline.generate(inputs, max_decode_steps=100)

    # HuggingFace model inference
    DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
    inputs = inputs.to(DEVICE)
    model = AutoModelForVision2Seq.from_pretrained(
      model_id,
      torch_dtype=torch.bfloat16,
      _attn_implementation="eager",
    ).to(DEVICE)
    generated_ids = model.generate(**inputs, do_sample=False, max_new_tokens=100)
    generated_texts = processor.batch_decode(
        generated_ids,
        skip_special_tokens=True,
    )

    hf_text = generated_texts[0]
    print("-"*100)
    print("Tflite:\n", tflite_text)
    print("HF:\n", hf_text)