diff --git a/.gitattributes b/.gitattributes index 53af4436490e073b4716c8e1768c112823089ced..bf2ef17384ecb28c62754329dab12e9d2811453b 100644 --- a/.gitattributes +++ b/.gitattributes @@ -36,3 +36,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text tokenizer.json filter=lfs diff=lfs merge=lfs -text mixchain_z_gsm8k.long2short.cot_valve.jsonl filter=lfs diff=lfs merge=lfs -text mixchain_z_prm12k.long2short.cot_valve.jsonl filter=lfs diff=lfs merge=lfs -text +tldr-14b-step-832/tokenizer.json filter=lfs diff=lfs merge=lfs -text +tldr-7b-checkpoint-256/tokenizer.json filter=lfs diff=lfs merge=lfs -text diff --git a/tldr-14b-step-832/config.json b/tldr-14b-step-832/config.json new file mode 100644 index 0000000000000000000000000000000000000000..3bd0cad19fcf826b4934931752f9e864411713a5 --- /dev/null +++ b/tldr-14b-step-832/config.json @@ -0,0 +1,30 @@ +{ + "_name_or_path": "/cpfs/user/lizhongzhi/huggingface_model/huggingface_model/DeepSeek-R1-Distill-Qwen-14B/", + "architectures": [ + "Qwen2ForCausalLM" + ], + "attention_dropout": 0.0, + "bos_token_id": 151643, + "eos_token_id": 151643, + "hidden_act": "silu", + "hidden_size": 5120, + "initializer_range": 0.02, + "intermediate_size": 13824, + "max_position_embeddings": 131072, + "max_window_layers": 48, + "model_type": "qwen2", + "num_attention_heads": 40, + "num_hidden_layers": 48, + "num_key_value_heads": 8, + "pad_token_id": 151643, + "rms_norm_eps": 1e-05, + "rope_scaling": null, + "rope_theta": 1000000.0, + "sliding_window": null, + "tie_word_embeddings": false, + "torch_dtype": "bfloat16", + "transformers_version": "4.46.3", + "use_cache": true, + "use_sliding_window": false, + "vocab_size": 152064 +} diff --git a/tldr-14b-step-832/eval_dev_token_acc.json b/tldr-14b-step-832/eval_dev_token_acc.json new file mode 100644 index 0000000000000000000000000000000000000000..92a4813f89f0f998ecc4f9f1f3538838ac8620a2 --- /dev/null +++ b/tldr-14b-step-832/eval_dev_token_acc.json @@ -0,0 +1,8 @@ +{ + "eval_dev_token": 4446.53125, + "eval_dev_acc": 0.513671875, + "eval_runtime": 329.208, + "eval_samples_per_second": 0.194, + "eval_steps_per_second": 0.003, + "epoch": 0.416 +} \ No newline at end of file diff --git a/tldr-14b-step-832/generation_config.json b/tldr-14b-step-832/generation_config.json new file mode 100644 index 0000000000000000000000000000000000000000..59e60f99f4acabf5f765a866cb6d7060779fdcdf --- /dev/null +++ b/tldr-14b-step-832/generation_config.json @@ -0,0 +1,9 @@ +{ + "_from_model_config": true, + "bos_token_id": 151646, + "do_sample": true, + "eos_token_id": 151643, + "temperature": 0.6, + "top_p": 0.95, + "transformers_version": "4.46.3" +} diff --git a/tldr-14b-step-832/latest b/tldr-14b-step-832/latest new file mode 100644 index 0000000000000000000000000000000000000000..c78b17a422daa3a8d134daf99306985060acd85d --- /dev/null +++ b/tldr-14b-step-832/latest @@ -0,0 +1 @@ +global_step832 \ No newline at end of file diff --git a/tldr-14b-step-832/long2short_proportions.json b/tldr-14b-step-832/long2short_proportions.json new file mode 100644 index 0000000000000000000000000000000000000000..10d4bdb2b78f43a6afbd46aeeea1ca0c176bd3f8 --- /dev/null +++ b/tldr-14b-step-832/long2short_proportions.json @@ -0,0 +1,299 @@ +[ + { + "global_step": 0, + "cot_domain_weight": [ + 0.8, + 0.2 + ], + "cot_domain_name": [ + "/cpfs/user/lizhongzhi/data/data/gsm8k/14b_data/gsm8k_shortcot_outputs_ds_medium_length.jsonl", + "/cpfs/user/lizhongzhi/data/data/gsm8k/14b_data/s1_14b_longcot_outputs_ds.jsonl" + ] + }, + { + "global_step": 32, + "cot_domain_weight": [ + 0.8388444060259401, + 0.1611555939740599 + ], + "cot_domain_name": [ + "/cpfs/user/lizhongzhi/data/data/gsm8k/14b_data/gsm8k_shortcot_outputs_ds_medium_length.jsonl", + "/cpfs/user/lizhongzhi/data/data/gsm8k/14b_data/s1_14b_longcot_outputs_ds.jsonl" + ] + }, + { + "global_step": 64, + "cot_domain_weight": [ + 0.8505354307831271, + 0.14946456921687287 + ], + "cot_domain_name": [ + "/cpfs/user/lizhongzhi/data/data/gsm8k/14b_data/gsm8k_shortcot_outputs_ds_medium_length.jsonl", + "/cpfs/user/lizhongzhi/data/data/gsm8k/14b_data/s1_14b_longcot_outputs_ds.jsonl" + ] + }, + { + "global_step": 96, + "cot_domain_weight": [ + 0.924430987039901, + 0.07556901296009898 + ], + "cot_domain_name": [ + "/cpfs/user/lizhongzhi/data/data/gsm8k/14b_data/gsm8k_shortcot_outputs_ds_medium_length.jsonl", + "/cpfs/user/lizhongzhi/data/data/gsm8k/14b_data/s1_14b_longcot_outputs_ds.jsonl" + ] + }, + { + "global_step": 128, + "cot_domain_weight": [ + 0.9291076840859197, + 0.07089231591408032 + ], + "cot_domain_name": [ + "/cpfs/user/lizhongzhi/data/data/gsm8k/14b_data/gsm8k_shortcot_outputs_ds_medium_length.jsonl", + "/cpfs/user/lizhongzhi/data/data/gsm8k/14b_data/s1_14b_longcot_outputs_ds.jsonl" + ] + }, + { + "global_step": 160, + "cot_domain_weight": [ + 0.9551703627379949, + 0.044829637262005104 + ], + "cot_domain_name": [ + "/cpfs/user/lizhongzhi/data/data/gsm8k/14b_data/gsm8k_shortcot_outputs_ds_medium_length.jsonl", + "/cpfs/user/lizhongzhi/data/data/gsm8k/14b_data/s1_14b_longcot_outputs_ds.jsonl" + ] + }, + { + "global_step": 192, + "cot_domain_weight": [ + 0.9511838867907558, + 0.048816113209244213 + ], + "cot_domain_name": [ + "/cpfs/user/lizhongzhi/data/data/gsm8k/14b_data/gsm8k_shortcot_outputs_ds_medium_length.jsonl", + "/cpfs/user/lizhongzhi/data/data/gsm8k/14b_data/s1_14b_longcot_outputs_ds.jsonl" + ] + }, + { + "global_step": 224, + "cot_domain_weight": [ + 0.959743360270474, + 0.040256639729526034 + ], + "cot_domain_name": [ + "/cpfs/user/lizhongzhi/data/data/gsm8k/14b_data/gsm8k_shortcot_outputs_ds_medium_length.jsonl", + "/cpfs/user/lizhongzhi/data/data/gsm8k/14b_data/s1_14b_longcot_outputs_ds.jsonl" + ] + }, + { + "global_step": 256, + "cot_domain_weight": [ + 0.9756809723788156, + 0.02431902762118443 + ], + "cot_domain_name": [ + "/cpfs/user/lizhongzhi/data/data/gsm8k/14b_data/gsm8k_shortcot_outputs_ds_medium_length.jsonl", + "/cpfs/user/lizhongzhi/data/data/gsm8k/14b_data/s1_14b_longcot_outputs_ds.jsonl" + ] + }, + { + "global_step": 288, + "cot_domain_weight": [ + 0.9798199552666768, + 0.02018004473332324 + ], + "cot_domain_name": [ + "/cpfs/user/lizhongzhi/data/data/gsm8k/14b_data/gsm8k_shortcot_outputs_ds_medium_length.jsonl", + "/cpfs/user/lizhongzhi/data/data/gsm8k/14b_data/s1_14b_longcot_outputs_ds.jsonl" + ] + }, + { + "global_step": 320, + "cot_domain_weight": [ + 0.9872426298703754, + 0.01275737012962466 + ], + "cot_domain_name": [ + "/cpfs/user/lizhongzhi/data/data/gsm8k/14b_data/gsm8k_shortcot_outputs_ds_medium_length.jsonl", + "/cpfs/user/lizhongzhi/data/data/gsm8k/14b_data/s1_14b_longcot_outputs_ds.jsonl" + ] + }, + { + "global_step": 352, + "cot_domain_weight": [ + 0.9888833217843287, + 0.011116678215671317 + ], + "cot_domain_name": [ + "/cpfs/user/lizhongzhi/data/data/gsm8k/14b_data/gsm8k_shortcot_outputs_ds_medium_length.jsonl", + "/cpfs/user/lizhongzhi/data/data/gsm8k/14b_data/s1_14b_longcot_outputs_ds.jsonl" + ] + }, + { + "global_step": 384, + "cot_domain_weight": [ + 0.9933160784608732, + 0.006683921539126801 + ], + "cot_domain_name": [ + "/cpfs/user/lizhongzhi/data/data/gsm8k/14b_data/gsm8k_shortcot_outputs_ds_medium_length.jsonl", + "/cpfs/user/lizhongzhi/data/data/gsm8k/14b_data/s1_14b_longcot_outputs_ds.jsonl" + ] + }, + { + "global_step": 416, + "cot_domain_weight": [ + 0.9891085129978076, + 0.010891487002192397 + ], + "cot_domain_name": [ + "/cpfs/user/lizhongzhi/data/data/gsm8k/14b_data/gsm8k_shortcot_outputs_ds_medium_length.jsonl", + "/cpfs/user/lizhongzhi/data/data/gsm8k/14b_data/s1_14b_longcot_outputs_ds.jsonl" + ] + }, + { + "global_step": 448, + "cot_domain_weight": [ + 0.9930044565206148, + 0.00699554347938529 + ], + "cot_domain_name": [ + "/cpfs/user/lizhongzhi/data/data/gsm8k/14b_data/gsm8k_shortcot_outputs_ds_medium_length.jsonl", + "/cpfs/user/lizhongzhi/data/data/gsm8k/14b_data/s1_14b_longcot_outputs_ds.jsonl" + ] + }, + { + "global_step": 480, + "cot_domain_weight": [ + 0.9946519011372694, + 0.0053480988627305865 + ], + "cot_domain_name": [ + "/cpfs/user/lizhongzhi/data/data/gsm8k/14b_data/gsm8k_shortcot_outputs_ds_medium_length.jsonl", + "/cpfs/user/lizhongzhi/data/data/gsm8k/14b_data/s1_14b_longcot_outputs_ds.jsonl" + ] + }, + { + "global_step": 512, + "cot_domain_weight": [ + 0.9958559065994267, + 0.0041440934005732635 + ], + "cot_domain_name": [ + "/cpfs/user/lizhongzhi/data/data/gsm8k/14b_data/gsm8k_shortcot_outputs_ds_medium_length.jsonl", + "/cpfs/user/lizhongzhi/data/data/gsm8k/14b_data/s1_14b_longcot_outputs_ds.jsonl" + ] + }, + { + "global_step": 544, + "cot_domain_weight": [ + 0.9975449034946824, + 0.0024550965053175616 + ], + "cot_domain_name": [ + "/cpfs/user/lizhongzhi/data/data/gsm8k/14b_data/gsm8k_shortcot_outputs_ds_medium_length.jsonl", + "/cpfs/user/lizhongzhi/data/data/gsm8k/14b_data/s1_14b_longcot_outputs_ds.jsonl" + ] + }, + { + "global_step": 576, + "cot_domain_weight": [ + 0.9979881855698594, + 0.0020118144301406837 + ], + "cot_domain_name": [ + "/cpfs/user/lizhongzhi/data/data/gsm8k/14b_data/gsm8k_shortcot_outputs_ds_medium_length.jsonl", + "/cpfs/user/lizhongzhi/data/data/gsm8k/14b_data/s1_14b_longcot_outputs_ds.jsonl" + ] + }, + { + "global_step": 608, + "cot_domain_weight": [ + 0.9987150533759055, + 0.001284946624094461 + ], + "cot_domain_name": [ + "/cpfs/user/lizhongzhi/data/data/gsm8k/14b_data/gsm8k_shortcot_outputs_ds_medium_length.jsonl", + "/cpfs/user/lizhongzhi/data/data/gsm8k/14b_data/s1_14b_longcot_outputs_ds.jsonl" + ] + }, + { + "global_step": 640, + "cot_domain_weight": [ + 0.9985050461672554, + 0.001494953832744527 + ], + "cot_domain_name": [ + "/cpfs/user/lizhongzhi/data/data/gsm8k/14b_data/gsm8k_shortcot_outputs_ds_medium_length.jsonl", + "/cpfs/user/lizhongzhi/data/data/gsm8k/14b_data/s1_14b_longcot_outputs_ds.jsonl" + ] + }, + { + "global_step": 672, + "cot_domain_weight": [ + 0.9985948003041136, + 0.0014051996958864268 + ], + "cot_domain_name": [ + "/cpfs/user/lizhongzhi/data/data/gsm8k/14b_data/gsm8k_shortcot_outputs_ds_medium_length.jsonl", + "/cpfs/user/lizhongzhi/data/data/gsm8k/14b_data/s1_14b_longcot_outputs_ds.jsonl" + ] + }, + { + "global_step": 704, + "cot_domain_weight": [ + 0.9986131625707226, + 0.0013868374292773191 + ], + "cot_domain_name": [ + "/cpfs/user/lizhongzhi/data/data/gsm8k/14b_data/gsm8k_shortcot_outputs_ds_medium_length.jsonl", + "/cpfs/user/lizhongzhi/data/data/gsm8k/14b_data/s1_14b_longcot_outputs_ds.jsonl" + ] + }, + { + "global_step": 736, + "cot_domain_weight": [ + 0.9988695513983467, + 0.0011304486016533988 + ], + "cot_domain_name": [ + "/cpfs/user/lizhongzhi/data/data/gsm8k/14b_data/gsm8k_shortcot_outputs_ds_medium_length.jsonl", + "/cpfs/user/lizhongzhi/data/data/gsm8k/14b_data/s1_14b_longcot_outputs_ds.jsonl" + ] + }, + { + "global_step": 768, + "cot_domain_weight": [ + 0.9985235512457586, + 0.0014764487542413534 + ], + "cot_domain_name": [ + "/cpfs/user/lizhongzhi/data/data/gsm8k/14b_data/gsm8k_shortcot_outputs_ds_medium_length.jsonl", + "/cpfs/user/lizhongzhi/data/data/gsm8k/14b_data/s1_14b_longcot_outputs_ds.jsonl" + ] + }, + { + "global_step": 800, + "cot_domain_weight": [ + 0.9983893508322773, + 0.0016106491677227333 + ], + "cot_domain_name": [ + "/cpfs/user/lizhongzhi/data/data/gsm8k/14b_data/gsm8k_shortcot_outputs_ds_medium_length.jsonl", + "/cpfs/user/lizhongzhi/data/data/gsm8k/14b_data/s1_14b_longcot_outputs_ds.jsonl" + ] + }, + { + "global_step": 832, + "cot_domain_weight": [ + 0.9938949698284351, + 0.006105030171564917 + ], + "cot_domain_name": [ + "/cpfs/user/lizhongzhi/data/data/gsm8k/14b_data/gsm8k_shortcot_outputs_ds_medium_length.jsonl", + "/cpfs/user/lizhongzhi/data/data/gsm8k/14b_data/s1_14b_longcot_outputs_ds.jsonl" + ] + } +] \ No newline at end of file diff --git a/tldr-14b-step-832/model-00001-of-00006.safetensors b/tldr-14b-step-832/model-00001-of-00006.safetensors new file mode 100644 index 0000000000000000000000000000000000000000..b4fb5c661a7eaa0595c1c26ae772bd1104e5e563 --- /dev/null +++ b/tldr-14b-step-832/model-00001-of-00006.safetensors @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:e28af04b1a542da0380afa4e4464d9205f9ac2e7a19d0b03eb45ae5bcb00a659 +size 4986211280 diff --git a/tldr-14b-step-832/model-00002-of-00006.safetensors b/tldr-14b-step-832/model-00002-of-00006.safetensors new file mode 100644 index 0000000000000000000000000000000000000000..0b5c97bf04b5c216c03bebcf464be62a6cc08227 --- /dev/null +++ b/tldr-14b-step-832/model-00002-of-00006.safetensors @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:3d6702f09d6287482ba236921497c67f690f04aab565c45b761c8341d87b7400 +size 4954847344 diff --git a/tldr-14b-step-832/model-00003-of-00006.safetensors b/tldr-14b-step-832/model-00003-of-00006.safetensors new file mode 100644 index 0000000000000000000000000000000000000000..f9788164b4f2e307e72e631a38fecbcd4ec58cb4 --- /dev/null +++ b/tldr-14b-step-832/model-00003-of-00006.safetensors @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:ab8b5cd3fee9a3ac4db4e91097f51b9963f2644c6dd9004fe51bb6b7480654b7 +size 4954847392 diff --git a/tldr-14b-step-832/model-00004-of-00006.safetensors b/tldr-14b-step-832/model-00004-of-00006.safetensors new file mode 100644 index 0000000000000000000000000000000000000000..6a13601263ad2a38b97b21e9dd74dd777d40fd00 --- /dev/null +++ b/tldr-14b-step-832/model-00004-of-00006.safetensors @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:3c5dce47229f535aaad68658c1fb1cbdc1de89c4027ddad03c8f744eb235a7b7 +size 4954847392 diff --git a/tldr-14b-step-832/model-00005-of-00006.safetensors b/tldr-14b-step-832/model-00005-of-00006.safetensors new file mode 100644 index 0000000000000000000000000000000000000000..f8d3900fc310868305ad3bca3e82145faeaef1fc --- /dev/null +++ b/tldr-14b-step-832/model-00005-of-00006.safetensors @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:68355f8ad433ecdcbd255a71e698c0b1d6f7518a3290fdaf050d7ccd6bcf1711 +size 4954847392 diff --git a/tldr-14b-step-832/model-00006-of-00006.safetensors b/tldr-14b-step-832/model-00006-of-00006.safetensors new file mode 100644 index 0000000000000000000000000000000000000000..79eceb3da3c81920a3558aa782c4938f6a453734 --- /dev/null +++ b/tldr-14b-step-832/model-00006-of-00006.safetensors @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:8552205d575c3ff6ee6b7ff90f99f5390a65e4cde121a6362c48fde04b17038e +size 4734533160 diff --git a/tldr-14b-step-832/model.safetensors.index.json b/tldr-14b-step-832/model.safetensors.index.json new file mode 100644 index 0000000000000000000000000000000000000000..0e9b53532550dfddbf42730aeeb499a3bb7a707f --- /dev/null +++ b/tldr-14b-step-832/model.safetensors.index.json @@ -0,0 +1,586 @@ +{ + "metadata": { + "total_size": 29540067328 + }, + "weight_map": { + "lm_head.weight": "model-00006-of-00006.safetensors", + "model.embed_tokens.weight": "model-00001-of-00006.safetensors", + "model.layers.0.input_layernorm.weight": "model-00001-of-00006.safetensors", + "model.layers.0.mlp.down_proj.weight": "model-00001-of-00006.safetensors", + "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00006.safetensors", + "model.layers.0.mlp.up_proj.weight": "model-00001-of-00006.safetensors", + "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00006.safetensors", + "model.layers.0.self_attn.k_proj.bias": "model-00001-of-00006.safetensors", + "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00006.safetensors", + "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00006.safetensors", + "model.layers.0.self_attn.q_proj.bias": "model-00001-of-00006.safetensors", + "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00006.safetensors", + "model.layers.0.self_attn.v_proj.bias": "model-00001-of-00006.safetensors", + "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00006.safetensors", + "model.layers.1.input_layernorm.weight": "model-00001-of-00006.safetensors", + "model.layers.1.mlp.down_proj.weight": "model-00001-of-00006.safetensors", + "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00006.safetensors", + "model.layers.1.mlp.up_proj.weight": "model-00001-of-00006.safetensors", + "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00006.safetensors", + "model.layers.1.self_attn.k_proj.bias": "model-00001-of-00006.safetensors", + "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00006.safetensors", + "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00006.safetensors", + "model.layers.1.self_attn.q_proj.bias": "model-00001-of-00006.safetensors", + "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00006.safetensors", + "model.layers.1.self_attn.v_proj.bias": "model-00001-of-00006.safetensors", + "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00006.safetensors", + "model.layers.10.input_layernorm.weight": "model-00002-of-00006.safetensors", + "model.layers.10.mlp.down_proj.weight": "model-00002-of-00006.safetensors", + "model.layers.10.mlp.gate_proj.weight": "model-00002-of-00006.safetensors", + "model.layers.10.mlp.up_proj.weight": "model-00002-of-00006.safetensors", + "model.layers.10.post_attention_layernorm.weight": "model-00002-of-00006.safetensors", + "model.layers.10.self_attn.k_proj.bias": "model-00002-of-00006.safetensors", + "model.layers.10.self_attn.k_proj.weight": "model-00002-of-00006.safetensors", + "model.layers.10.self_attn.o_proj.weight": "model-00002-of-00006.safetensors", + "model.layers.10.self_attn.q_proj.bias": "model-00002-of-00006.safetensors", + "model.layers.10.self_attn.q_proj.weight": "model-00002-of-00006.safetensors", + "model.layers.10.self_attn.v_proj.bias": "model-00002-of-00006.safetensors", + "model.layers.10.self_attn.v_proj.weight": "model-00002-of-00006.safetensors", + "model.layers.11.input_layernorm.weight": "model-00002-of-00006.safetensors", + "model.layers.11.mlp.down_proj.weight": "model-00002-of-00006.safetensors", + "model.layers.11.mlp.gate_proj.weight": "model-00002-of-00006.safetensors", + "model.layers.11.mlp.up_proj.weight": "model-00002-of-00006.safetensors", + "model.layers.11.post_attention_layernorm.weight": "model-00002-of-00006.safetensors", + "model.layers.11.self_attn.k_proj.bias": "model-00002-of-00006.safetensors", + "model.layers.11.self_attn.k_proj.weight": "model-00002-of-00006.safetensors", + "model.layers.11.self_attn.o_proj.weight": "model-00002-of-00006.safetensors", + "model.layers.11.self_attn.q_proj.bias": "model-00002-of-00006.safetensors", + "model.layers.11.self_attn.q_proj.weight": "model-00002-of-00006.safetensors", + "model.layers.11.self_attn.v_proj.bias": "model-00002-of-00006.safetensors", + "model.layers.11.self_attn.v_proj.weight": "model-00002-of-00006.safetensors", + "model.layers.12.input_layernorm.weight": "model-00002-of-00006.safetensors", + "model.layers.12.mlp.down_proj.weight": "model-00002-of-00006.safetensors", + "model.layers.12.mlp.gate_proj.weight": "model-00002-of-00006.safetensors", + "model.layers.12.mlp.up_proj.weight": "model-00002-of-00006.safetensors", + "model.layers.12.post_attention_layernorm.weight": "model-00002-of-00006.safetensors", + "model.layers.12.self_attn.k_proj.bias": "model-00002-of-00006.safetensors", + "model.layers.12.self_attn.k_proj.weight": "model-00002-of-00006.safetensors", + "model.layers.12.self_attn.o_proj.weight": "model-00002-of-00006.safetensors", + "model.layers.12.self_attn.q_proj.bias": "model-00002-of-00006.safetensors", + "model.layers.12.self_attn.q_proj.weight": "model-00002-of-00006.safetensors", + "model.layers.12.self_attn.v_proj.bias": "model-00002-of-00006.safetensors", + "model.layers.12.self_attn.v_proj.weight": "model-00002-of-00006.safetensors", + "model.layers.13.input_layernorm.weight": "model-00002-of-00006.safetensors", + "model.layers.13.mlp.down_proj.weight": "model-00002-of-00006.safetensors", + "model.layers.13.mlp.gate_proj.weight": "model-00002-of-00006.safetensors", + "model.layers.13.mlp.up_proj.weight": "model-00002-of-00006.safetensors", + "model.layers.13.post_attention_layernorm.weight": "model-00002-of-00006.safetensors", + "model.layers.13.self_attn.k_proj.bias": "model-00002-of-00006.safetensors", + "model.layers.13.self_attn.k_proj.weight": "model-00002-of-00006.safetensors", + "model.layers.13.self_attn.o_proj.weight": "model-00002-of-00006.safetensors", + "model.layers.13.self_attn.q_proj.bias": "model-00002-of-00006.safetensors", + "model.layers.13.self_attn.q_proj.weight": "model-00002-of-00006.safetensors", + "model.layers.13.self_attn.v_proj.bias": "model-00002-of-00006.safetensors", + "model.layers.13.self_attn.v_proj.weight": "model-00002-of-00006.safetensors", + "model.layers.14.input_layernorm.weight": "model-00002-of-00006.safetensors", + "model.layers.14.mlp.down_proj.weight": "model-00002-of-00006.safetensors", + "model.layers.14.mlp.gate_proj.weight": "model-00002-of-00006.safetensors", + "model.layers.14.mlp.up_proj.weight": "model-00002-of-00006.safetensors", + "model.layers.14.post_attention_layernorm.weight": "model-00002-of-00006.safetensors", + "model.layers.14.self_attn.k_proj.bias": "model-00002-of-00006.safetensors", + "model.layers.14.self_attn.k_proj.weight": "model-00002-of-00006.safetensors", + "model.layers.14.self_attn.o_proj.weight": "model-00002-of-00006.safetensors", + "model.layers.14.self_attn.q_proj.bias": "model-00002-of-00006.safetensors", + "model.layers.14.self_attn.q_proj.weight": "model-00002-of-00006.safetensors", + "model.layers.14.self_attn.v_proj.bias": "model-00002-of-00006.safetensors", + "model.layers.14.self_attn.v_proj.weight": "model-00002-of-00006.safetensors", + "model.layers.15.input_layernorm.weight": "model-00003-of-00006.safetensors", + "model.layers.15.mlp.down_proj.weight": "model-00003-of-00006.safetensors", + "model.layers.15.mlp.gate_proj.weight": "model-00003-of-00006.safetensors", + "model.layers.15.mlp.up_proj.weight": "model-00003-of-00006.safetensors", + "model.layers.15.post_attention_layernorm.weight": "model-00003-of-00006.safetensors", + "model.layers.15.self_attn.k_proj.bias": "model-00002-of-00006.safetensors", + "model.layers.15.self_attn.k_proj.weight": "model-00002-of-00006.safetensors", + "model.layers.15.self_attn.o_proj.weight": "model-00002-of-00006.safetensors", + "model.layers.15.self_attn.q_proj.bias": "model-00002-of-00006.safetensors", + "model.layers.15.self_attn.q_proj.weight": "model-00002-of-00006.safetensors", + "model.layers.15.self_attn.v_proj.bias": "model-00002-of-00006.safetensors", + "model.layers.15.self_attn.v_proj.weight": "model-00002-of-00006.safetensors", + "model.layers.16.input_layernorm.weight": "model-00003-of-00006.safetensors", + "model.layers.16.mlp.down_proj.weight": "model-00003-of-00006.safetensors", + "model.layers.16.mlp.gate_proj.weight": "model-00003-of-00006.safetensors", + "model.layers.16.mlp.up_proj.weight": "model-00003-of-00006.safetensors", + "model.layers.16.post_attention_layernorm.weight": "model-00003-of-00006.safetensors", + "model.layers.16.self_attn.k_proj.bias": "model-00003-of-00006.safetensors", + "model.layers.16.self_attn.k_proj.weight": "model-00003-of-00006.safetensors", + "model.layers.16.self_attn.o_proj.weight": "model-00003-of-00006.safetensors", + "model.layers.16.self_attn.q_proj.bias": "model-00003-of-00006.safetensors", + "model.layers.16.self_attn.q_proj.weight": "model-00003-of-00006.safetensors", + "model.layers.16.self_attn.v_proj.bias": "model-00003-of-00006.safetensors", + "model.layers.16.self_attn.v_proj.weight": "model-00003-of-00006.safetensors", + "model.layers.17.input_layernorm.weight": "model-00003-of-00006.safetensors", + "model.layers.17.mlp.down_proj.weight": "model-00003-of-00006.safetensors", + "model.layers.17.mlp.gate_proj.weight": "model-00003-of-00006.safetensors", + "model.layers.17.mlp.up_proj.weight": "model-00003-of-00006.safetensors", + "model.layers.17.post_attention_layernorm.weight": "model-00003-of-00006.safetensors", + "model.layers.17.self_attn.k_proj.bias": "model-00003-of-00006.safetensors", + "model.layers.17.self_attn.k_proj.weight": "model-00003-of-00006.safetensors", + "model.layers.17.self_attn.o_proj.weight": "model-00003-of-00006.safetensors", + "model.layers.17.self_attn.q_proj.bias": "model-00003-of-00006.safetensors", + "model.layers.17.self_attn.q_proj.weight": "model-00003-of-00006.safetensors", + "model.layers.17.self_attn.v_proj.bias": "model-00003-of-00006.safetensors", + "model.layers.17.self_attn.v_proj.weight": "model-00003-of-00006.safetensors", + "model.layers.18.input_layernorm.weight": "model-00003-of-00006.safetensors", + "model.layers.18.mlp.down_proj.weight": "model-00003-of-00006.safetensors", + "model.layers.18.mlp.gate_proj.weight": "model-00003-of-00006.safetensors", + "model.layers.18.mlp.up_proj.weight": "model-00003-of-00006.safetensors", + "model.layers.18.post_attention_layernorm.weight": "model-00003-of-00006.safetensors", + "model.layers.18.self_attn.k_proj.bias": "model-00003-of-00006.safetensors", + "model.layers.18.self_attn.k_proj.weight": "model-00003-of-00006.safetensors", + "model.layers.18.self_attn.o_proj.weight": "model-00003-of-00006.safetensors", + "model.layers.18.self_attn.q_proj.bias": "model-00003-of-00006.safetensors", + "model.layers.18.self_attn.q_proj.weight": "model-00003-of-00006.safetensors", + "model.layers.18.self_attn.v_proj.bias": "model-00003-of-00006.safetensors", + "model.layers.18.self_attn.v_proj.weight": "model-00003-of-00006.safetensors", + "model.layers.19.input_layernorm.weight": "model-00003-of-00006.safetensors", + "model.layers.19.mlp.down_proj.weight": "model-00003-of-00006.safetensors", + "model.layers.19.mlp.gate_proj.weight": "model-00003-of-00006.safetensors", + "model.layers.19.mlp.up_proj.weight": "model-00003-of-00006.safetensors", + "model.layers.19.post_attention_layernorm.weight": "model-00003-of-00006.safetensors", + "model.layers.19.self_attn.k_proj.bias": "model-00003-of-00006.safetensors", + "model.layers.19.self_attn.k_proj.weight": "model-00003-of-00006.safetensors", + "model.layers.19.self_attn.o_proj.weight": "model-00003-of-00006.safetensors", + "model.layers.19.self_attn.q_proj.bias": "model-00003-of-00006.safetensors", + "model.layers.19.self_attn.q_proj.weight": "model-00003-of-00006.safetensors", + "model.layers.19.self_attn.v_proj.bias": "model-00003-of-00006.safetensors", + "model.layers.19.self_attn.v_proj.weight": "model-00003-of-00006.safetensors", + "model.layers.2.input_layernorm.weight": "model-00001-of-00006.safetensors", + "model.layers.2.mlp.down_proj.weight": "model-00001-of-00006.safetensors", + "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00006.safetensors", + "model.layers.2.mlp.up_proj.weight": "model-00001-of-00006.safetensors", + "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00006.safetensors", + "model.layers.2.self_attn.k_proj.bias": "model-00001-of-00006.safetensors", + "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00006.safetensors", + "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00006.safetensors", + "model.layers.2.self_attn.q_proj.bias": "model-00001-of-00006.safetensors", + "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00006.safetensors", + "model.layers.2.self_attn.v_proj.bias": "model-00001-of-00006.safetensors", + "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00006.safetensors", + "model.layers.20.input_layernorm.weight": "model-00003-of-00006.safetensors", + "model.layers.20.mlp.down_proj.weight": "model-00003-of-00006.safetensors", + "model.layers.20.mlp.gate_proj.weight": "model-00003-of-00006.safetensors", + "model.layers.20.mlp.up_proj.weight": "model-00003-of-00006.safetensors", + "model.layers.20.post_attention_layernorm.weight": "model-00003-of-00006.safetensors", + "model.layers.20.self_attn.k_proj.bias": "model-00003-of-00006.safetensors", + "model.layers.20.self_attn.k_proj.weight": "model-00003-of-00006.safetensors", + "model.layers.20.self_attn.o_proj.weight": "model-00003-of-00006.safetensors", + "model.layers.20.self_attn.q_proj.bias": "model-00003-of-00006.safetensors", + "model.layers.20.self_attn.q_proj.weight": "model-00003-of-00006.safetensors", + "model.layers.20.self_attn.v_proj.bias": "model-00003-of-00006.safetensors", + "model.layers.20.self_attn.v_proj.weight": "model-00003-of-00006.safetensors", + "model.layers.21.input_layernorm.weight": "model-00003-of-00006.safetensors", + "model.layers.21.mlp.down_proj.weight": "model-00003-of-00006.safetensors", + "model.layers.21.mlp.gate_proj.weight": "model-00003-of-00006.safetensors", + "model.layers.21.mlp.up_proj.weight": "model-00003-of-00006.safetensors", + "model.layers.21.post_attention_layernorm.weight": "model-00003-of-00006.safetensors", + "model.layers.21.self_attn.k_proj.bias": "model-00003-of-00006.safetensors", + "model.layers.21.self_attn.k_proj.weight": "model-00003-of-00006.safetensors", + "model.layers.21.self_attn.o_proj.weight": "model-00003-of-00006.safetensors", + "model.layers.21.self_attn.q_proj.bias": "model-00003-of-00006.safetensors", + "model.layers.21.self_attn.q_proj.weight": "model-00003-of-00006.safetensors", + "model.layers.21.self_attn.v_proj.bias": "model-00003-of-00006.safetensors", + "model.layers.21.self_attn.v_proj.weight": "model-00003-of-00006.safetensors", + "model.layers.22.input_layernorm.weight": "model-00003-of-00006.safetensors", + "model.layers.22.mlp.down_proj.weight": "model-00003-of-00006.safetensors", + "model.layers.22.mlp.gate_proj.weight": "model-00003-of-00006.safetensors", + "model.layers.22.mlp.up_proj.weight": "model-00003-of-00006.safetensors", + "model.layers.22.post_attention_layernorm.weight": "model-00003-of-00006.safetensors", + "model.layers.22.self_attn.k_proj.bias": "model-00003-of-00006.safetensors", + "model.layers.22.self_attn.k_proj.weight": "model-00003-of-00006.safetensors", + "model.layers.22.self_attn.o_proj.weight": "model-00003-of-00006.safetensors", + "model.layers.22.self_attn.q_proj.bias": "model-00003-of-00006.safetensors", + "model.layers.22.self_attn.q_proj.weight": "model-00003-of-00006.safetensors", + "model.layers.22.self_attn.v_proj.bias": "model-00003-of-00006.safetensors", + "model.layers.22.self_attn.v_proj.weight": "model-00003-of-00006.safetensors", + "model.layers.23.input_layernorm.weight": "model-00003-of-00006.safetensors", + "model.layers.23.mlp.down_proj.weight": "model-00003-of-00006.safetensors", + "model.layers.23.mlp.gate_proj.weight": "model-00003-of-00006.safetensors", + "model.layers.23.mlp.up_proj.weight": "model-00003-of-00006.safetensors", + "model.layers.23.post_attention_layernorm.weight": "model-00003-of-00006.safetensors", + "model.layers.23.self_attn.k_proj.bias": "model-00003-of-00006.safetensors", + "model.layers.23.self_attn.k_proj.weight": "model-00003-of-00006.safetensors", + "model.layers.23.self_attn.o_proj.weight": "model-00003-of-00006.safetensors", + "model.layers.23.self_attn.q_proj.bias": "model-00003-of-00006.safetensors", + "model.layers.23.self_attn.q_proj.weight": "model-00003-of-00006.safetensors", + "model.layers.23.self_attn.v_proj.bias": "model-00003-of-00006.safetensors", + "model.layers.23.self_attn.v_proj.weight": "model-00003-of-00006.safetensors", + "model.layers.24.input_layernorm.weight": "model-00004-of-00006.safetensors", + "model.layers.24.mlp.down_proj.weight": "model-00004-of-00006.safetensors", + "model.layers.24.mlp.gate_proj.weight": "model-00004-of-00006.safetensors", + "model.layers.24.mlp.up_proj.weight": "model-00004-of-00006.safetensors", + "model.layers.24.post_attention_layernorm.weight": "model-00004-of-00006.safetensors", + "model.layers.24.self_attn.k_proj.bias": "model-00003-of-00006.safetensors", + "model.layers.24.self_attn.k_proj.weight": "model-00003-of-00006.safetensors", + "model.layers.24.self_attn.o_proj.weight": "model-00003-of-00006.safetensors", + "model.layers.24.self_attn.q_proj.bias": "model-00003-of-00006.safetensors", + "model.layers.24.self_attn.q_proj.weight": "model-00003-of-00006.safetensors", + "model.layers.24.self_attn.v_proj.bias": "model-00003-of-00006.safetensors", + "model.layers.24.self_attn.v_proj.weight": "model-00003-of-00006.safetensors", + "model.layers.25.input_layernorm.weight": "model-00004-of-00006.safetensors", + "model.layers.25.mlp.down_proj.weight": "model-00004-of-00006.safetensors", + "model.layers.25.mlp.gate_proj.weight": "model-00004-of-00006.safetensors", + "model.layers.25.mlp.up_proj.weight": "model-00004-of-00006.safetensors", + "model.layers.25.post_attention_layernorm.weight": "model-00004-of-00006.safetensors", + "model.layers.25.self_attn.k_proj.bias": "model-00004-of-00006.safetensors", + "model.layers.25.self_attn.k_proj.weight": "model-00004-of-00006.safetensors", + "model.layers.25.self_attn.o_proj.weight": "model-00004-of-00006.safetensors", + "model.layers.25.self_attn.q_proj.bias": "model-00004-of-00006.safetensors", + "model.layers.25.self_attn.q_proj.weight": "model-00004-of-00006.safetensors", + "model.layers.25.self_attn.v_proj.bias": "model-00004-of-00006.safetensors", + "model.layers.25.self_attn.v_proj.weight": "model-00004-of-00006.safetensors", + "model.layers.26.input_layernorm.weight": "model-00004-of-00006.safetensors", + "model.layers.26.mlp.down_proj.weight": "model-00004-of-00006.safetensors", + "model.layers.26.mlp.gate_proj.weight": "model-00004-of-00006.safetensors", + "model.layers.26.mlp.up_proj.weight": "model-00004-of-00006.safetensors", + "model.layers.26.post_attention_layernorm.weight": "model-00004-of-00006.safetensors", + "model.layers.26.self_attn.k_proj.bias": "model-00004-of-00006.safetensors", + "model.layers.26.self_attn.k_proj.weight": "model-00004-of-00006.safetensors", + "model.layers.26.self_attn.o_proj.weight": "model-00004-of-00006.safetensors", + "model.layers.26.self_attn.q_proj.bias": "model-00004-of-00006.safetensors", + "model.layers.26.self_attn.q_proj.weight": "model-00004-of-00006.safetensors", + "model.layers.26.self_attn.v_proj.bias": "model-00004-of-00006.safetensors", + "model.layers.26.self_attn.v_proj.weight": "model-00004-of-00006.safetensors", + "model.layers.27.input_layernorm.weight": "model-00004-of-00006.safetensors", + "model.layers.27.mlp.down_proj.weight": "model-00004-of-00006.safetensors", + "model.layers.27.mlp.gate_proj.weight": "model-00004-of-00006.safetensors", + "model.layers.27.mlp.up_proj.weight": "model-00004-of-00006.safetensors", + "model.layers.27.post_attention_layernorm.weight": "model-00004-of-00006.safetensors", + "model.layers.27.self_attn.k_proj.bias": "model-00004-of-00006.safetensors", + "model.layers.27.self_attn.k_proj.weight": "model-00004-of-00006.safetensors", + "model.layers.27.self_attn.o_proj.weight": "model-00004-of-00006.safetensors", + "model.layers.27.self_attn.q_proj.bias": "model-00004-of-00006.safetensors", + "model.layers.27.self_attn.q_proj.weight": "model-00004-of-00006.safetensors", + "model.layers.27.self_attn.v_proj.bias": "model-00004-of-00006.safetensors", + "model.layers.27.self_attn.v_proj.weight": "model-00004-of-00006.safetensors", + "model.layers.28.input_layernorm.weight": "model-00004-of-00006.safetensors", + "model.layers.28.mlp.down_proj.weight": "model-00004-of-00006.safetensors", + "model.layers.28.mlp.gate_proj.weight": "model-00004-of-00006.safetensors", + "model.layers.28.mlp.up_proj.weight": "model-00004-of-00006.safetensors", + "model.layers.28.post_attention_layernorm.weight": "model-00004-of-00006.safetensors", + "model.layers.28.self_attn.k_proj.bias": "model-00004-of-00006.safetensors", + "model.layers.28.self_attn.k_proj.weight": "model-00004-of-00006.safetensors", + "model.layers.28.self_attn.o_proj.weight": "model-00004-of-00006.safetensors", + "model.layers.28.self_attn.q_proj.bias": "model-00004-of-00006.safetensors", + "model.layers.28.self_attn.q_proj.weight": "model-00004-of-00006.safetensors", + "model.layers.28.self_attn.v_proj.bias": "model-00004-of-00006.safetensors", + "model.layers.28.self_attn.v_proj.weight": "model-00004-of-00006.safetensors", + "model.layers.29.input_layernorm.weight": "model-00004-of-00006.safetensors", + "model.layers.29.mlp.down_proj.weight": "model-00004-of-00006.safetensors", + "model.layers.29.mlp.gate_proj.weight": "model-00004-of-00006.safetensors", + "model.layers.29.mlp.up_proj.weight": "model-00004-of-00006.safetensors", + "model.layers.29.post_attention_layernorm.weight": "model-00004-of-00006.safetensors", + "model.layers.29.self_attn.k_proj.bias": "model-00004-of-00006.safetensors", + "model.layers.29.self_attn.k_proj.weight": "model-00004-of-00006.safetensors", + "model.layers.29.self_attn.o_proj.weight": "model-00004-of-00006.safetensors", + "model.layers.29.self_attn.q_proj.bias": "model-00004-of-00006.safetensors", + "model.layers.29.self_attn.q_proj.weight": "model-00004-of-00006.safetensors", + "model.layers.29.self_attn.v_proj.bias": "model-00004-of-00006.safetensors", + "model.layers.29.self_attn.v_proj.weight": "model-00004-of-00006.safetensors", + "model.layers.3.input_layernorm.weight": "model-00001-of-00006.safetensors", + "model.layers.3.mlp.down_proj.weight": "model-00001-of-00006.safetensors", + "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00006.safetensors", + "model.layers.3.mlp.up_proj.weight": "model-00001-of-00006.safetensors", + "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00006.safetensors", + "model.layers.3.self_attn.k_proj.bias": "model-00001-of-00006.safetensors", + "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00006.safetensors", + "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00006.safetensors", + "model.layers.3.self_attn.q_proj.bias": "model-00001-of-00006.safetensors", + "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00006.safetensors", + "model.layers.3.self_attn.v_proj.bias": "model-00001-of-00006.safetensors", + "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00006.safetensors", + "model.layers.30.input_layernorm.weight": "model-00004-of-00006.safetensors", + "model.layers.30.mlp.down_proj.weight": "model-00004-of-00006.safetensors", + "model.layers.30.mlp.gate_proj.weight": "model-00004-of-00006.safetensors", + "model.layers.30.mlp.up_proj.weight": "model-00004-of-00006.safetensors", + "model.layers.30.post_attention_layernorm.weight": "model-00004-of-00006.safetensors", + "model.layers.30.self_attn.k_proj.bias": "model-00004-of-00006.safetensors", + "model.layers.30.self_attn.k_proj.weight": "model-00004-of-00006.safetensors", + "model.layers.30.self_attn.o_proj.weight": "model-00004-of-00006.safetensors", + "model.layers.30.self_attn.q_proj.bias": "model-00004-of-00006.safetensors", + "model.layers.30.self_attn.q_proj.weight": "model-00004-of-00006.safetensors", + "model.layers.30.self_attn.v_proj.bias": "model-00004-of-00006.safetensors", + "model.layers.30.self_attn.v_proj.weight": "model-00004-of-00006.safetensors", + "model.layers.31.input_layernorm.weight": "model-00004-of-00006.safetensors", + "model.layers.31.mlp.down_proj.weight": "model-00004-of-00006.safetensors", + "model.layers.31.mlp.gate_proj.weight": "model-00004-of-00006.safetensors", + "model.layers.31.mlp.up_proj.weight": "model-00004-of-00006.safetensors", + "model.layers.31.post_attention_layernorm.weight": "model-00004-of-00006.safetensors", + "model.layers.31.self_attn.k_proj.bias": "model-00004-of-00006.safetensors", + "model.layers.31.self_attn.k_proj.weight": "model-00004-of-00006.safetensors", + "model.layers.31.self_attn.o_proj.weight": "model-00004-of-00006.safetensors", + "model.layers.31.self_attn.q_proj.bias": "model-00004-of-00006.safetensors", + "model.layers.31.self_attn.q_proj.weight": "model-00004-of-00006.safetensors", + "model.layers.31.self_attn.v_proj.bias": "model-00004-of-00006.safetensors", + "model.layers.31.self_attn.v_proj.weight": "model-00004-of-00006.safetensors", + "model.layers.32.input_layernorm.weight": "model-00004-of-00006.safetensors", + "model.layers.32.mlp.down_proj.weight": "model-00004-of-00006.safetensors", + "model.layers.32.mlp.gate_proj.weight": "model-00004-of-00006.safetensors", + "model.layers.32.mlp.up_proj.weight": "model-00004-of-00006.safetensors", + "model.layers.32.post_attention_layernorm.weight": "model-00004-of-00006.safetensors", + "model.layers.32.self_attn.k_proj.bias": "model-00004-of-00006.safetensors", + "model.layers.32.self_attn.k_proj.weight": "model-00004-of-00006.safetensors", + "model.layers.32.self_attn.o_proj.weight": "model-00004-of-00006.safetensors", + "model.layers.32.self_attn.q_proj.bias": "model-00004-of-00006.safetensors", + "model.layers.32.self_attn.q_proj.weight": "model-00004-of-00006.safetensors", + "model.layers.32.self_attn.v_proj.bias": "model-00004-of-00006.safetensors", + "model.layers.32.self_attn.v_proj.weight": "model-00004-of-00006.safetensors", + "model.layers.33.input_layernorm.weight": "model-00005-of-00006.safetensors", + "model.layers.33.mlp.down_proj.weight": "model-00005-of-00006.safetensors", + "model.layers.33.mlp.gate_proj.weight": "model-00005-of-00006.safetensors", + "model.layers.33.mlp.up_proj.weight": "model-00005-of-00006.safetensors", + "model.layers.33.post_attention_layernorm.weight": "model-00005-of-00006.safetensors", + "model.layers.33.self_attn.k_proj.bias": "model-00004-of-00006.safetensors", + "model.layers.33.self_attn.k_proj.weight": "model-00004-of-00006.safetensors", + "model.layers.33.self_attn.o_proj.weight": "model-00004-of-00006.safetensors", + "model.layers.33.self_attn.q_proj.bias": "model-00004-of-00006.safetensors", + "model.layers.33.self_attn.q_proj.weight": "model-00004-of-00006.safetensors", + "model.layers.33.self_attn.v_proj.bias": "model-00004-of-00006.safetensors", + "model.layers.33.self_attn.v_proj.weight": "model-00004-of-00006.safetensors", + "model.layers.34.input_layernorm.weight": "model-00005-of-00006.safetensors", + "model.layers.34.mlp.down_proj.weight": "model-00005-of-00006.safetensors", + "model.layers.34.mlp.gate_proj.weight": "model-00005-of-00006.safetensors", + "model.layers.34.mlp.up_proj.weight": "model-00005-of-00006.safetensors", + "model.layers.34.post_attention_layernorm.weight": "model-00005-of-00006.safetensors", + "model.layers.34.self_attn.k_proj.bias": "model-00005-of-00006.safetensors", + "model.layers.34.self_attn.k_proj.weight": "model-00005-of-00006.safetensors", + "model.layers.34.self_attn.o_proj.weight": "model-00005-of-00006.safetensors", + "model.layers.34.self_attn.q_proj.bias": "model-00005-of-00006.safetensors", + "model.layers.34.self_attn.q_proj.weight": "model-00005-of-00006.safetensors", + "model.layers.34.self_attn.v_proj.bias": "model-00005-of-00006.safetensors", + "model.layers.34.self_attn.v_proj.weight": "model-00005-of-00006.safetensors", + "model.layers.35.input_layernorm.weight": "model-00005-of-00006.safetensors", + "model.layers.35.mlp.down_proj.weight": "model-00005-of-00006.safetensors", + "model.layers.35.mlp.gate_proj.weight": "model-00005-of-00006.safetensors", + "model.layers.35.mlp.up_proj.weight": "model-00005-of-00006.safetensors", + "model.layers.35.post_attention_layernorm.weight": "model-00005-of-00006.safetensors", + "model.layers.35.self_attn.k_proj.bias": "model-00005-of-00006.safetensors", + "model.layers.35.self_attn.k_proj.weight": "model-00005-of-00006.safetensors", + "model.layers.35.self_attn.o_proj.weight": "model-00005-of-00006.safetensors", + "model.layers.35.self_attn.q_proj.bias": "model-00005-of-00006.safetensors", + "model.layers.35.self_attn.q_proj.weight": "model-00005-of-00006.safetensors", + "model.layers.35.self_attn.v_proj.bias": "model-00005-of-00006.safetensors", + "model.layers.35.self_attn.v_proj.weight": "model-00005-of-00006.safetensors", + "model.layers.36.input_layernorm.weight": "model-00005-of-00006.safetensors", + "model.layers.36.mlp.down_proj.weight": "model-00005-of-00006.safetensors", + "model.layers.36.mlp.gate_proj.weight": "model-00005-of-00006.safetensors", + "model.layers.36.mlp.up_proj.weight": "model-00005-of-00006.safetensors", + "model.layers.36.post_attention_layernorm.weight": "model-00005-of-00006.safetensors", + "model.layers.36.self_attn.k_proj.bias": "model-00005-of-00006.safetensors", + "model.layers.36.self_attn.k_proj.weight": "model-00005-of-00006.safetensors", + "model.layers.36.self_attn.o_proj.weight": "model-00005-of-00006.safetensors", + "model.layers.36.self_attn.q_proj.bias": "model-00005-of-00006.safetensors", + "model.layers.36.self_attn.q_proj.weight": "model-00005-of-00006.safetensors", + "model.layers.36.self_attn.v_proj.bias": "model-00005-of-00006.safetensors", + "model.layers.36.self_attn.v_proj.weight": "model-00005-of-00006.safetensors", + "model.layers.37.input_layernorm.weight": "model-00005-of-00006.safetensors", + "model.layers.37.mlp.down_proj.weight": "model-00005-of-00006.safetensors", + "model.layers.37.mlp.gate_proj.weight": "model-00005-of-00006.safetensors", + "model.layers.37.mlp.up_proj.weight": "model-00005-of-00006.safetensors", + "model.layers.37.post_attention_layernorm.weight": "model-00005-of-00006.safetensors", + "model.layers.37.self_attn.k_proj.bias": "model-00005-of-00006.safetensors", + "model.layers.37.self_attn.k_proj.weight": "model-00005-of-00006.safetensors", + "model.layers.37.self_attn.o_proj.weight": "model-00005-of-00006.safetensors", + "model.layers.37.self_attn.q_proj.bias": "model-00005-of-00006.safetensors", + "model.layers.37.self_attn.q_proj.weight": "model-00005-of-00006.safetensors", + "model.layers.37.self_attn.v_proj.bias": "model-00005-of-00006.safetensors", + "model.layers.37.self_attn.v_proj.weight": "model-00005-of-00006.safetensors", + "model.layers.38.input_layernorm.weight": "model-00005-of-00006.safetensors", + "model.layers.38.mlp.down_proj.weight": "model-00005-of-00006.safetensors", + "model.layers.38.mlp.gate_proj.weight": "model-00005-of-00006.safetensors", + "model.layers.38.mlp.up_proj.weight": "model-00005-of-00006.safetensors", + "model.layers.38.post_attention_layernorm.weight": "model-00005-of-00006.safetensors", + "model.layers.38.self_attn.k_proj.bias": "model-00005-of-00006.safetensors", + "model.layers.38.self_attn.k_proj.weight": "model-00005-of-00006.safetensors", + "model.layers.38.self_attn.o_proj.weight": "model-00005-of-00006.safetensors", + "model.layers.38.self_attn.q_proj.bias": "model-00005-of-00006.safetensors", + "model.layers.38.self_attn.q_proj.weight": "model-00005-of-00006.safetensors", + "model.layers.38.self_attn.v_proj.bias": "model-00005-of-00006.safetensors", + "model.layers.38.self_attn.v_proj.weight": "model-00005-of-00006.safetensors", + "model.layers.39.input_layernorm.weight": "model-00005-of-00006.safetensors", + "model.layers.39.mlp.down_proj.weight": "model-00005-of-00006.safetensors", + "model.layers.39.mlp.gate_proj.weight": "model-00005-of-00006.safetensors", + "model.layers.39.mlp.up_proj.weight": "model-00005-of-00006.safetensors", + "model.layers.39.post_attention_layernorm.weight": "model-00005-of-00006.safetensors", + "model.layers.39.self_attn.k_proj.bias": "model-00005-of-00006.safetensors", + "model.layers.39.self_attn.k_proj.weight": "model-00005-of-00006.safetensors", + "model.layers.39.self_attn.o_proj.weight": "model-00005-of-00006.safetensors", + "model.layers.39.self_attn.q_proj.bias": "model-00005-of-00006.safetensors", + "model.layers.39.self_attn.q_proj.weight": "model-00005-of-00006.safetensors", + "model.layers.39.self_attn.v_proj.bias": "model-00005-of-00006.safetensors", + "model.layers.39.self_attn.v_proj.weight": "model-00005-of-00006.safetensors", + "model.layers.4.input_layernorm.weight": "model-00001-of-00006.safetensors", + "model.layers.4.mlp.down_proj.weight": "model-00001-of-00006.safetensors", + "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00006.safetensors", + "model.layers.4.mlp.up_proj.weight": "model-00001-of-00006.safetensors", + "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00006.safetensors", + "model.layers.4.self_attn.k_proj.bias": "model-00001-of-00006.safetensors", + "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00006.safetensors", + "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00006.safetensors", + "model.layers.4.self_attn.q_proj.bias": "model-00001-of-00006.safetensors", + "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00006.safetensors", + "model.layers.4.self_attn.v_proj.bias": "model-00001-of-00006.safetensors", + "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00006.safetensors", + "model.layers.40.input_layernorm.weight": "model-00005-of-00006.safetensors", + "model.layers.40.mlp.down_proj.weight": "model-00005-of-00006.safetensors", + "model.layers.40.mlp.gate_proj.weight": "model-00005-of-00006.safetensors", + "model.layers.40.mlp.up_proj.weight": "model-00005-of-00006.safetensors", + "model.layers.40.post_attention_layernorm.weight": "model-00005-of-00006.safetensors", + "model.layers.40.self_attn.k_proj.bias": "model-00005-of-00006.safetensors", + "model.layers.40.self_attn.k_proj.weight": "model-00005-of-00006.safetensors", + "model.layers.40.self_attn.o_proj.weight": "model-00005-of-00006.safetensors", + "model.layers.40.self_attn.q_proj.bias": "model-00005-of-00006.safetensors", + "model.layers.40.self_attn.q_proj.weight": "model-00005-of-00006.safetensors", + "model.layers.40.self_attn.v_proj.bias": "model-00005-of-00006.safetensors", + "model.layers.40.self_attn.v_proj.weight": "model-00005-of-00006.safetensors", + "model.layers.41.input_layernorm.weight": "model-00005-of-00006.safetensors", + "model.layers.41.mlp.down_proj.weight": "model-00005-of-00006.safetensors", + "model.layers.41.mlp.gate_proj.weight": "model-00005-of-00006.safetensors", + "model.layers.41.mlp.up_proj.weight": "model-00005-of-00006.safetensors", + "model.layers.41.post_attention_layernorm.weight": "model-00005-of-00006.safetensors", + "model.layers.41.self_attn.k_proj.bias": "model-00005-of-00006.safetensors", + "model.layers.41.self_attn.k_proj.weight": "model-00005-of-00006.safetensors", + "model.layers.41.self_attn.o_proj.weight": "model-00005-of-00006.safetensors", + "model.layers.41.self_attn.q_proj.bias": "model-00005-of-00006.safetensors", + "model.layers.41.self_attn.q_proj.weight": "model-00005-of-00006.safetensors", + "model.layers.41.self_attn.v_proj.bias": "model-00005-of-00006.safetensors", + "model.layers.41.self_attn.v_proj.weight": "model-00005-of-00006.safetensors", + "model.layers.42.input_layernorm.weight": "model-00006-of-00006.safetensors", + "model.layers.42.mlp.down_proj.weight": "model-00006-of-00006.safetensors", + "model.layers.42.mlp.gate_proj.weight": "model-00006-of-00006.safetensors", + "model.layers.42.mlp.up_proj.weight": "model-00006-of-00006.safetensors", + "model.layers.42.post_attention_layernorm.weight": "model-00006-of-00006.safetensors", + "model.layers.42.self_attn.k_proj.bias": "model-00005-of-00006.safetensors", + "model.layers.42.self_attn.k_proj.weight": "model-00005-of-00006.safetensors", + "model.layers.42.self_attn.o_proj.weight": "model-00005-of-00006.safetensors", + "model.layers.42.self_attn.q_proj.bias": "model-00005-of-00006.safetensors", + "model.layers.42.self_attn.q_proj.weight": "model-00005-of-00006.safetensors", + "model.layers.42.self_attn.v_proj.bias": "model-00005-of-00006.safetensors", + "model.layers.42.self_attn.v_proj.weight": "model-00005-of-00006.safetensors", + "model.layers.43.input_layernorm.weight": "model-00006-of-00006.safetensors", + "model.layers.43.mlp.down_proj.weight": "model-00006-of-00006.safetensors", + "model.layers.43.mlp.gate_proj.weight": "model-00006-of-00006.safetensors", + "model.layers.43.mlp.up_proj.weight": "model-00006-of-00006.safetensors", + "model.layers.43.post_attention_layernorm.weight": "model-00006-of-00006.safetensors", + "model.layers.43.self_attn.k_proj.bias": "model-00006-of-00006.safetensors", + "model.layers.43.self_attn.k_proj.weight": "model-00006-of-00006.safetensors", + "model.layers.43.self_attn.o_proj.weight": "model-00006-of-00006.safetensors", + "model.layers.43.self_attn.q_proj.bias": "model-00006-of-00006.safetensors", + "model.layers.43.self_attn.q_proj.weight": "model-00006-of-00006.safetensors", + "model.layers.43.self_attn.v_proj.bias": "model-00006-of-00006.safetensors", + "model.layers.43.self_attn.v_proj.weight": "model-00006-of-00006.safetensors", + "model.layers.44.input_layernorm.weight": "model-00006-of-00006.safetensors", + "model.layers.44.mlp.down_proj.weight": "model-00006-of-00006.safetensors", + "model.layers.44.mlp.gate_proj.weight": "model-00006-of-00006.safetensors", + "model.layers.44.mlp.up_proj.weight": "model-00006-of-00006.safetensors", + "model.layers.44.post_attention_layernorm.weight": "model-00006-of-00006.safetensors", + "model.layers.44.self_attn.k_proj.bias": "model-00006-of-00006.safetensors", + "model.layers.44.self_attn.k_proj.weight": "model-00006-of-00006.safetensors", + "model.layers.44.self_attn.o_proj.weight": "model-00006-of-00006.safetensors", + "model.layers.44.self_attn.q_proj.bias": "model-00006-of-00006.safetensors", + "model.layers.44.self_attn.q_proj.weight": "model-00006-of-00006.safetensors", + "model.layers.44.self_attn.v_proj.bias": "model-00006-of-00006.safetensors", + "model.layers.44.self_attn.v_proj.weight": "model-00006-of-00006.safetensors", + "model.layers.45.input_layernorm.weight": "model-00006-of-00006.safetensors", + "model.layers.45.mlp.down_proj.weight": "model-00006-of-00006.safetensors", + "model.layers.45.mlp.gate_proj.weight": "model-00006-of-00006.safetensors", + "model.layers.45.mlp.up_proj.weight": "model-00006-of-00006.safetensors", + "model.layers.45.post_attention_layernorm.weight": "model-00006-of-00006.safetensors", + "model.layers.45.self_attn.k_proj.bias": "model-00006-of-00006.safetensors", + "model.layers.45.self_attn.k_proj.weight": "model-00006-of-00006.safetensors", + "model.layers.45.self_attn.o_proj.weight": "model-00006-of-00006.safetensors", + "model.layers.45.self_attn.q_proj.bias": "model-00006-of-00006.safetensors", + "model.layers.45.self_attn.q_proj.weight": "model-00006-of-00006.safetensors", + "model.layers.45.self_attn.v_proj.bias": "model-00006-of-00006.safetensors", + "model.layers.45.self_attn.v_proj.weight": "model-00006-of-00006.safetensors", + "model.layers.46.input_layernorm.weight": "model-00006-of-00006.safetensors", + "model.layers.46.mlp.down_proj.weight": "model-00006-of-00006.safetensors", + "model.layers.46.mlp.gate_proj.weight": "model-00006-of-00006.safetensors", + "model.layers.46.mlp.up_proj.weight": "model-00006-of-00006.safetensors", + "model.layers.46.post_attention_layernorm.weight": "model-00006-of-00006.safetensors", + "model.layers.46.self_attn.k_proj.bias": "model-00006-of-00006.safetensors", + "model.layers.46.self_attn.k_proj.weight": "model-00006-of-00006.safetensors", + "model.layers.46.self_attn.o_proj.weight": "model-00006-of-00006.safetensors", + "model.layers.46.self_attn.q_proj.bias": "model-00006-of-00006.safetensors", + "model.layers.46.self_attn.q_proj.weight": "model-00006-of-00006.safetensors", + "model.layers.46.self_attn.v_proj.bias": "model-00006-of-00006.safetensors", + "model.layers.46.self_attn.v_proj.weight": "model-00006-of-00006.safetensors", + "model.layers.47.input_layernorm.weight": "model-00006-of-00006.safetensors", + "model.layers.47.mlp.down_proj.weight": "model-00006-of-00006.safetensors", + "model.layers.47.mlp.gate_proj.weight": "model-00006-of-00006.safetensors", + "model.layers.47.mlp.up_proj.weight": "model-00006-of-00006.safetensors", + "model.layers.47.post_attention_layernorm.weight": "model-00006-of-00006.safetensors", + "model.layers.47.self_attn.k_proj.bias": "model-00006-of-00006.safetensors", + "model.layers.47.self_attn.k_proj.weight": "model-00006-of-00006.safetensors", + "model.layers.47.self_attn.o_proj.weight": "model-00006-of-00006.safetensors", + "model.layers.47.self_attn.q_proj.bias": "model-00006-of-00006.safetensors", + "model.layers.47.self_attn.q_proj.weight": "model-00006-of-00006.safetensors", + "model.layers.47.self_attn.v_proj.bias": "model-00006-of-00006.safetensors", + "model.layers.47.self_attn.v_proj.weight": "model-00006-of-00006.safetensors", + "model.layers.5.input_layernorm.weight": "model-00001-of-00006.safetensors", + "model.layers.5.mlp.down_proj.weight": "model-00001-of-00006.safetensors", + "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00006.safetensors", + "model.layers.5.mlp.up_proj.weight": "model-00001-of-00006.safetensors", + "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00006.safetensors", + "model.layers.5.self_attn.k_proj.bias": "model-00001-of-00006.safetensors", + "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00006.safetensors", + "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00006.safetensors", + "model.layers.5.self_attn.q_proj.bias": "model-00001-of-00006.safetensors", + "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00006.safetensors", + "model.layers.5.self_attn.v_proj.bias": "model-00001-of-00006.safetensors", + "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00006.safetensors", + "model.layers.6.input_layernorm.weight": "model-00002-of-00006.safetensors", + "model.layers.6.mlp.down_proj.weight": "model-00002-of-00006.safetensors", + "model.layers.6.mlp.gate_proj.weight": "model-00002-of-00006.safetensors", + "model.layers.6.mlp.up_proj.weight": "model-00002-of-00006.safetensors", + "model.layers.6.post_attention_layernorm.weight": "model-00002-of-00006.safetensors", + "model.layers.6.self_attn.k_proj.bias": "model-00001-of-00006.safetensors", + "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00006.safetensors", + "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00006.safetensors", + "model.layers.6.self_attn.q_proj.bias": "model-00001-of-00006.safetensors", + "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00006.safetensors", + "model.layers.6.self_attn.v_proj.bias": "model-00001-of-00006.safetensors", + "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00006.safetensors", + "model.layers.7.input_layernorm.weight": "model-00002-of-00006.safetensors", + "model.layers.7.mlp.down_proj.weight": "model-00002-of-00006.safetensors", + "model.layers.7.mlp.gate_proj.weight": "model-00002-of-00006.safetensors", + "model.layers.7.mlp.up_proj.weight": "model-00002-of-00006.safetensors", + "model.layers.7.post_attention_layernorm.weight": "model-00002-of-00006.safetensors", + "model.layers.7.self_attn.k_proj.bias": "model-00002-of-00006.safetensors", + "model.layers.7.self_attn.k_proj.weight": "model-00002-of-00006.safetensors", + "model.layers.7.self_attn.o_proj.weight": "model-00002-of-00006.safetensors", + "model.layers.7.self_attn.q_proj.bias": "model-00002-of-00006.safetensors", + "model.layers.7.self_attn.q_proj.weight": "model-00002-of-00006.safetensors", + "model.layers.7.self_attn.v_proj.bias": "model-00002-of-00006.safetensors", + "model.layers.7.self_attn.v_proj.weight": "model-00002-of-00006.safetensors", + "model.layers.8.input_layernorm.weight": "model-00002-of-00006.safetensors", + "model.layers.8.mlp.down_proj.weight": "model-00002-of-00006.safetensors", + "model.layers.8.mlp.gate_proj.weight": "model-00002-of-00006.safetensors", + "model.layers.8.mlp.up_proj.weight": "model-00002-of-00006.safetensors", + "model.layers.8.post_attention_layernorm.weight": "model-00002-of-00006.safetensors", + "model.layers.8.self_attn.k_proj.bias": "model-00002-of-00006.safetensors", + "model.layers.8.self_attn.k_proj.weight": "model-00002-of-00006.safetensors", + "model.layers.8.self_attn.o_proj.weight": "model-00002-of-00006.safetensors", + "model.layers.8.self_attn.q_proj.bias": "model-00002-of-00006.safetensors", + "model.layers.8.self_attn.q_proj.weight": "model-00002-of-00006.safetensors", + "model.layers.8.self_attn.v_proj.bias": "model-00002-of-00006.safetensors", + "model.layers.8.self_attn.v_proj.weight": "model-00002-of-00006.safetensors", + "model.layers.9.input_layernorm.weight": "model-00002-of-00006.safetensors", + "model.layers.9.mlp.down_proj.weight": "model-00002-of-00006.safetensors", + "model.layers.9.mlp.gate_proj.weight": "model-00002-of-00006.safetensors", + "model.layers.9.mlp.up_proj.weight": "model-00002-of-00006.safetensors", + "model.layers.9.post_attention_layernorm.weight": "model-00002-of-00006.safetensors", + "model.layers.9.self_attn.k_proj.bias": "model-00002-of-00006.safetensors", + "model.layers.9.self_attn.k_proj.weight": "model-00002-of-00006.safetensors", + "model.layers.9.self_attn.o_proj.weight": "model-00002-of-00006.safetensors", + "model.layers.9.self_attn.q_proj.bias": "model-00002-of-00006.safetensors", + "model.layers.9.self_attn.q_proj.weight": "model-00002-of-00006.safetensors", + "model.layers.9.self_attn.v_proj.bias": "model-00002-of-00006.safetensors", + "model.layers.9.self_attn.v_proj.weight": "model-00002-of-00006.safetensors", + "model.norm.weight": "model-00006-of-00006.safetensors" + } +} diff --git a/tldr-14b-step-832/rng_state_0.pth b/tldr-14b-step-832/rng_state_0.pth new file mode 100644 index 0000000000000000000000000000000000000000..32f3ae6ea318e47276edcfd028d3478172dd10bf --- /dev/null +++ b/tldr-14b-step-832/rng_state_0.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:f068e2025a4f00989e9c03d01c1281f7d1906969b0fbe7319192d985b5de4d49 +size 15984 diff --git a/tldr-14b-step-832/rng_state_1.pth b/tldr-14b-step-832/rng_state_1.pth new file mode 100644 index 0000000000000000000000000000000000000000..f87392cf4192ff7b3b5e66d95f0e33718cd80f52 --- /dev/null +++ b/tldr-14b-step-832/rng_state_1.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:2120f02ce7a002ef9e970ec506c42eb25f7d875f674566d6ad7c342a0a258acd +size 15984 diff --git a/tldr-14b-step-832/rng_state_2.pth b/tldr-14b-step-832/rng_state_2.pth new file mode 100644 index 0000000000000000000000000000000000000000..ebf595b2c68ebcdbda3e0ec4ed2acb79adb60d5d --- /dev/null +++ b/tldr-14b-step-832/rng_state_2.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:c78254b86c335260938fb97d27b32bab843db1941a13389d01fefd73eef0201b +size 15984 diff --git a/tldr-14b-step-832/rng_state_3.pth b/tldr-14b-step-832/rng_state_3.pth new file mode 100644 index 0000000000000000000000000000000000000000..da10e558e5ebb8173b8d03601c2ce6920e6ccdb3 --- /dev/null +++ b/tldr-14b-step-832/rng_state_3.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:610071c273687a048043135ba6e816c86cd8cbc842496954bb1b35ca01c4c382 +size 15984 diff --git a/tldr-14b-step-832/rng_state_4.pth b/tldr-14b-step-832/rng_state_4.pth new file mode 100644 index 0000000000000000000000000000000000000000..8e26a45d0ef6fc1b7138021e57c7b30b9e0bf6c1 --- /dev/null +++ b/tldr-14b-step-832/rng_state_4.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:8edad2884c4e758562a95fef0fcf48f82a9ce39dbace5d1e32bcbfb847c72140 +size 15984 diff --git a/tldr-14b-step-832/rng_state_5.pth b/tldr-14b-step-832/rng_state_5.pth new file mode 100644 index 0000000000000000000000000000000000000000..de8fda1aa4a62fe184e0720a579156c51adec166 --- /dev/null +++ b/tldr-14b-step-832/rng_state_5.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:f1a41860bf7ca64b413a603bb6d5f036cb9d3c9a7f940c56733ca7e6bfab8afe +size 15984 diff --git a/tldr-14b-step-832/rng_state_6.pth b/tldr-14b-step-832/rng_state_6.pth new file mode 100644 index 0000000000000000000000000000000000000000..cadeb2bf9407db3bd357428f07d7ca520aabaabe --- /dev/null +++ b/tldr-14b-step-832/rng_state_6.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:258cea0926b92515dd8e0b49a91e9c7c6562597efa3422fce84c690cdf7c126c +size 15984 diff --git a/tldr-14b-step-832/rng_state_7.pth b/tldr-14b-step-832/rng_state_7.pth new file mode 100644 index 0000000000000000000000000000000000000000..e8e75fe55cffce8c3ace06a83e87ce45f07bcbc5 --- /dev/null +++ b/tldr-14b-step-832/rng_state_7.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:ca741f170ce54d6b6c5971457ec6506474163b21edaa3fbaa4e5285d89d229b1 +size 15984 diff --git a/tldr-14b-step-832/scheduler.pt b/tldr-14b-step-832/scheduler.pt new file mode 100644 index 0000000000000000000000000000000000000000..a87fde8fa287ce640046980702cc5efb1bc5c6d4 --- /dev/null +++ b/tldr-14b-step-832/scheduler.pt @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:ed96bbe4d84037e4c18f95733da1d2d5bb47c4402c4d667156d5ed1ff760dfb0 +size 1064 diff --git a/tldr-14b-step-832/special_tokens_map.json b/tldr-14b-step-832/special_tokens_map.json new file mode 100644 index 0000000000000000000000000000000000000000..1d385d62cf08bca35254547902b792c243656ec1 --- /dev/null +++ b/tldr-14b-step-832/special_tokens_map.json @@ -0,0 +1,23 @@ +{ + "bos_token": { + "content": "<|begin▁of▁sentence|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false + }, + "eos_token": { + "content": "<|end▁of▁sentence|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false + }, + "pad_token": { + "content": "<|end▁of▁sentence|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false + } +} diff --git a/tldr-14b-step-832/tokenizer.json b/tldr-14b-step-832/tokenizer.json new file mode 100644 index 0000000000000000000000000000000000000000..1a2db243e47cbc113f6b2ddcc388aeeb8fe1a94c --- /dev/null +++ b/tldr-14b-step-832/tokenizer.json @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:e20ddafc659ba90242154b55275402edeca0715e5dbb30f56815a4ce081f4893 +size 11422778 diff --git a/tldr-14b-step-832/tokenizer_config.json b/tldr-14b-step-832/tokenizer_config.json new file mode 100644 index 0000000000000000000000000000000000000000..cb7864ff3d42916223f0a1f0dc6ccae482ff498f --- /dev/null +++ b/tldr-14b-step-832/tokenizer_config.json @@ -0,0 +1,195 @@ +{ + "add_bos_token": true, + "add_eos_token": false, + "add_prefix_space": null, + "added_tokens_decoder": { + "151643": { + "content": "<|end▁of▁sentence|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "151644": { + "content": "<|User|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": false + }, + "151645": { + "content": "<|Assistant|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": false + }, + "151646": { + "content": "<|begin▁of▁sentence|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "151647": { + "content": "<|EOT|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": false + }, + "151648": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": false + }, + "151649": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": false + }, + "151650": { + "content": "<|quad_start|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "151651": { + "content": "<|quad_end|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "151652": { + "content": "<|vision_start|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "151653": { + "content": "<|vision_end|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "151654": { + "content": "<|vision_pad|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "151655": { + "content": "<|image_pad|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "151656": { + "content": "<|video_pad|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "151657": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": false + }, + "151658": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": false + }, + "151659": { + "content": "<|fim_prefix|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": false + }, + "151660": { + "content": "<|fim_middle|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": false + }, + "151661": { + "content": "<|fim_suffix|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": false + }, + "151662": { + "content": "<|fim_pad|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": false + }, + "151663": { + "content": "<|repo_name|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": false + }, + "151664": { + "content": "<|file_sep|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": false + } + }, + "bos_token": "<|begin▁of▁sentence|>", + "chat_template": "{% if not add_generation_prompt is defined %}{% set add_generation_prompt = false %}{% endif %}{% set ns = namespace(is_first=false, is_tool=false, is_output_first=true, system_prompt='') %}{%- for message in messages %}{%- if message['role'] == 'system' %}{% set ns.system_prompt = message['content'] %}{%- endif %}{%- endfor %}{{bos_token}}{{ns.system_prompt}}{%- for message in messages %}{%- if message['role'] == 'user' %}{%- set ns.is_tool = false -%}{{'<|User|>' + message['content']}}{%- endif %}{%- if message['role'] == 'assistant' and message['content'] is none %}{%- set ns.is_tool = false -%}{%- for tool in message['tool_calls']%}{%- if not ns.is_first %}{{'<|Assistant|><|tool▁calls▁begin|><|tool▁call▁begin|>' + tool['type'] + '<|tool▁sep|>' + tool['function']['name'] + '\\n' + '```json' + '\\n' + tool['function']['arguments'] + '\\n' + '```' + '<|tool▁call▁end|>'}}{%- set ns.is_first = true -%}{%- else %}{{'\\n' + '<|tool▁call▁begin|>' + tool['type'] + '<|tool▁sep|>' + tool['function']['name'] + '\\n' + '```json' + '\\n' + tool['function']['arguments'] + '\\n' + '```' + '<|tool▁call▁end|>'}}{{'<|tool▁calls▁end|><|end▁of▁sentence|>'}}{%- endif %}{%- endfor %}{%- endif %}{%- if message['role'] == 'assistant' and message['content'] is not none %}{%- if ns.is_tool %}{{'<|tool▁outputs▁end|>' + message['content'] + '<|end▁of▁sentence|>'}}{%- set ns.is_tool = false -%}{%- else %}{% set content = message['content'] %}{% if '' in content %}{% set content = content.split('')[-1] %}{% endif %}{{'<|Assistant|>' + content + '<|end▁of▁sentence|>'}}{%- endif %}{%- endif %}{%- if message['role'] == 'tool' %}{%- set ns.is_tool = true -%}{%- if ns.is_output_first %}{{'<|tool▁outputs▁begin|><|tool▁output▁begin|>' + message['content'] + '<|tool▁output▁end|>'}}{%- set ns.is_output_first = false %}{%- else %}{{'\\n<|tool▁output▁begin|>' + message['content'] + '<|tool▁output▁end|>'}}{%- endif %}{%- endif %}{%- endfor -%}{% if ns.is_tool %}{{'<|tool▁outputs▁end|>'}}{% endif %}{% if add_generation_prompt and not ns.is_tool %}{{'<|Assistant|>\\n'}}{% endif %}", + "clean_up_tokenization_spaces": false, + "eos_token": "<|end▁of▁sentence|>", + "legacy": true, + "model_max_length": 16000, + "pad_token": "<|end▁of▁sentence|>", + "padding_side": "left", + "sp_model_kwargs": {}, + "tokenizer_class": "LlamaTokenizer", + "unk_token": null, + "use_default_system_prompt": false +} diff --git a/tldr-14b-step-832/trainer_state.json b/tldr-14b-step-832/trainer_state.json new file mode 100644 index 0000000000000000000000000000000000000000..568a693589c2da9c746fc9ca1b07a49c81d5a0b1 --- /dev/null +++ b/tldr-14b-step-832/trainer_state.json @@ -0,0 +1,6091 @@ +{ + "best_metric": null, + "best_model_checkpoint": null, + "epoch": 0.416, + "eval_steps": 32, + "global_step": 832, + "is_hyper_param_search": false, + "is_local_process_zero": true, + "is_world_process_zero": true, + "log_history": [ + { + "epoch": 0.0005, + "grad_norm": 1.1535558177055725, + "learning_rate": 1e-05, + "loss": 0.4543, + "step": 1 + }, + { + "epoch": 0.001, + "grad_norm": 0.5039215671909039, + "learning_rate": 1e-05, + "loss": 0.3002, + "step": 2 + }, + { + "epoch": 0.0015, + "grad_norm": 0.4111085873239227, + "learning_rate": 1e-05, + "loss": 0.2138, + "step": 3 + }, + { + "epoch": 0.002, + "grad_norm": 0.3258240952011462, + "learning_rate": 1e-05, + "loss": 0.1761, + "step": 4 + }, + { + "epoch": 0.0025, + "grad_norm": 0.25417983371771585, + "learning_rate": 1e-05, + "loss": 0.1923, + "step": 5 + }, + { + "epoch": 0.003, + "grad_norm": 0.2023054568437071, + "learning_rate": 1e-05, + "loss": 0.2035, + "step": 6 + }, + { + "epoch": 0.0035, + "grad_norm": 0.29479546251817934, + "learning_rate": 1e-05, + "loss": 0.166, + "step": 7 + }, + { + "epoch": 0.004, + "grad_norm": 0.2603707531918473, + "learning_rate": 1e-05, + "loss": 0.1563, + "step": 8 + }, + { + "epoch": 0.0045, + "grad_norm": 0.27772543950112105, + "learning_rate": 1e-05, + "loss": 0.1742, + "step": 9 + }, + { + "epoch": 0.005, + "grad_norm": 0.33899668368493546, + "learning_rate": 1e-05, + "loss": 0.1623, + "step": 10 + }, + { + "epoch": 0.0055, + "grad_norm": 0.17293404759978015, + "learning_rate": 1e-05, + "loss": 0.1902, + "step": 11 + }, + { + "epoch": 0.006, + "grad_norm": 0.16812733049304054, + "learning_rate": 1e-05, + "loss": 0.1505, + "step": 12 + }, + { + "epoch": 0.0065, + "grad_norm": 0.24635507048250077, + "learning_rate": 1e-05, + "loss": 0.1496, + "step": 13 + }, + { + "epoch": 0.007, + "grad_norm": 0.23026986852648482, + "learning_rate": 1e-05, + "loss": 0.1428, + "step": 14 + }, + { + "epoch": 0.0075, + "grad_norm": 0.20312493098149043, + "learning_rate": 1e-05, + "loss": 0.1411, + "step": 15 + }, + { + "epoch": 0.008, + "grad_norm": 0.19056569111470645, + "learning_rate": 1e-05, + "loss": 0.1556, + "step": 16 + }, + { + "epoch": 0.0085, + "grad_norm": 0.19180586046592904, + "learning_rate": 1e-05, + "loss": 0.1448, + "step": 17 + }, + { + "epoch": 0.009, + "grad_norm": 0.23670452313674922, + "learning_rate": 1e-05, + "loss": 0.1272, + "step": 18 + }, + { + "epoch": 0.0095, + "grad_norm": 0.2241037709056984, + "learning_rate": 1e-05, + "loss": 0.1584, + "step": 19 + }, + { + "epoch": 0.01, + "grad_norm": 0.1828368631692288, + "learning_rate": 1e-05, + "loss": 0.1347, + "step": 20 + }, + { + "epoch": 0.0105, + "grad_norm": 0.23115912688140353, + "learning_rate": 1e-05, + "loss": 0.1293, + "step": 21 + }, + { + "epoch": 0.011, + "grad_norm": 0.18886903067681482, + "learning_rate": 1e-05, + "loss": 0.1175, + "step": 22 + }, + { + "epoch": 0.0115, + "grad_norm": 0.19723236256202736, + "learning_rate": 1e-05, + "loss": 0.1665, + "step": 23 + }, + { + "epoch": 0.012, + "grad_norm": 0.2141017706399641, + "learning_rate": 1e-05, + "loss": 0.1491, + "step": 24 + }, + { + "epoch": 0.0125, + "grad_norm": 0.19090893978368054, + "learning_rate": 1e-05, + "loss": 0.1113, + "step": 25 + }, + { + "epoch": 0.013, + "grad_norm": 0.2460352826446744, + "learning_rate": 1e-05, + "loss": 0.1142, + "step": 26 + }, + { + "epoch": 0.0135, + "grad_norm": 0.21847319513439203, + "learning_rate": 1e-05, + "loss": 0.1273, + "step": 27 + }, + { + "epoch": 0.014, + "grad_norm": 0.18979686333150375, + "learning_rate": 1e-05, + "loss": 0.1441, + "step": 28 + }, + { + "epoch": 0.0145, + "grad_norm": 0.18886921913659824, + "learning_rate": 1e-05, + "loss": 0.1481, + "step": 29 + }, + { + "epoch": 0.015, + "grad_norm": 0.2115532479997522, + "learning_rate": 1e-05, + "loss": 0.0792, + "step": 30 + }, + { + "epoch": 0.0155, + "grad_norm": 0.20266301051804922, + "learning_rate": 1e-05, + "loss": 0.1379, + "step": 31 + }, + { + "epoch": 0.016, + "grad_norm": 0.1865900767381873, + "learning_rate": 1e-05, + "loss": 0.1453, + "step": 32 + }, + { + "epoch": 0.016, + "eval_dev_acc": 0.61328125, + "eval_dev_token": 5204.017578125, + "eval_runtime": 351.6008, + "eval_samples_per_second": 0.182, + "eval_steps_per_second": 0.003, + "step": 32 + }, + { + "epoch": 0.0165, + "grad_norm": 0.23402804608211233, + "learning_rate": 1e-05, + "loss": 0.1461, + "step": 33 + }, + { + "epoch": 0.017, + "grad_norm": 0.2191224488373381, + "learning_rate": 1e-05, + "loss": 0.1076, + "step": 34 + }, + { + "epoch": 0.0175, + "grad_norm": 0.18221820677824999, + "learning_rate": 1e-05, + "loss": 0.138, + "step": 35 + }, + { + "epoch": 0.018, + "grad_norm": 0.20326615377722793, + "learning_rate": 1e-05, + "loss": 0.1021, + "step": 36 + }, + { + "epoch": 0.0185, + "grad_norm": 0.2449658821374275, + "learning_rate": 1e-05, + "loss": 0.0881, + "step": 37 + }, + { + "epoch": 0.019, + "grad_norm": 0.2068478649138205, + "learning_rate": 1e-05, + "loss": 0.1249, + "step": 38 + }, + { + "epoch": 0.0195, + "grad_norm": 0.22630770783782977, + "learning_rate": 1e-05, + "loss": 0.1259, + "step": 39 + }, + { + "epoch": 0.02, + "grad_norm": 0.21173641583720768, + "learning_rate": 1e-05, + "loss": 0.1331, + "step": 40 + }, + { + "epoch": 0.0205, + "grad_norm": 0.23616623193061376, + "learning_rate": 1e-05, + "loss": 0.1192, + "step": 41 + }, + { + "epoch": 0.021, + "grad_norm": 0.20789242969830385, + "learning_rate": 1e-05, + "loss": 0.159, + "step": 42 + }, + { + "epoch": 0.0215, + "grad_norm": 0.21662842275351119, + "learning_rate": 1e-05, + "loss": 0.1455, + "step": 43 + }, + { + "epoch": 0.022, + "grad_norm": 0.224914886884455, + "learning_rate": 1e-05, + "loss": 0.1565, + "step": 44 + }, + { + "epoch": 0.0225, + "grad_norm": 0.17642201019062015, + "learning_rate": 1e-05, + "loss": 0.1022, + "step": 45 + }, + { + "epoch": 0.023, + "grad_norm": 0.19476006095917964, + "learning_rate": 1e-05, + "loss": 0.1738, + "step": 46 + }, + { + "epoch": 0.0235, + "grad_norm": 0.2041987726527936, + "learning_rate": 1e-05, + "loss": 0.1545, + "step": 47 + }, + { + "epoch": 0.024, + "grad_norm": 0.15364946520211809, + "learning_rate": 1e-05, + "loss": 0.141, + "step": 48 + }, + { + "epoch": 0.0245, + "grad_norm": 0.1632596100583654, + "learning_rate": 1e-05, + "loss": 0.1493, + "step": 49 + }, + { + "epoch": 0.025, + "grad_norm": 0.23305215604624085, + "learning_rate": 1e-05, + "loss": 0.1164, + "step": 50 + }, + { + "epoch": 0.0255, + "grad_norm": 0.2697225282405861, + "learning_rate": 1e-05, + "loss": 0.0921, + "step": 51 + }, + { + "epoch": 0.026, + "grad_norm": 0.19242004892152365, + "learning_rate": 1e-05, + "loss": 0.1224, + "step": 52 + }, + { + "epoch": 0.0265, + "grad_norm": 0.21422189358330607, + "learning_rate": 1e-05, + "loss": 0.1084, + "step": 53 + }, + { + "epoch": 0.027, + "grad_norm": 0.22368520523252378, + "learning_rate": 1e-05, + "loss": 0.1018, + "step": 54 + }, + { + "epoch": 0.0275, + "grad_norm": 0.15315126193234804, + "learning_rate": 1e-05, + "loss": 0.117, + "step": 55 + }, + { + "epoch": 0.028, + "grad_norm": 0.2042745134173473, + "learning_rate": 1e-05, + "loss": 0.1355, + "step": 56 + }, + { + "epoch": 0.0285, + "grad_norm": 0.23889007522498773, + "learning_rate": 1e-05, + "loss": 0.1387, + "step": 57 + }, + { + "epoch": 0.029, + "grad_norm": 0.17240068749452392, + "learning_rate": 1e-05, + "loss": 0.1634, + "step": 58 + }, + { + "epoch": 0.0295, + "grad_norm": 0.1899912754500666, + "learning_rate": 1e-05, + "loss": 0.1027, + "step": 59 + }, + { + "epoch": 0.03, + "grad_norm": 0.17118724561465037, + "learning_rate": 1e-05, + "loss": 0.1398, + "step": 60 + }, + { + "epoch": 0.0305, + "grad_norm": 0.19950059905690032, + "learning_rate": 1e-05, + "loss": 0.1118, + "step": 61 + }, + { + "epoch": 0.031, + "grad_norm": 0.19928365636144094, + "learning_rate": 1e-05, + "loss": 0.1146, + "step": 62 + }, + { + "epoch": 0.0315, + "grad_norm": 0.23146246196039105, + "learning_rate": 1e-05, + "loss": 0.0871, + "step": 63 + }, + { + "epoch": 0.032, + "grad_norm": 0.22746980065915193, + "learning_rate": 1e-05, + "loss": 0.1673, + "step": 64 + }, + { + "epoch": 0.032, + "eval_dev_acc": 0.541015625, + "eval_dev_token": 5677.76171875, + "eval_runtime": 358.7405, + "eval_samples_per_second": 0.178, + "eval_steps_per_second": 0.003, + "step": 64 + }, + { + "epoch": 0.0325, + "grad_norm": 0.1992092305273338, + "learning_rate": 1e-05, + "loss": 0.1292, + "step": 65 + }, + { + "epoch": 0.033, + "grad_norm": 0.19429880128063629, + "learning_rate": 1e-05, + "loss": 0.0911, + "step": 66 + }, + { + "epoch": 0.0335, + "grad_norm": 0.1287473705431077, + "learning_rate": 1e-05, + "loss": 0.1377, + "step": 67 + }, + { + "epoch": 0.034, + "grad_norm": 0.2228992327697556, + "learning_rate": 1e-05, + "loss": 0.0933, + "step": 68 + }, + { + "epoch": 0.0345, + "grad_norm": 0.18793882506839266, + "learning_rate": 1e-05, + "loss": 0.1097, + "step": 69 + }, + { + "epoch": 0.035, + "grad_norm": 0.1932965061071618, + "learning_rate": 1e-05, + "loss": 0.1062, + "step": 70 + }, + { + "epoch": 0.0355, + "grad_norm": 0.20585403698562318, + "learning_rate": 1e-05, + "loss": 0.1279, + "step": 71 + }, + { + "epoch": 0.036, + "grad_norm": 0.17833203451544913, + "learning_rate": 1e-05, + "loss": 0.1353, + "step": 72 + }, + { + "epoch": 0.0365, + "grad_norm": 0.21658266347490054, + "learning_rate": 1e-05, + "loss": 0.0961, + "step": 73 + }, + { + "epoch": 0.037, + "grad_norm": 0.2364173046757495, + "learning_rate": 1e-05, + "loss": 0.1038, + "step": 74 + }, + { + "epoch": 0.0375, + "grad_norm": 0.20844999333456934, + "learning_rate": 1e-05, + "loss": 0.1266, + "step": 75 + }, + { + "epoch": 0.038, + "grad_norm": 0.2288998611422715, + "learning_rate": 1e-05, + "loss": 0.0872, + "step": 76 + }, + { + "epoch": 0.0385, + "grad_norm": 0.1878179335817694, + "learning_rate": 1e-05, + "loss": 0.1038, + "step": 77 + }, + { + "epoch": 0.039, + "grad_norm": 0.19984002821227043, + "learning_rate": 1e-05, + "loss": 0.1376, + "step": 78 + }, + { + "epoch": 0.0395, + "grad_norm": 0.20050327741314344, + "learning_rate": 1e-05, + "loss": 0.135, + "step": 79 + }, + { + "epoch": 0.04, + "grad_norm": 0.19353835667751798, + "learning_rate": 1e-05, + "loss": 0.12, + "step": 80 + }, + { + "epoch": 0.0405, + "grad_norm": 0.12986340217496, + "learning_rate": 1e-05, + "loss": 0.1754, + "step": 81 + }, + { + "epoch": 0.041, + "grad_norm": 0.1889393654868388, + "learning_rate": 1e-05, + "loss": 0.1206, + "step": 82 + }, + { + "epoch": 0.0415, + "grad_norm": 0.17201063783314552, + "learning_rate": 1e-05, + "loss": 0.1401, + "step": 83 + }, + { + "epoch": 0.042, + "grad_norm": 0.19004092111820917, + "learning_rate": 1e-05, + "loss": 0.122, + "step": 84 + }, + { + "epoch": 0.0425, + "grad_norm": 0.21797692428743218, + "learning_rate": 1e-05, + "loss": 0.127, + "step": 85 + }, + { + "epoch": 0.043, + "grad_norm": 0.16779726003397347, + "learning_rate": 1e-05, + "loss": 0.1437, + "step": 86 + }, + { + "epoch": 0.0435, + "grad_norm": 0.23214262430834917, + "learning_rate": 1e-05, + "loss": 0.1187, + "step": 87 + }, + { + "epoch": 0.044, + "grad_norm": 0.19415443790822307, + "learning_rate": 1e-05, + "loss": 0.1063, + "step": 88 + }, + { + "epoch": 0.0445, + "grad_norm": 0.19254517148646239, + "learning_rate": 1e-05, + "loss": 0.1039, + "step": 89 + }, + { + "epoch": 0.045, + "grad_norm": 0.17307659461239167, + "learning_rate": 1e-05, + "loss": 0.1554, + "step": 90 + }, + { + "epoch": 0.0455, + "grad_norm": 0.24265029122082277, + "learning_rate": 1e-05, + "loss": 0.1387, + "step": 91 + }, + { + "epoch": 0.046, + "grad_norm": 0.17107218032177454, + "learning_rate": 1e-05, + "loss": 0.1301, + "step": 92 + }, + { + "epoch": 0.0465, + "grad_norm": 0.18075891622609033, + "learning_rate": 1e-05, + "loss": 0.1174, + "step": 93 + }, + { + "epoch": 0.047, + "grad_norm": 0.21595935885391185, + "learning_rate": 1e-05, + "loss": 0.1129, + "step": 94 + }, + { + "epoch": 0.0475, + "grad_norm": 0.23262812126963384, + "learning_rate": 1e-05, + "loss": 0.0983, + "step": 95 + }, + { + "epoch": 0.048, + "grad_norm": 0.20420999614021612, + "learning_rate": 1e-05, + "loss": 0.1161, + "step": 96 + }, + { + "epoch": 0.048, + "eval_dev_acc": 0.63671875, + "eval_dev_token": 5515.37109375, + "eval_runtime": 348.8656, + "eval_samples_per_second": 0.183, + "eval_steps_per_second": 0.003, + "step": 96 + }, + { + "epoch": 0.0485, + "grad_norm": 0.22980199994832454, + "learning_rate": 1e-05, + "loss": 0.1, + "step": 97 + }, + { + "epoch": 0.049, + "grad_norm": 0.19262135795217625, + "learning_rate": 1e-05, + "loss": 0.1124, + "step": 98 + }, + { + "epoch": 0.0495, + "grad_norm": 0.22869326649776367, + "learning_rate": 1e-05, + "loss": 0.1094, + "step": 99 + }, + { + "epoch": 0.05, + "grad_norm": 0.24173954720541516, + "learning_rate": 1e-05, + "loss": 0.0847, + "step": 100 + }, + { + "epoch": 0.0505, + "grad_norm": 0.2332215752101726, + "learning_rate": 1e-05, + "loss": 0.0946, + "step": 101 + }, + { + "epoch": 0.051, + "grad_norm": 0.26475494931892063, + "learning_rate": 1e-05, + "loss": 0.1094, + "step": 102 + }, + { + "epoch": 0.0515, + "grad_norm": 0.20833383536152603, + "learning_rate": 1e-05, + "loss": 0.0931, + "step": 103 + }, + { + "epoch": 0.052, + "grad_norm": 0.22676431614598225, + "learning_rate": 1e-05, + "loss": 0.0866, + "step": 104 + }, + { + "epoch": 0.0525, + "grad_norm": 0.22204744101927545, + "learning_rate": 1e-05, + "loss": 0.0984, + "step": 105 + }, + { + "epoch": 0.053, + "grad_norm": 0.2012349417230909, + "learning_rate": 1e-05, + "loss": 0.0899, + "step": 106 + }, + { + "epoch": 0.0535, + "grad_norm": 0.20131082411517556, + "learning_rate": 1e-05, + "loss": 0.095, + "step": 107 + }, + { + "epoch": 0.054, + "grad_norm": 0.2501268960199406, + "learning_rate": 1e-05, + "loss": 0.0872, + "step": 108 + }, + { + "epoch": 0.0545, + "grad_norm": 0.1877564425582315, + "learning_rate": 1e-05, + "loss": 0.1447, + "step": 109 + }, + { + "epoch": 0.055, + "grad_norm": 0.26373944955124323, + "learning_rate": 1e-05, + "loss": 0.1104, + "step": 110 + }, + { + "epoch": 0.0555, + "grad_norm": 0.2201267469286863, + "learning_rate": 1e-05, + "loss": 0.0864, + "step": 111 + }, + { + "epoch": 0.056, + "grad_norm": 0.2584324977531668, + "learning_rate": 1e-05, + "loss": 0.1243, + "step": 112 + }, + { + "epoch": 0.0565, + "grad_norm": 0.21251509346212935, + "learning_rate": 1e-05, + "loss": 0.1287, + "step": 113 + }, + { + "epoch": 0.057, + "grad_norm": 0.2391921924682281, + "learning_rate": 1e-05, + "loss": 0.1174, + "step": 114 + }, + { + "epoch": 0.0575, + "grad_norm": 0.2250627442441596, + "learning_rate": 1e-05, + "loss": 0.0961, + "step": 115 + }, + { + "epoch": 0.058, + "grad_norm": 0.21589217619835932, + "learning_rate": 1e-05, + "loss": 0.1041, + "step": 116 + }, + { + "epoch": 0.0585, + "grad_norm": 0.23947622053978754, + "learning_rate": 1e-05, + "loss": 0.1027, + "step": 117 + }, + { + "epoch": 0.059, + "grad_norm": 0.20944871960722214, + "learning_rate": 1e-05, + "loss": 0.1117, + "step": 118 + }, + { + "epoch": 0.0595, + "grad_norm": 0.2025724984657677, + "learning_rate": 1e-05, + "loss": 0.1102, + "step": 119 + }, + { + "epoch": 0.06, + "grad_norm": 0.1801908473330023, + "learning_rate": 1e-05, + "loss": 0.1072, + "step": 120 + }, + { + "epoch": 0.0605, + "grad_norm": 0.1940191661946107, + "learning_rate": 1e-05, + "loss": 0.0904, + "step": 121 + }, + { + "epoch": 0.061, + "grad_norm": 0.21867530545592728, + "learning_rate": 1e-05, + "loss": 0.1193, + "step": 122 + }, + { + "epoch": 0.0615, + "grad_norm": 0.22225462024793874, + "learning_rate": 1e-05, + "loss": 0.0782, + "step": 123 + }, + { + "epoch": 0.062, + "grad_norm": 0.24241920616546134, + "learning_rate": 1e-05, + "loss": 0.1099, + "step": 124 + }, + { + "epoch": 0.0625, + "grad_norm": 0.21360306106975577, + "learning_rate": 1e-05, + "loss": 0.091, + "step": 125 + }, + { + "epoch": 0.063, + "grad_norm": 0.2007423950283759, + "learning_rate": 1e-05, + "loss": 0.1152, + "step": 126 + }, + { + "epoch": 0.0635, + "grad_norm": 0.19343038731295426, + "learning_rate": 1e-05, + "loss": 0.1181, + "step": 127 + }, + { + "epoch": 0.064, + "grad_norm": 0.234786663580031, + "learning_rate": 1e-05, + "loss": 0.1149, + "step": 128 + }, + { + "epoch": 0.064, + "eval_dev_acc": 0.548828125, + "eval_dev_token": 5586.20703125, + "eval_runtime": 364.0015, + "eval_samples_per_second": 0.176, + "eval_steps_per_second": 0.003, + "step": 128 + }, + { + "epoch": 0.0645, + "grad_norm": 0.20468481909378916, + "learning_rate": 1e-05, + "loss": 0.0976, + "step": 129 + }, + { + "epoch": 0.065, + "grad_norm": 0.25320635754138643, + "learning_rate": 1e-05, + "loss": 0.1183, + "step": 130 + }, + { + "epoch": 0.0655, + "grad_norm": 0.21530698126365438, + "learning_rate": 1e-05, + "loss": 0.1156, + "step": 131 + }, + { + "epoch": 0.066, + "grad_norm": 0.20489101859011527, + "learning_rate": 1e-05, + "loss": 0.0991, + "step": 132 + }, + { + "epoch": 0.0665, + "grad_norm": 0.21113632835377186, + "learning_rate": 1e-05, + "loss": 0.0838, + "step": 133 + }, + { + "epoch": 0.067, + "grad_norm": 0.18341595697478763, + "learning_rate": 1e-05, + "loss": 0.1036, + "step": 134 + }, + { + "epoch": 0.0675, + "grad_norm": 0.1762785527366556, + "learning_rate": 1e-05, + "loss": 0.1674, + "step": 135 + }, + { + "epoch": 0.068, + "grad_norm": 0.2632947258005063, + "learning_rate": 1e-05, + "loss": 0.1202, + "step": 136 + }, + { + "epoch": 0.0685, + "grad_norm": 0.21085919863317307, + "learning_rate": 1e-05, + "loss": 0.1131, + "step": 137 + }, + { + "epoch": 0.069, + "grad_norm": 0.19457697084640746, + "learning_rate": 1e-05, + "loss": 0.1005, + "step": 138 + }, + { + "epoch": 0.0695, + "grad_norm": 0.17119664823512107, + "learning_rate": 1e-05, + "loss": 0.1389, + "step": 139 + }, + { + "epoch": 0.07, + "grad_norm": 0.19084161070023772, + "learning_rate": 1e-05, + "loss": 0.1527, + "step": 140 + }, + { + "epoch": 0.0705, + "grad_norm": 0.19580784724822164, + "learning_rate": 1e-05, + "loss": 0.1175, + "step": 141 + }, + { + "epoch": 0.071, + "grad_norm": 0.2110588281462844, + "learning_rate": 1e-05, + "loss": 0.1062, + "step": 142 + }, + { + "epoch": 0.0715, + "grad_norm": 0.20012341575489243, + "learning_rate": 1e-05, + "loss": 0.0848, + "step": 143 + }, + { + "epoch": 0.072, + "grad_norm": 0.1940479696118561, + "learning_rate": 1e-05, + "loss": 0.0694, + "step": 144 + }, + { + "epoch": 0.0725, + "grad_norm": 0.21593290579494073, + "learning_rate": 1e-05, + "loss": 0.0766, + "step": 145 + }, + { + "epoch": 0.073, + "grad_norm": 0.22638726501654005, + "learning_rate": 1e-05, + "loss": 0.1084, + "step": 146 + }, + { + "epoch": 0.0735, + "grad_norm": 0.20997037800742063, + "learning_rate": 1e-05, + "loss": 0.0761, + "step": 147 + }, + { + "epoch": 0.074, + "grad_norm": 0.2380179005894331, + "learning_rate": 1e-05, + "loss": 0.0927, + "step": 148 + }, + { + "epoch": 0.0745, + "grad_norm": 0.23889516090857615, + "learning_rate": 1e-05, + "loss": 0.0827, + "step": 149 + }, + { + "epoch": 0.075, + "grad_norm": 0.18767850358859223, + "learning_rate": 1e-05, + "loss": 0.0881, + "step": 150 + }, + { + "epoch": 0.0755, + "grad_norm": 0.19463069265385494, + "learning_rate": 1e-05, + "loss": 0.0917, + "step": 151 + }, + { + "epoch": 0.076, + "grad_norm": 0.212834963744102, + "learning_rate": 1e-05, + "loss": 0.0756, + "step": 152 + }, + { + "epoch": 0.0765, + "grad_norm": 0.20584172308777918, + "learning_rate": 1e-05, + "loss": 0.0762, + "step": 153 + }, + { + "epoch": 0.077, + "grad_norm": 0.2371449651260928, + "learning_rate": 1e-05, + "loss": 0.0978, + "step": 154 + }, + { + "epoch": 0.0775, + "grad_norm": 0.2049083024101962, + "learning_rate": 1e-05, + "loss": 0.0925, + "step": 155 + }, + { + "epoch": 0.078, + "grad_norm": 0.21217273061342656, + "learning_rate": 1e-05, + "loss": 0.0825, + "step": 156 + }, + { + "epoch": 0.0785, + "grad_norm": 0.20105825530151383, + "learning_rate": 1e-05, + "loss": 0.0858, + "step": 157 + }, + { + "epoch": 0.079, + "grad_norm": 0.2257052714675071, + "learning_rate": 1e-05, + "loss": 0.1105, + "step": 158 + }, + { + "epoch": 0.0795, + "grad_norm": 0.20210858652943217, + "learning_rate": 1e-05, + "loss": 0.1022, + "step": 159 + }, + { + "epoch": 0.08, + "grad_norm": 0.19482796495242663, + "learning_rate": 1e-05, + "loss": 0.1262, + "step": 160 + }, + { + "epoch": 0.08, + "eval_dev_acc": 0.6015625, + "eval_dev_token": 5543.318359375, + "eval_runtime": 353.7068, + "eval_samples_per_second": 0.181, + "eval_steps_per_second": 0.003, + "step": 160 + }, + { + "epoch": 0.0805, + "grad_norm": 0.22955090034416561, + "learning_rate": 1e-05, + "loss": 0.0988, + "step": 161 + }, + { + "epoch": 0.081, + "grad_norm": 0.23547588568917174, + "learning_rate": 1e-05, + "loss": 0.0803, + "step": 162 + }, + { + "epoch": 0.0815, + "grad_norm": 0.230658904399123, + "learning_rate": 1e-05, + "loss": 0.0881, + "step": 163 + }, + { + "epoch": 0.082, + "grad_norm": 0.2595571094242936, + "learning_rate": 1e-05, + "loss": 0.0881, + "step": 164 + }, + { + "epoch": 0.0825, + "grad_norm": 0.26763452927239884, + "learning_rate": 1e-05, + "loss": 0.114, + "step": 165 + }, + { + "epoch": 0.083, + "grad_norm": 0.257549186353109, + "learning_rate": 1e-05, + "loss": 0.1045, + "step": 166 + }, + { + "epoch": 0.0835, + "grad_norm": 0.19712751160118708, + "learning_rate": 1e-05, + "loss": 0.0899, + "step": 167 + }, + { + "epoch": 0.084, + "grad_norm": 0.17276675854807147, + "learning_rate": 1e-05, + "loss": 0.0684, + "step": 168 + }, + { + "epoch": 0.0845, + "grad_norm": 0.21103265575626073, + "learning_rate": 1e-05, + "loss": 0.0821, + "step": 169 + }, + { + "epoch": 0.085, + "grad_norm": 0.22292947141761962, + "learning_rate": 1e-05, + "loss": 0.0983, + "step": 170 + }, + { + "epoch": 0.0855, + "grad_norm": 0.21612821069411284, + "learning_rate": 1e-05, + "loss": 0.0917, + "step": 171 + }, + { + "epoch": 0.086, + "grad_norm": 0.20757781370778242, + "learning_rate": 1e-05, + "loss": 0.0919, + "step": 172 + }, + { + "epoch": 0.0865, + "grad_norm": 0.2054200483785948, + "learning_rate": 1e-05, + "loss": 0.077, + "step": 173 + }, + { + "epoch": 0.087, + "grad_norm": 0.24143931624393172, + "learning_rate": 1e-05, + "loss": 0.0919, + "step": 174 + }, + { + "epoch": 0.0875, + "grad_norm": 0.22708368965968964, + "learning_rate": 1e-05, + "loss": 0.0931, + "step": 175 + }, + { + "epoch": 0.088, + "grad_norm": 0.20044838709826737, + "learning_rate": 1e-05, + "loss": 0.0808, + "step": 176 + }, + { + "epoch": 0.0885, + "grad_norm": 0.20148090317828546, + "learning_rate": 1e-05, + "loss": 0.0905, + "step": 177 + }, + { + "epoch": 0.089, + "grad_norm": 0.2090109676571514, + "learning_rate": 1e-05, + "loss": 0.0801, + "step": 178 + }, + { + "epoch": 0.0895, + "grad_norm": 0.19147542578517765, + "learning_rate": 1e-05, + "loss": 0.0774, + "step": 179 + }, + { + "epoch": 0.09, + "grad_norm": 0.22051053694604383, + "learning_rate": 1e-05, + "loss": 0.0949, + "step": 180 + }, + { + "epoch": 0.0905, + "grad_norm": 0.20152485004966214, + "learning_rate": 1e-05, + "loss": 0.077, + "step": 181 + }, + { + "epoch": 0.091, + "grad_norm": 0.18668034234550573, + "learning_rate": 1e-05, + "loss": 0.0887, + "step": 182 + }, + { + "epoch": 0.0915, + "grad_norm": 0.21497572062563422, + "learning_rate": 1e-05, + "loss": 0.095, + "step": 183 + }, + { + "epoch": 0.092, + "grad_norm": 0.21716742542098177, + "learning_rate": 1e-05, + "loss": 0.0822, + "step": 184 + }, + { + "epoch": 0.0925, + "grad_norm": 0.20262525326126424, + "learning_rate": 1e-05, + "loss": 0.0804, + "step": 185 + }, + { + "epoch": 0.093, + "grad_norm": 0.18652482669251277, + "learning_rate": 1e-05, + "loss": 0.0959, + "step": 186 + }, + { + "epoch": 0.0935, + "grad_norm": 0.232270946947485, + "learning_rate": 1e-05, + "loss": 0.0785, + "step": 187 + }, + { + "epoch": 0.094, + "grad_norm": 0.22559277541611453, + "learning_rate": 1e-05, + "loss": 0.0868, + "step": 188 + }, + { + "epoch": 0.0945, + "grad_norm": 0.21772738934026295, + "learning_rate": 1e-05, + "loss": 0.1384, + "step": 189 + }, + { + "epoch": 0.095, + "grad_norm": 0.19366625753900965, + "learning_rate": 1e-05, + "loss": 0.0962, + "step": 190 + }, + { + "epoch": 0.0955, + "grad_norm": 0.2162137483161777, + "learning_rate": 1e-05, + "loss": 0.0753, + "step": 191 + }, + { + "epoch": 0.096, + "grad_norm": 0.2111612755929646, + "learning_rate": 1e-05, + "loss": 0.0776, + "step": 192 + }, + { + "epoch": 0.096, + "eval_dev_acc": 0.546875, + "eval_dev_token": 5439.14453125, + "eval_runtime": 358.6784, + "eval_samples_per_second": 0.178, + "eval_steps_per_second": 0.003, + "step": 192 + }, + { + "epoch": 0.0965, + "grad_norm": 0.20427587800007568, + "learning_rate": 1e-05, + "loss": 0.1026, + "step": 193 + }, + { + "epoch": 0.097, + "grad_norm": 0.1913558266102393, + "learning_rate": 1e-05, + "loss": 0.0947, + "step": 194 + }, + { + "epoch": 0.0975, + "grad_norm": 0.21823580107793827, + "learning_rate": 1e-05, + "loss": 0.0852, + "step": 195 + }, + { + "epoch": 0.098, + "grad_norm": 0.21947391378003933, + "learning_rate": 1e-05, + "loss": 0.0834, + "step": 196 + }, + { + "epoch": 0.0985, + "grad_norm": 0.2234108965736748, + "learning_rate": 1e-05, + "loss": 0.0922, + "step": 197 + }, + { + "epoch": 0.099, + "grad_norm": 0.20738196532743278, + "learning_rate": 1e-05, + "loss": 0.0814, + "step": 198 + }, + { + "epoch": 0.0995, + "grad_norm": 0.21586171895392783, + "learning_rate": 1e-05, + "loss": 0.0988, + "step": 199 + }, + { + "epoch": 0.1, + "grad_norm": 0.20785742252782521, + "learning_rate": 1e-05, + "loss": 0.0872, + "step": 200 + }, + { + "epoch": 0.1005, + "grad_norm": 0.22570317690675268, + "learning_rate": 1e-05, + "loss": 0.0937, + "step": 201 + }, + { + "epoch": 0.101, + "grad_norm": 0.19453877023547578, + "learning_rate": 1e-05, + "loss": 0.1083, + "step": 202 + }, + { + "epoch": 0.1015, + "grad_norm": 0.20591293588894416, + "learning_rate": 1e-05, + "loss": 0.0767, + "step": 203 + }, + { + "epoch": 0.102, + "grad_norm": 0.1798554117116506, + "learning_rate": 1e-05, + "loss": 0.1017, + "step": 204 + }, + { + "epoch": 0.1025, + "grad_norm": 0.1927231622743242, + "learning_rate": 1e-05, + "loss": 0.0911, + "step": 205 + }, + { + "epoch": 0.103, + "grad_norm": 0.21444122564196544, + "learning_rate": 1e-05, + "loss": 0.0856, + "step": 206 + }, + { + "epoch": 0.1035, + "grad_norm": 0.17259842125017608, + "learning_rate": 1e-05, + "loss": 0.0904, + "step": 207 + }, + { + "epoch": 0.104, + "grad_norm": 0.23979518316140722, + "learning_rate": 1e-05, + "loss": 0.084, + "step": 208 + }, + { + "epoch": 0.1045, + "grad_norm": 0.22442151254111703, + "learning_rate": 1e-05, + "loss": 0.0949, + "step": 209 + }, + { + "epoch": 0.105, + "grad_norm": 0.19615294291751353, + "learning_rate": 1e-05, + "loss": 0.0864, + "step": 210 + }, + { + "epoch": 0.1055, + "grad_norm": 0.18344154651920094, + "learning_rate": 1e-05, + "loss": 0.0843, + "step": 211 + }, + { + "epoch": 0.106, + "grad_norm": 0.21335203803361255, + "learning_rate": 1e-05, + "loss": 0.077, + "step": 212 + }, + { + "epoch": 0.1065, + "grad_norm": 0.252518444172673, + "learning_rate": 1e-05, + "loss": 0.0888, + "step": 213 + }, + { + "epoch": 0.107, + "grad_norm": 0.2116629068211744, + "learning_rate": 1e-05, + "loss": 0.098, + "step": 214 + }, + { + "epoch": 0.1075, + "grad_norm": 0.21920052784491295, + "learning_rate": 1e-05, + "loss": 0.0823, + "step": 215 + }, + { + "epoch": 0.108, + "grad_norm": 0.19779399311082105, + "learning_rate": 1e-05, + "loss": 0.0752, + "step": 216 + }, + { + "epoch": 0.1085, + "grad_norm": 0.19973286372655655, + "learning_rate": 1e-05, + "loss": 0.074, + "step": 217 + }, + { + "epoch": 0.109, + "grad_norm": 0.22343594632856933, + "learning_rate": 1e-05, + "loss": 0.0907, + "step": 218 + }, + { + "epoch": 0.1095, + "grad_norm": 0.25396426928555105, + "learning_rate": 1e-05, + "loss": 0.1075, + "step": 219 + }, + { + "epoch": 0.11, + "grad_norm": 0.1945715284952783, + "learning_rate": 1e-05, + "loss": 0.1053, + "step": 220 + }, + { + "epoch": 0.1105, + "grad_norm": 0.21559958220587308, + "learning_rate": 1e-05, + "loss": 0.0865, + "step": 221 + }, + { + "epoch": 0.111, + "grad_norm": 0.22369755043282374, + "learning_rate": 1e-05, + "loss": 0.0841, + "step": 222 + }, + { + "epoch": 0.1115, + "grad_norm": 0.2097379198995065, + "learning_rate": 1e-05, + "loss": 0.0753, + "step": 223 + }, + { + "epoch": 0.112, + "grad_norm": 0.17224880947033328, + "learning_rate": 1e-05, + "loss": 0.0699, + "step": 224 + }, + { + "epoch": 0.112, + "eval_dev_acc": 0.560546875, + "eval_dev_token": 5619.009765625, + "eval_runtime": 357.3428, + "eval_samples_per_second": 0.179, + "eval_steps_per_second": 0.003, + "step": 224 + }, + { + "epoch": 0.1125, + "grad_norm": 0.19442868536212735, + "learning_rate": 1e-05, + "loss": 0.0846, + "step": 225 + }, + { + "epoch": 0.113, + "grad_norm": 0.1573515275602218, + "learning_rate": 1e-05, + "loss": 0.0634, + "step": 226 + }, + { + "epoch": 0.1135, + "grad_norm": 0.17680777096637068, + "learning_rate": 1e-05, + "loss": 0.0761, + "step": 227 + }, + { + "epoch": 0.114, + "grad_norm": 0.20935704393341403, + "learning_rate": 1e-05, + "loss": 0.0549, + "step": 228 + }, + { + "epoch": 0.1145, + "grad_norm": 0.19829321187204563, + "learning_rate": 1e-05, + "loss": 0.05, + "step": 229 + }, + { + "epoch": 0.115, + "grad_norm": 0.18833561824346334, + "learning_rate": 1e-05, + "loss": 0.0656, + "step": 230 + }, + { + "epoch": 0.1155, + "grad_norm": 0.17277292328026173, + "learning_rate": 1e-05, + "loss": 0.08, + "step": 231 + }, + { + "epoch": 0.116, + "grad_norm": 0.2083709354078263, + "learning_rate": 1e-05, + "loss": 0.0628, + "step": 232 + }, + { + "epoch": 0.1165, + "grad_norm": 0.18113171413223286, + "learning_rate": 1e-05, + "loss": 0.0633, + "step": 233 + }, + { + "epoch": 0.117, + "grad_norm": 0.19985236934976783, + "learning_rate": 1e-05, + "loss": 0.0676, + "step": 234 + }, + { + "epoch": 0.1175, + "grad_norm": 0.2023196182410912, + "learning_rate": 1e-05, + "loss": 0.062, + "step": 235 + }, + { + "epoch": 0.118, + "grad_norm": 0.19446408540605106, + "learning_rate": 1e-05, + "loss": 0.0609, + "step": 236 + }, + { + "epoch": 0.1185, + "grad_norm": 0.1879635955015942, + "learning_rate": 1e-05, + "loss": 0.0631, + "step": 237 + }, + { + "epoch": 0.119, + "grad_norm": 0.18000098291861588, + "learning_rate": 1e-05, + "loss": 0.0628, + "step": 238 + }, + { + "epoch": 0.1195, + "grad_norm": 0.2091766063587954, + "learning_rate": 1e-05, + "loss": 0.0642, + "step": 239 + }, + { + "epoch": 0.12, + "grad_norm": 0.19781458462773657, + "learning_rate": 1e-05, + "loss": 0.0551, + "step": 240 + }, + { + "epoch": 0.1205, + "grad_norm": 0.20570535681429145, + "learning_rate": 1e-05, + "loss": 0.062, + "step": 241 + }, + { + "epoch": 0.121, + "grad_norm": 0.17479813291913535, + "learning_rate": 1e-05, + "loss": 0.0657, + "step": 242 + }, + { + "epoch": 0.1215, + "grad_norm": 0.20023576215167263, + "learning_rate": 1e-05, + "loss": 0.0545, + "step": 243 + }, + { + "epoch": 0.122, + "grad_norm": 0.21569894284947272, + "learning_rate": 1e-05, + "loss": 0.0641, + "step": 244 + }, + { + "epoch": 0.1225, + "grad_norm": 0.16426082027771785, + "learning_rate": 1e-05, + "loss": 0.0488, + "step": 245 + }, + { + "epoch": 0.123, + "grad_norm": 0.23142807048539513, + "learning_rate": 1e-05, + "loss": 0.0617, + "step": 246 + }, + { + "epoch": 0.1235, + "grad_norm": 0.21054969399806525, + "learning_rate": 1e-05, + "loss": 0.0566, + "step": 247 + }, + { + "epoch": 0.124, + "grad_norm": 0.1533567582820314, + "learning_rate": 1e-05, + "loss": 0.0559, + "step": 248 + }, + { + "epoch": 0.1245, + "grad_norm": 0.19025683614022437, + "learning_rate": 1e-05, + "loss": 0.051, + "step": 249 + }, + { + "epoch": 0.125, + "grad_norm": 0.16411772241541067, + "learning_rate": 1e-05, + "loss": 0.068, + "step": 250 + }, + { + "epoch": 0.1255, + "grad_norm": 0.23699209914417435, + "learning_rate": 1e-05, + "loss": 0.0845, + "step": 251 + }, + { + "epoch": 0.126, + "grad_norm": 0.2047456890167515, + "learning_rate": 1e-05, + "loss": 0.0588, + "step": 252 + }, + { + "epoch": 0.1265, + "grad_norm": 0.20625503133501016, + "learning_rate": 1e-05, + "loss": 0.0543, + "step": 253 + }, + { + "epoch": 0.127, + "grad_norm": 0.16081505489801892, + "learning_rate": 1e-05, + "loss": 0.0413, + "step": 254 + }, + { + "epoch": 0.1275, + "grad_norm": 0.20221086748641462, + "learning_rate": 1e-05, + "loss": 0.0704, + "step": 255 + }, + { + "epoch": 0.128, + "grad_norm": 0.20711399972324054, + "learning_rate": 1e-05, + "loss": 0.0563, + "step": 256 + }, + { + "epoch": 0.128, + "eval_dev_acc": 0.587890625, + "eval_dev_token": 5704.3125, + "eval_runtime": 356.7726, + "eval_samples_per_second": 0.179, + "eval_steps_per_second": 0.003, + "step": 256 + }, + { + "epoch": 0.1285, + "grad_norm": 0.18942704583355485, + "learning_rate": 1e-05, + "loss": 0.0692, + "step": 257 + }, + { + "epoch": 0.129, + "grad_norm": 0.19171984906136896, + "learning_rate": 1e-05, + "loss": 0.05, + "step": 258 + }, + { + "epoch": 0.1295, + "grad_norm": 0.2125382567332232, + "learning_rate": 1e-05, + "loss": 0.0615, + "step": 259 + }, + { + "epoch": 0.13, + "grad_norm": 0.17877261040661208, + "learning_rate": 1e-05, + "loss": 0.0597, + "step": 260 + }, + { + "epoch": 0.1305, + "grad_norm": 0.1708210973205684, + "learning_rate": 1e-05, + "loss": 0.067, + "step": 261 + }, + { + "epoch": 0.131, + "grad_norm": 0.1850887764718648, + "learning_rate": 1e-05, + "loss": 0.0544, + "step": 262 + }, + { + "epoch": 0.1315, + "grad_norm": 0.2010060822058417, + "learning_rate": 1e-05, + "loss": 0.0696, + "step": 263 + }, + { + "epoch": 0.132, + "grad_norm": 0.18460835555899294, + "learning_rate": 1e-05, + "loss": 0.0607, + "step": 264 + }, + { + "epoch": 0.1325, + "grad_norm": 0.2264686856441524, + "learning_rate": 1e-05, + "loss": 0.0638, + "step": 265 + }, + { + "epoch": 0.133, + "grad_norm": 0.17252712599660533, + "learning_rate": 1e-05, + "loss": 0.055, + "step": 266 + }, + { + "epoch": 0.1335, + "grad_norm": 0.1668268871760919, + "learning_rate": 1e-05, + "loss": 0.0467, + "step": 267 + }, + { + "epoch": 0.134, + "grad_norm": 0.17711472127782535, + "learning_rate": 1e-05, + "loss": 0.0462, + "step": 268 + }, + { + "epoch": 0.1345, + "grad_norm": 0.16354851889499628, + "learning_rate": 1e-05, + "loss": 0.0687, + "step": 269 + }, + { + "epoch": 0.135, + "grad_norm": 0.17844367901102645, + "learning_rate": 1e-05, + "loss": 0.0455, + "step": 270 + }, + { + "epoch": 0.1355, + "grad_norm": 0.19303024902618696, + "learning_rate": 1e-05, + "loss": 0.0565, + "step": 271 + }, + { + "epoch": 0.136, + "grad_norm": 0.19049740233006035, + "learning_rate": 1e-05, + "loss": 0.0575, + "step": 272 + }, + { + "epoch": 0.1365, + "grad_norm": 0.18444934835307936, + "learning_rate": 1e-05, + "loss": 0.0495, + "step": 273 + }, + { + "epoch": 0.137, + "grad_norm": 0.2029153556589725, + "learning_rate": 1e-05, + "loss": 0.0632, + "step": 274 + }, + { + "epoch": 0.1375, + "grad_norm": 0.17742276348080663, + "learning_rate": 1e-05, + "loss": 0.0591, + "step": 275 + }, + { + "epoch": 0.138, + "grad_norm": 0.2086941032177491, + "learning_rate": 1e-05, + "loss": 0.0453, + "step": 276 + }, + { + "epoch": 0.1385, + "grad_norm": 0.1599025673655474, + "learning_rate": 1e-05, + "loss": 0.0346, + "step": 277 + }, + { + "epoch": 0.139, + "grad_norm": 0.20223917188200294, + "learning_rate": 1e-05, + "loss": 0.0516, + "step": 278 + }, + { + "epoch": 0.1395, + "grad_norm": 0.168572629555483, + "learning_rate": 1e-05, + "loss": 0.0502, + "step": 279 + }, + { + "epoch": 0.14, + "grad_norm": 0.21316857087336016, + "learning_rate": 1e-05, + "loss": 0.0585, + "step": 280 + }, + { + "epoch": 0.1405, + "grad_norm": 0.1533009935920478, + "learning_rate": 1e-05, + "loss": 0.0732, + "step": 281 + }, + { + "epoch": 0.141, + "grad_norm": 0.2226592493652288, + "learning_rate": 1e-05, + "loss": 0.0683, + "step": 282 + }, + { + "epoch": 0.1415, + "grad_norm": 0.2005052634299014, + "learning_rate": 1e-05, + "loss": 0.064, + "step": 283 + }, + { + "epoch": 0.142, + "grad_norm": 0.16977898059181232, + "learning_rate": 1e-05, + "loss": 0.0759, + "step": 284 + }, + { + "epoch": 0.1425, + "grad_norm": 0.17622048198257903, + "learning_rate": 1e-05, + "loss": 0.0546, + "step": 285 + }, + { + "epoch": 0.143, + "grad_norm": 0.15734345344681852, + "learning_rate": 1e-05, + "loss": 0.0371, + "step": 286 + }, + { + "epoch": 0.1435, + "grad_norm": 0.16097527322211574, + "learning_rate": 1e-05, + "loss": 0.0523, + "step": 287 + }, + { + "epoch": 0.144, + "grad_norm": 0.18490744056020517, + "learning_rate": 1e-05, + "loss": 0.0518, + "step": 288 + }, + { + "epoch": 0.144, + "eval_dev_acc": 0.5234375, + "eval_dev_token": 5945.451171875, + "eval_runtime": 402.5197, + "eval_samples_per_second": 0.159, + "eval_steps_per_second": 0.002, + "step": 288 + }, + { + "epoch": 0.1445, + "grad_norm": 0.16803932674344507, + "learning_rate": 1e-05, + "loss": 0.0564, + "step": 289 + }, + { + "epoch": 0.145, + "grad_norm": 0.18279683357896828, + "learning_rate": 1e-05, + "loss": 0.0604, + "step": 290 + }, + { + "epoch": 0.1455, + "grad_norm": 0.1773550481655194, + "learning_rate": 1e-05, + "loss": 0.0465, + "step": 291 + }, + { + "epoch": 0.146, + "grad_norm": 0.37855180864427374, + "learning_rate": 1e-05, + "loss": 0.0687, + "step": 292 + }, + { + "epoch": 0.1465, + "grad_norm": 0.2256173969538139, + "learning_rate": 1e-05, + "loss": 0.0597, + "step": 293 + }, + { + "epoch": 0.147, + "grad_norm": 0.19318315047474646, + "learning_rate": 1e-05, + "loss": 0.05, + "step": 294 + }, + { + "epoch": 0.1475, + "grad_norm": 0.1949573691249157, + "learning_rate": 1e-05, + "loss": 0.054, + "step": 295 + }, + { + "epoch": 0.148, + "grad_norm": 0.1784893290182381, + "learning_rate": 1e-05, + "loss": 0.0551, + "step": 296 + }, + { + "epoch": 0.1485, + "grad_norm": 0.1893518286787237, + "learning_rate": 1e-05, + "loss": 0.0582, + "step": 297 + }, + { + "epoch": 0.149, + "grad_norm": 0.16491423015511872, + "learning_rate": 1e-05, + "loss": 0.0393, + "step": 298 + }, + { + "epoch": 0.1495, + "grad_norm": 0.1762274160177828, + "learning_rate": 1e-05, + "loss": 0.0485, + "step": 299 + }, + { + "epoch": 0.15, + "grad_norm": 0.18398727773770782, + "learning_rate": 1e-05, + "loss": 0.0573, + "step": 300 + }, + { + "epoch": 0.1505, + "grad_norm": 0.18217281656040227, + "learning_rate": 1e-05, + "loss": 0.0485, + "step": 301 + }, + { + "epoch": 0.151, + "grad_norm": 0.17276763991718358, + "learning_rate": 1e-05, + "loss": 0.0571, + "step": 302 + }, + { + "epoch": 0.1515, + "grad_norm": 0.15668609882813492, + "learning_rate": 1e-05, + "loss": 0.0741, + "step": 303 + }, + { + "epoch": 0.152, + "grad_norm": 0.18965888700513778, + "learning_rate": 1e-05, + "loss": 0.0548, + "step": 304 + }, + { + "epoch": 0.1525, + "grad_norm": 0.1514861962476675, + "learning_rate": 1e-05, + "loss": 0.0408, + "step": 305 + }, + { + "epoch": 0.153, + "grad_norm": 0.21027930287961952, + "learning_rate": 1e-05, + "loss": 0.0473, + "step": 306 + }, + { + "epoch": 0.1535, + "grad_norm": 0.20086505297048218, + "learning_rate": 1e-05, + "loss": 0.0457, + "step": 307 + }, + { + "epoch": 0.154, + "grad_norm": 0.1834058060370301, + "learning_rate": 1e-05, + "loss": 0.0391, + "step": 308 + }, + { + "epoch": 0.1545, + "grad_norm": 0.1675035648173745, + "learning_rate": 1e-05, + "loss": 0.0346, + "step": 309 + }, + { + "epoch": 0.155, + "grad_norm": 0.19041217604042332, + "learning_rate": 1e-05, + "loss": 0.0447, + "step": 310 + }, + { + "epoch": 0.1555, + "grad_norm": 0.2063641120441124, + "learning_rate": 1e-05, + "loss": 0.0454, + "step": 311 + }, + { + "epoch": 0.156, + "grad_norm": 0.18205494058640856, + "learning_rate": 1e-05, + "loss": 0.0402, + "step": 312 + }, + { + "epoch": 0.1565, + "grad_norm": 0.18642039675473027, + "learning_rate": 1e-05, + "loss": 0.0397, + "step": 313 + }, + { + "epoch": 0.157, + "grad_norm": 0.16971154384699963, + "learning_rate": 1e-05, + "loss": 0.0426, + "step": 314 + }, + { + "epoch": 0.1575, + "grad_norm": 0.19779499600374534, + "learning_rate": 1e-05, + "loss": 0.042, + "step": 315 + }, + { + "epoch": 0.158, + "grad_norm": 0.1597506922805199, + "learning_rate": 1e-05, + "loss": 0.0561, + "step": 316 + }, + { + "epoch": 0.1585, + "grad_norm": 0.22455898943377722, + "learning_rate": 1e-05, + "loss": 0.0508, + "step": 317 + }, + { + "epoch": 0.159, + "grad_norm": 0.22816888070811367, + "learning_rate": 1e-05, + "loss": 0.0684, + "step": 318 + }, + { + "epoch": 0.1595, + "grad_norm": 0.20829314487846406, + "learning_rate": 1e-05, + "loss": 0.0558, + "step": 319 + }, + { + "epoch": 0.16, + "grad_norm": 0.1726376642892394, + "learning_rate": 1e-05, + "loss": 0.0382, + "step": 320 + }, + { + "epoch": 0.16, + "eval_dev_acc": 0.62109375, + "eval_dev_token": 5348.43359375, + "eval_runtime": 348.0694, + "eval_samples_per_second": 0.184, + "eval_steps_per_second": 0.003, + "step": 320 + }, + { + "epoch": 0.1605, + "grad_norm": 0.21533911997871472, + "learning_rate": 1e-05, + "loss": 0.0573, + "step": 321 + }, + { + "epoch": 0.161, + "grad_norm": 0.1945926926705701, + "learning_rate": 1e-05, + "loss": 0.0482, + "step": 322 + }, + { + "epoch": 0.1615, + "grad_norm": 0.16282045186801866, + "learning_rate": 1e-05, + "loss": 0.0395, + "step": 323 + }, + { + "epoch": 0.162, + "grad_norm": 0.21192465805738625, + "learning_rate": 1e-05, + "loss": 0.0534, + "step": 324 + }, + { + "epoch": 0.1625, + "grad_norm": 0.18412473332196624, + "learning_rate": 1e-05, + "loss": 0.0457, + "step": 325 + }, + { + "epoch": 0.163, + "grad_norm": 0.1760683716395308, + "learning_rate": 1e-05, + "loss": 0.0621, + "step": 326 + }, + { + "epoch": 0.1635, + "grad_norm": 0.1977120327808734, + "learning_rate": 1e-05, + "loss": 0.0443, + "step": 327 + }, + { + "epoch": 0.164, + "grad_norm": 0.17834928432327893, + "learning_rate": 1e-05, + "loss": 0.0474, + "step": 328 + }, + { + "epoch": 0.1645, + "grad_norm": 0.19810362807929732, + "learning_rate": 1e-05, + "loss": 0.0472, + "step": 329 + }, + { + "epoch": 0.165, + "grad_norm": 0.17306554655229037, + "learning_rate": 1e-05, + "loss": 0.0514, + "step": 330 + }, + { + "epoch": 0.1655, + "grad_norm": 0.1732660830513622, + "learning_rate": 1e-05, + "loss": 0.0487, + "step": 331 + }, + { + "epoch": 0.166, + "grad_norm": 0.15153749458139032, + "learning_rate": 1e-05, + "loss": 0.044, + "step": 332 + }, + { + "epoch": 0.1665, + "grad_norm": 0.20187085045913772, + "learning_rate": 1e-05, + "loss": 0.0551, + "step": 333 + }, + { + "epoch": 0.167, + "grad_norm": 0.16579582791974742, + "learning_rate": 1e-05, + "loss": 0.0497, + "step": 334 + }, + { + "epoch": 0.1675, + "grad_norm": 0.19316064563692958, + "learning_rate": 1e-05, + "loss": 0.0549, + "step": 335 + }, + { + "epoch": 0.168, + "grad_norm": 0.16491714800111232, + "learning_rate": 1e-05, + "loss": 0.0371, + "step": 336 + }, + { + "epoch": 0.1685, + "grad_norm": 0.17551519178449135, + "learning_rate": 1e-05, + "loss": 0.041, + "step": 337 + }, + { + "epoch": 0.169, + "grad_norm": 0.1734781492111704, + "learning_rate": 1e-05, + "loss": 0.0441, + "step": 338 + }, + { + "epoch": 0.1695, + "grad_norm": 0.18684315556716974, + "learning_rate": 1e-05, + "loss": 0.0488, + "step": 339 + }, + { + "epoch": 0.17, + "grad_norm": 0.16917376679576818, + "learning_rate": 1e-05, + "loss": 0.0437, + "step": 340 + }, + { + "epoch": 0.1705, + "grad_norm": 0.1501957333162884, + "learning_rate": 1e-05, + "loss": 0.0393, + "step": 341 + }, + { + "epoch": 0.171, + "grad_norm": 0.2205121105977978, + "learning_rate": 1e-05, + "loss": 0.0579, + "step": 342 + }, + { + "epoch": 0.1715, + "grad_norm": 0.18041963938373073, + "learning_rate": 1e-05, + "loss": 0.0492, + "step": 343 + }, + { + "epoch": 0.172, + "grad_norm": 0.17449103579952038, + "learning_rate": 1e-05, + "loss": 0.0401, + "step": 344 + }, + { + "epoch": 0.1725, + "grad_norm": 0.15528177663303303, + "learning_rate": 1e-05, + "loss": 0.0379, + "step": 345 + }, + { + "epoch": 0.173, + "grad_norm": 0.20473861699417553, + "learning_rate": 1e-05, + "loss": 0.0499, + "step": 346 + }, + { + "epoch": 0.1735, + "grad_norm": 0.22954222855804748, + "learning_rate": 1e-05, + "loss": 0.066, + "step": 347 + }, + { + "epoch": 0.174, + "grad_norm": 0.18144976711639327, + "learning_rate": 1e-05, + "loss": 0.0417, + "step": 348 + }, + { + "epoch": 0.1745, + "grad_norm": 0.1647885822020398, + "learning_rate": 1e-05, + "loss": 0.0406, + "step": 349 + }, + { + "epoch": 0.175, + "grad_norm": 0.13381930823784724, + "learning_rate": 1e-05, + "loss": 0.039, + "step": 350 + }, + { + "epoch": 0.1755, + "grad_norm": 0.17233840695200286, + "learning_rate": 1e-05, + "loss": 0.0504, + "step": 351 + }, + { + "epoch": 0.176, + "grad_norm": 0.18220085493590332, + "learning_rate": 1e-05, + "loss": 0.0411, + "step": 352 + }, + { + "epoch": 0.176, + "eval_dev_acc": 0.53515625, + "eval_dev_token": 5787.59375, + "eval_runtime": 364.0085, + "eval_samples_per_second": 0.176, + "eval_steps_per_second": 0.003, + "step": 352 + }, + { + "epoch": 0.1765, + "grad_norm": 0.20744185724682074, + "learning_rate": 1e-05, + "loss": 0.0606, + "step": 353 + }, + { + "epoch": 0.177, + "grad_norm": 0.18600570998480834, + "learning_rate": 1e-05, + "loss": 0.0416, + "step": 354 + }, + { + "epoch": 0.1775, + "grad_norm": 0.1776469292641811, + "learning_rate": 1e-05, + "loss": 0.042, + "step": 355 + }, + { + "epoch": 0.178, + "grad_norm": 0.1783568782453835, + "learning_rate": 1e-05, + "loss": 0.0457, + "step": 356 + }, + { + "epoch": 0.1785, + "grad_norm": 0.1981729227656145, + "learning_rate": 1e-05, + "loss": 0.0578, + "step": 357 + }, + { + "epoch": 0.179, + "grad_norm": 0.18984703197303243, + "learning_rate": 1e-05, + "loss": 0.0427, + "step": 358 + }, + { + "epoch": 0.1795, + "grad_norm": 0.21799846739281004, + "learning_rate": 1e-05, + "loss": 0.0492, + "step": 359 + }, + { + "epoch": 0.18, + "grad_norm": 0.2263278306065525, + "learning_rate": 1e-05, + "loss": 0.0708, + "step": 360 + }, + { + "epoch": 0.1805, + "grad_norm": 0.16612125798758726, + "learning_rate": 1e-05, + "loss": 0.0447, + "step": 361 + }, + { + "epoch": 0.181, + "grad_norm": 0.15311766872023147, + "learning_rate": 1e-05, + "loss": 0.0369, + "step": 362 + }, + { + "epoch": 0.1815, + "grad_norm": 0.18614757917185834, + "learning_rate": 1e-05, + "loss": 0.0484, + "step": 363 + }, + { + "epoch": 0.182, + "grad_norm": 0.18253431030668557, + "learning_rate": 1e-05, + "loss": 0.044, + "step": 364 + }, + { + "epoch": 0.1825, + "grad_norm": 0.19238661256236803, + "learning_rate": 1e-05, + "loss": 0.0615, + "step": 365 + }, + { + "epoch": 0.183, + "grad_norm": 0.1808155264273284, + "learning_rate": 1e-05, + "loss": 0.0444, + "step": 366 + }, + { + "epoch": 0.1835, + "grad_norm": 0.1743762662626829, + "learning_rate": 1e-05, + "loss": 0.0501, + "step": 367 + }, + { + "epoch": 0.184, + "grad_norm": 0.16508774246157967, + "learning_rate": 1e-05, + "loss": 0.0448, + "step": 368 + }, + { + "epoch": 0.1845, + "grad_norm": 0.1546243168773746, + "learning_rate": 1e-05, + "loss": 0.0366, + "step": 369 + }, + { + "epoch": 0.185, + "grad_norm": 0.1746189186464954, + "learning_rate": 1e-05, + "loss": 0.0471, + "step": 370 + }, + { + "epoch": 0.1855, + "grad_norm": 0.17995461422580256, + "learning_rate": 1e-05, + "loss": 0.0405, + "step": 371 + }, + { + "epoch": 0.186, + "grad_norm": 0.16745033647841967, + "learning_rate": 1e-05, + "loss": 0.0371, + "step": 372 + }, + { + "epoch": 0.1865, + "grad_norm": 0.14177227347565124, + "learning_rate": 1e-05, + "loss": 0.0336, + "step": 373 + }, + { + "epoch": 0.187, + "grad_norm": 0.19568633642105135, + "learning_rate": 1e-05, + "loss": 0.0419, + "step": 374 + }, + { + "epoch": 0.1875, + "grad_norm": 0.1694809590901385, + "learning_rate": 1e-05, + "loss": 0.0365, + "step": 375 + }, + { + "epoch": 0.188, + "grad_norm": 0.16086017791775223, + "learning_rate": 1e-05, + "loss": 0.0382, + "step": 376 + }, + { + "epoch": 0.1885, + "grad_norm": 0.14863922525565496, + "learning_rate": 1e-05, + "loss": 0.039, + "step": 377 + }, + { + "epoch": 0.189, + "grad_norm": 0.16084357735487792, + "learning_rate": 1e-05, + "loss": 0.0312, + "step": 378 + }, + { + "epoch": 0.1895, + "grad_norm": 0.19070881724879324, + "learning_rate": 1e-05, + "loss": 0.0491, + "step": 379 + }, + { + "epoch": 0.19, + "grad_norm": 0.17240390839318184, + "learning_rate": 1e-05, + "loss": 0.0455, + "step": 380 + }, + { + "epoch": 0.1905, + "grad_norm": 0.13331277326103189, + "learning_rate": 1e-05, + "loss": 0.0289, + "step": 381 + }, + { + "epoch": 0.191, + "grad_norm": 0.18756729894366522, + "learning_rate": 1e-05, + "loss": 0.0468, + "step": 382 + }, + { + "epoch": 0.1915, + "grad_norm": 0.1660248717735821, + "learning_rate": 1e-05, + "loss": 0.0424, + "step": 383 + }, + { + "epoch": 0.192, + "grad_norm": 0.16346974130070938, + "learning_rate": 1e-05, + "loss": 0.0311, + "step": 384 + }, + { + "epoch": 0.192, + "eval_dev_acc": 0.599609375, + "eval_dev_token": 5596.130859375, + "eval_runtime": 352.4793, + "eval_samples_per_second": 0.182, + "eval_steps_per_second": 0.003, + "step": 384 + }, + { + "epoch": 0.1925, + "grad_norm": 0.16858862798497806, + "learning_rate": 1e-05, + "loss": 0.0389, + "step": 385 + }, + { + "epoch": 0.193, + "grad_norm": 0.1484958580298565, + "learning_rate": 1e-05, + "loss": 0.0397, + "step": 386 + }, + { + "epoch": 0.1935, + "grad_norm": 0.17660261356555002, + "learning_rate": 1e-05, + "loss": 0.0515, + "step": 387 + }, + { + "epoch": 0.194, + "grad_norm": 0.1783517215939047, + "learning_rate": 1e-05, + "loss": 0.0431, + "step": 388 + }, + { + "epoch": 0.1945, + "grad_norm": 0.14136150090913457, + "learning_rate": 1e-05, + "loss": 0.0323, + "step": 389 + }, + { + "epoch": 0.195, + "grad_norm": 0.16595913921658337, + "learning_rate": 1e-05, + "loss": 0.0394, + "step": 390 + }, + { + "epoch": 0.1955, + "grad_norm": 0.17788297569443248, + "learning_rate": 1e-05, + "loss": 0.0698, + "step": 391 + }, + { + "epoch": 0.196, + "grad_norm": 0.14755167079389797, + "learning_rate": 1e-05, + "loss": 0.0308, + "step": 392 + }, + { + "epoch": 0.1965, + "grad_norm": 0.20681855290430337, + "learning_rate": 1e-05, + "loss": 0.0494, + "step": 393 + }, + { + "epoch": 0.197, + "grad_norm": 0.19060439020439998, + "learning_rate": 1e-05, + "loss": 0.0445, + "step": 394 + }, + { + "epoch": 0.1975, + "grad_norm": 0.17199443698076167, + "learning_rate": 1e-05, + "loss": 0.0414, + "step": 395 + }, + { + "epoch": 0.198, + "grad_norm": 0.15210077373082737, + "learning_rate": 1e-05, + "loss": 0.0296, + "step": 396 + }, + { + "epoch": 0.1985, + "grad_norm": 0.17482591540638856, + "learning_rate": 1e-05, + "loss": 0.044, + "step": 397 + }, + { + "epoch": 0.199, + "grad_norm": 0.15501601608099658, + "learning_rate": 1e-05, + "loss": 0.0376, + "step": 398 + }, + { + "epoch": 0.1995, + "grad_norm": 0.17142493205422682, + "learning_rate": 1e-05, + "loss": 0.0386, + "step": 399 + }, + { + "epoch": 0.2, + "grad_norm": 0.1921162644413309, + "learning_rate": 1e-05, + "loss": 0.0469, + "step": 400 + }, + { + "epoch": 0.2005, + "grad_norm": 0.15938080403417312, + "learning_rate": 1e-05, + "loss": 0.0496, + "step": 401 + }, + { + "epoch": 0.201, + "grad_norm": 0.14786848292294155, + "learning_rate": 1e-05, + "loss": 0.0426, + "step": 402 + }, + { + "epoch": 0.2015, + "grad_norm": 0.18628997533329272, + "learning_rate": 1e-05, + "loss": 0.0581, + "step": 403 + }, + { + "epoch": 0.202, + "grad_norm": 0.16058096254934043, + "learning_rate": 1e-05, + "loss": 0.0336, + "step": 404 + }, + { + "epoch": 0.2025, + "grad_norm": 0.19319024386507233, + "learning_rate": 1e-05, + "loss": 0.047, + "step": 405 + }, + { + "epoch": 0.203, + "grad_norm": 0.17328115011013, + "learning_rate": 1e-05, + "loss": 0.049, + "step": 406 + }, + { + "epoch": 0.2035, + "grad_norm": 0.13258378170371796, + "learning_rate": 1e-05, + "loss": 0.0286, + "step": 407 + }, + { + "epoch": 0.204, + "grad_norm": 0.17945245697241183, + "learning_rate": 1e-05, + "loss": 0.0518, + "step": 408 + }, + { + "epoch": 0.2045, + "grad_norm": 0.16689764407399071, + "learning_rate": 1e-05, + "loss": 0.0458, + "step": 409 + }, + { + "epoch": 0.205, + "grad_norm": 0.18446815699746041, + "learning_rate": 1e-05, + "loss": 0.0408, + "step": 410 + }, + { + "epoch": 0.2055, + "grad_norm": 0.1489326060726689, + "learning_rate": 1e-05, + "loss": 0.0656, + "step": 411 + }, + { + "epoch": 0.206, + "grad_norm": 0.14974593012017515, + "learning_rate": 1e-05, + "loss": 0.0297, + "step": 412 + }, + { + "epoch": 0.2065, + "grad_norm": 0.1918114395748189, + "learning_rate": 1e-05, + "loss": 0.0439, + "step": 413 + }, + { + "epoch": 0.207, + "grad_norm": 0.1689953495305046, + "learning_rate": 1e-05, + "loss": 0.04, + "step": 414 + }, + { + "epoch": 0.2075, + "grad_norm": 0.1403733317703667, + "learning_rate": 1e-05, + "loss": 0.0472, + "step": 415 + }, + { + "epoch": 0.208, + "grad_norm": 0.173982074128614, + "learning_rate": 1e-05, + "loss": 0.0395, + "step": 416 + }, + { + "epoch": 0.208, + "eval_dev_acc": 0.49609375, + "eval_dev_token": 5482.95703125, + "eval_runtime": 374.469, + "eval_samples_per_second": 0.171, + "eval_steps_per_second": 0.003, + "step": 416 + }, + { + "epoch": 0.2085, + "grad_norm": 0.16717306009352031, + "learning_rate": 1e-05, + "loss": 0.0369, + "step": 417 + }, + { + "epoch": 0.209, + "grad_norm": 0.17317803700896214, + "learning_rate": 1e-05, + "loss": 0.0581, + "step": 418 + }, + { + "epoch": 0.2095, + "grad_norm": 0.14729050118039705, + "learning_rate": 1e-05, + "loss": 0.0469, + "step": 419 + }, + { + "epoch": 0.21, + "grad_norm": 0.14599122830811173, + "learning_rate": 1e-05, + "loss": 0.0571, + "step": 420 + }, + { + "epoch": 0.2105, + "grad_norm": 0.16285142688584706, + "learning_rate": 1e-05, + "loss": 0.0291, + "step": 421 + }, + { + "epoch": 0.211, + "grad_norm": 0.19044973230329837, + "learning_rate": 1e-05, + "loss": 0.0599, + "step": 422 + }, + { + "epoch": 0.2115, + "grad_norm": 0.188861960333507, + "learning_rate": 1e-05, + "loss": 0.0471, + "step": 423 + }, + { + "epoch": 0.212, + "grad_norm": 0.19188548951756218, + "learning_rate": 1e-05, + "loss": 0.0529, + "step": 424 + }, + { + "epoch": 0.2125, + "grad_norm": 0.16267402517673002, + "learning_rate": 1e-05, + "loss": 0.0305, + "step": 425 + }, + { + "epoch": 0.213, + "grad_norm": 0.1447850696130614, + "learning_rate": 1e-05, + "loss": 0.0324, + "step": 426 + }, + { + "epoch": 0.2135, + "grad_norm": 0.15248164794588065, + "learning_rate": 1e-05, + "loss": 0.0388, + "step": 427 + }, + { + "epoch": 0.214, + "grad_norm": 0.1661241871100943, + "learning_rate": 1e-05, + "loss": 0.0328, + "step": 428 + }, + { + "epoch": 0.2145, + "grad_norm": 0.16566625624023265, + "learning_rate": 1e-05, + "loss": 0.031, + "step": 429 + }, + { + "epoch": 0.215, + "grad_norm": 0.15249287061514458, + "learning_rate": 1e-05, + "loss": 0.0319, + "step": 430 + }, + { + "epoch": 0.2155, + "grad_norm": 0.12995530917181783, + "learning_rate": 1e-05, + "loss": 0.0233, + "step": 431 + }, + { + "epoch": 0.216, + "grad_norm": 0.1704276552962093, + "learning_rate": 1e-05, + "loss": 0.0405, + "step": 432 + }, + { + "epoch": 0.2165, + "grad_norm": 0.17386329346754434, + "learning_rate": 1e-05, + "loss": 0.0336, + "step": 433 + }, + { + "epoch": 0.217, + "grad_norm": 0.15704760833763615, + "learning_rate": 1e-05, + "loss": 0.0325, + "step": 434 + }, + { + "epoch": 0.2175, + "grad_norm": 0.1495524799308763, + "learning_rate": 1e-05, + "loss": 0.0341, + "step": 435 + }, + { + "epoch": 0.218, + "grad_norm": 0.1686891909288217, + "learning_rate": 1e-05, + "loss": 0.0343, + "step": 436 + }, + { + "epoch": 0.2185, + "grad_norm": 0.13995459985426573, + "learning_rate": 1e-05, + "loss": 0.0398, + "step": 437 + }, + { + "epoch": 0.219, + "grad_norm": 0.15473569116081692, + "learning_rate": 1e-05, + "loss": 0.0412, + "step": 438 + }, + { + "epoch": 0.2195, + "grad_norm": 0.1801609077983992, + "learning_rate": 1e-05, + "loss": 0.0534, + "step": 439 + }, + { + "epoch": 0.22, + "grad_norm": 0.17809364795872226, + "learning_rate": 1e-05, + "loss": 0.0548, + "step": 440 + }, + { + "epoch": 0.2205, + "grad_norm": 0.1535032114151188, + "learning_rate": 1e-05, + "loss": 0.0593, + "step": 441 + }, + { + "epoch": 0.221, + "grad_norm": 0.20882248884544774, + "learning_rate": 1e-05, + "loss": 0.0402, + "step": 442 + }, + { + "epoch": 0.2215, + "grad_norm": 0.14517381058327564, + "learning_rate": 1e-05, + "loss": 0.0436, + "step": 443 + }, + { + "epoch": 0.222, + "grad_norm": 0.17014179155102424, + "learning_rate": 1e-05, + "loss": 0.0333, + "step": 444 + }, + { + "epoch": 0.2225, + "grad_norm": 0.1729306341614305, + "learning_rate": 1e-05, + "loss": 0.0301, + "step": 445 + }, + { + "epoch": 0.223, + "grad_norm": 0.1686712423851483, + "learning_rate": 1e-05, + "loss": 0.0406, + "step": 446 + }, + { + "epoch": 0.2235, + "grad_norm": 0.1535287640721648, + "learning_rate": 1e-05, + "loss": 0.0282, + "step": 447 + }, + { + "epoch": 0.224, + "grad_norm": 0.1406783148617548, + "learning_rate": 1e-05, + "loss": 0.0264, + "step": 448 + }, + { + "epoch": 0.224, + "eval_dev_acc": 0.576171875, + "eval_dev_token": 5738.91015625, + "eval_runtime": 360.4892, + "eval_samples_per_second": 0.178, + "eval_steps_per_second": 0.003, + "step": 448 + }, + { + "epoch": 0.2245, + "grad_norm": 0.15218760519443988, + "learning_rate": 1e-05, + "loss": 0.0227, + "step": 449 + }, + { + "epoch": 0.225, + "grad_norm": 0.13165646820927943, + "learning_rate": 1e-05, + "loss": 0.0244, + "step": 450 + }, + { + "epoch": 0.2255, + "grad_norm": 0.13658776890249372, + "learning_rate": 1e-05, + "loss": 0.0235, + "step": 451 + }, + { + "epoch": 0.226, + "grad_norm": 0.1595102880182028, + "learning_rate": 1e-05, + "loss": 0.0361, + "step": 452 + }, + { + "epoch": 0.2265, + "grad_norm": 0.18272272767076744, + "learning_rate": 1e-05, + "loss": 0.0341, + "step": 453 + }, + { + "epoch": 0.227, + "grad_norm": 0.15970250529787045, + "learning_rate": 1e-05, + "loss": 0.0277, + "step": 454 + }, + { + "epoch": 0.2275, + "grad_norm": 0.1641447638351716, + "learning_rate": 1e-05, + "loss": 0.0284, + "step": 455 + }, + { + "epoch": 0.228, + "grad_norm": 0.1294308434226962, + "learning_rate": 1e-05, + "loss": 0.022, + "step": 456 + }, + { + "epoch": 0.2285, + "grad_norm": 0.11954195360401737, + "learning_rate": 1e-05, + "loss": 0.0202, + "step": 457 + }, + { + "epoch": 0.229, + "grad_norm": 0.16068276912989043, + "learning_rate": 1e-05, + "loss": 0.0251, + "step": 458 + }, + { + "epoch": 0.2295, + "grad_norm": 0.15307414897001792, + "learning_rate": 1e-05, + "loss": 0.027, + "step": 459 + }, + { + "epoch": 0.23, + "grad_norm": 0.15979117725555442, + "learning_rate": 1e-05, + "loss": 0.0375, + "step": 460 + }, + { + "epoch": 0.2305, + "grad_norm": 0.2020059964338148, + "learning_rate": 1e-05, + "loss": 0.043, + "step": 461 + }, + { + "epoch": 0.231, + "grad_norm": 0.15074817260440432, + "learning_rate": 1e-05, + "loss": 0.0241, + "step": 462 + }, + { + "epoch": 0.2315, + "grad_norm": 0.16521962645814686, + "learning_rate": 1e-05, + "loss": 0.0447, + "step": 463 + }, + { + "epoch": 0.232, + "grad_norm": 0.14710027259702427, + "learning_rate": 1e-05, + "loss": 0.0322, + "step": 464 + }, + { + "epoch": 0.2325, + "grad_norm": 0.1879875645942318, + "learning_rate": 1e-05, + "loss": 0.0324, + "step": 465 + }, + { + "epoch": 0.233, + "grad_norm": 0.16624112738581265, + "learning_rate": 1e-05, + "loss": 0.0308, + "step": 466 + }, + { + "epoch": 0.2335, + "grad_norm": 0.19050875236463863, + "learning_rate": 1e-05, + "loss": 0.0342, + "step": 467 + }, + { + "epoch": 0.234, + "grad_norm": 0.11998525830480301, + "learning_rate": 1e-05, + "loss": 0.021, + "step": 468 + }, + { + "epoch": 0.2345, + "grad_norm": 0.1656701890014892, + "learning_rate": 1e-05, + "loss": 0.027, + "step": 469 + }, + { + "epoch": 0.235, + "grad_norm": 0.15307753326429366, + "learning_rate": 1e-05, + "loss": 0.0452, + "step": 470 + }, + { + "epoch": 0.2355, + "grad_norm": 0.1897260442883158, + "learning_rate": 1e-05, + "loss": 0.0245, + "step": 471 + }, + { + "epoch": 0.236, + "grad_norm": 0.11931107646228578, + "learning_rate": 1e-05, + "loss": 0.017, + "step": 472 + }, + { + "epoch": 0.2365, + "grad_norm": 0.18498950301005707, + "learning_rate": 1e-05, + "loss": 0.0342, + "step": 473 + }, + { + "epoch": 0.237, + "grad_norm": 0.14355239628818517, + "learning_rate": 1e-05, + "loss": 0.0221, + "step": 474 + }, + { + "epoch": 0.2375, + "grad_norm": 0.16525653932908532, + "learning_rate": 1e-05, + "loss": 0.029, + "step": 475 + }, + { + "epoch": 0.238, + "grad_norm": 0.1518153688638394, + "learning_rate": 1e-05, + "loss": 0.0267, + "step": 476 + }, + { + "epoch": 0.2385, + "grad_norm": 0.15987321641272437, + "learning_rate": 1e-05, + "loss": 0.0279, + "step": 477 + }, + { + "epoch": 0.239, + "grad_norm": 0.1442274823944727, + "learning_rate": 1e-05, + "loss": 0.0349, + "step": 478 + }, + { + "epoch": 0.2395, + "grad_norm": 0.11710766704672448, + "learning_rate": 1e-05, + "loss": 0.0179, + "step": 479 + }, + { + "epoch": 0.24, + "grad_norm": 0.15497604683020938, + "learning_rate": 1e-05, + "loss": 0.023, + "step": 480 + }, + { + "epoch": 0.24, + "eval_dev_acc": 0.544921875, + "eval_dev_token": 5840.61328125, + "eval_runtime": 373.4708, + "eval_samples_per_second": 0.171, + "eval_steps_per_second": 0.003, + "step": 480 + }, + { + "epoch": 0.2405, + "grad_norm": 0.13492229768745556, + "learning_rate": 1e-05, + "loss": 0.0205, + "step": 481 + }, + { + "epoch": 0.241, + "grad_norm": 0.1704648731314998, + "learning_rate": 1e-05, + "loss": 0.0353, + "step": 482 + }, + { + "epoch": 0.2415, + "grad_norm": 0.1491861836462168, + "learning_rate": 1e-05, + "loss": 0.0365, + "step": 483 + }, + { + "epoch": 0.242, + "grad_norm": 0.17050828891525746, + "learning_rate": 1e-05, + "loss": 0.0277, + "step": 484 + }, + { + "epoch": 0.2425, + "grad_norm": 0.17980691606220936, + "learning_rate": 1e-05, + "loss": 0.0335, + "step": 485 + }, + { + "epoch": 0.243, + "grad_norm": 0.16998825524724584, + "learning_rate": 1e-05, + "loss": 0.0362, + "step": 486 + }, + { + "epoch": 0.2435, + "grad_norm": 0.11641133365996917, + "learning_rate": 1e-05, + "loss": 0.0181, + "step": 487 + }, + { + "epoch": 0.244, + "grad_norm": 0.14362674831456992, + "learning_rate": 1e-05, + "loss": 0.0365, + "step": 488 + }, + { + "epoch": 0.2445, + "grad_norm": 0.14488123923452778, + "learning_rate": 1e-05, + "loss": 0.024, + "step": 489 + }, + { + "epoch": 0.245, + "grad_norm": 0.1517003378019991, + "learning_rate": 1e-05, + "loss": 0.0271, + "step": 490 + }, + { + "epoch": 0.2455, + "grad_norm": 0.14967074987714707, + "learning_rate": 1e-05, + "loss": 0.0294, + "step": 491 + }, + { + "epoch": 0.246, + "grad_norm": 0.15791993394836015, + "learning_rate": 1e-05, + "loss": 0.0283, + "step": 492 + }, + { + "epoch": 0.2465, + "grad_norm": 0.13495006239387555, + "learning_rate": 1e-05, + "loss": 0.0251, + "step": 493 + }, + { + "epoch": 0.247, + "grad_norm": 0.18930054102351096, + "learning_rate": 1e-05, + "loss": 0.0373, + "step": 494 + }, + { + "epoch": 0.2475, + "grad_norm": 0.13152234060084034, + "learning_rate": 1e-05, + "loss": 0.0233, + "step": 495 + }, + { + "epoch": 0.248, + "grad_norm": 0.1341531691510106, + "learning_rate": 1e-05, + "loss": 0.0269, + "step": 496 + }, + { + "epoch": 0.2485, + "grad_norm": 0.13741586371551992, + "learning_rate": 1e-05, + "loss": 0.0277, + "step": 497 + }, + { + "epoch": 0.249, + "grad_norm": 0.1554051684617337, + "learning_rate": 1e-05, + "loss": 0.0276, + "step": 498 + }, + { + "epoch": 0.2495, + "grad_norm": 0.14814577647609775, + "learning_rate": 1e-05, + "loss": 0.0235, + "step": 499 + }, + { + "epoch": 0.25, + "grad_norm": 0.14930720560226657, + "learning_rate": 1e-05, + "loss": 0.039, + "step": 500 + }, + { + "epoch": 0.2505, + "grad_norm": 0.1244942117603243, + "learning_rate": 1e-05, + "loss": 0.0202, + "step": 501 + }, + { + "epoch": 0.251, + "grad_norm": 0.14244145658079232, + "learning_rate": 1e-05, + "loss": 0.0209, + "step": 502 + }, + { + "epoch": 0.2515, + "grad_norm": 0.146145096145696, + "learning_rate": 1e-05, + "loss": 0.024, + "step": 503 + }, + { + "epoch": 0.252, + "grad_norm": 0.13594585715406687, + "learning_rate": 1e-05, + "loss": 0.0269, + "step": 504 + }, + { + "epoch": 0.2525, + "grad_norm": 0.1490412459954878, + "learning_rate": 1e-05, + "loss": 0.0345, + "step": 505 + }, + { + "epoch": 0.253, + "grad_norm": 0.11950170266380834, + "learning_rate": 1e-05, + "loss": 0.0181, + "step": 506 + }, + { + "epoch": 0.2535, + "grad_norm": 0.18548215823845707, + "learning_rate": 1e-05, + "loss": 0.0275, + "step": 507 + }, + { + "epoch": 0.254, + "grad_norm": 0.15108980653404058, + "learning_rate": 1e-05, + "loss": 0.0197, + "step": 508 + }, + { + "epoch": 0.2545, + "grad_norm": 0.16504836098536718, + "learning_rate": 1e-05, + "loss": 0.0289, + "step": 509 + }, + { + "epoch": 0.255, + "grad_norm": 0.15746261920489785, + "learning_rate": 1e-05, + "loss": 0.0253, + "step": 510 + }, + { + "epoch": 0.2555, + "grad_norm": 0.14071771991438595, + "learning_rate": 1e-05, + "loss": 0.0219, + "step": 511 + }, + { + "epoch": 0.256, + "grad_norm": 0.16079872072377113, + "learning_rate": 1e-05, + "loss": 0.0204, + "step": 512 + }, + { + "epoch": 0.256, + "eval_dev_acc": 0.56640625, + "eval_dev_token": 5634.1015625, + "eval_runtime": 361.9891, + "eval_samples_per_second": 0.177, + "eval_steps_per_second": 0.003, + "step": 512 + }, + { + "epoch": 0.2565, + "grad_norm": 0.13549471484008802, + "learning_rate": 1e-05, + "loss": 0.0164, + "step": 513 + }, + { + "epoch": 0.257, + "grad_norm": 0.12072963489745359, + "learning_rate": 1e-05, + "loss": 0.0302, + "step": 514 + }, + { + "epoch": 0.2575, + "grad_norm": 0.14026647684897994, + "learning_rate": 1e-05, + "loss": 0.0194, + "step": 515 + }, + { + "epoch": 0.258, + "grad_norm": 0.1634484411344168, + "learning_rate": 1e-05, + "loss": 0.0277, + "step": 516 + }, + { + "epoch": 0.2585, + "grad_norm": 0.15844211231505426, + "learning_rate": 1e-05, + "loss": 0.0214, + "step": 517 + }, + { + "epoch": 0.259, + "grad_norm": 0.1567910605652928, + "learning_rate": 1e-05, + "loss": 0.024, + "step": 518 + }, + { + "epoch": 0.2595, + "grad_norm": 0.17902606156745304, + "learning_rate": 1e-05, + "loss": 0.033, + "step": 519 + }, + { + "epoch": 0.26, + "grad_norm": 0.12339744538286439, + "learning_rate": 1e-05, + "loss": 0.0172, + "step": 520 + }, + { + "epoch": 0.2605, + "grad_norm": 0.13532209502494125, + "learning_rate": 1e-05, + "loss": 0.0206, + "step": 521 + }, + { + "epoch": 0.261, + "grad_norm": 0.15623082886780087, + "learning_rate": 1e-05, + "loss": 0.0213, + "step": 522 + }, + { + "epoch": 0.2615, + "grad_norm": 0.14428427308597647, + "learning_rate": 1e-05, + "loss": 0.0201, + "step": 523 + }, + { + "epoch": 0.262, + "grad_norm": 0.14835567545470982, + "learning_rate": 1e-05, + "loss": 0.0244, + "step": 524 + }, + { + "epoch": 0.2625, + "grad_norm": 0.14068070672711747, + "learning_rate": 1e-05, + "loss": 0.0239, + "step": 525 + }, + { + "epoch": 0.263, + "grad_norm": 0.1460843289248216, + "learning_rate": 1e-05, + "loss": 0.0223, + "step": 526 + }, + { + "epoch": 0.2635, + "grad_norm": 0.13777430449621855, + "learning_rate": 1e-05, + "loss": 0.0229, + "step": 527 + }, + { + "epoch": 0.264, + "grad_norm": 0.15161607294549337, + "learning_rate": 1e-05, + "loss": 0.0272, + "step": 528 + }, + { + "epoch": 0.2645, + "grad_norm": 0.13410519048089503, + "learning_rate": 1e-05, + "loss": 0.0181, + "step": 529 + }, + { + "epoch": 0.265, + "grad_norm": 0.15931617673254456, + "learning_rate": 1e-05, + "loss": 0.0244, + "step": 530 + }, + { + "epoch": 0.2655, + "grad_norm": 0.1410700523457689, + "learning_rate": 1e-05, + "loss": 0.0251, + "step": 531 + }, + { + "epoch": 0.266, + "grad_norm": 0.11388951846034073, + "learning_rate": 1e-05, + "loss": 0.0144, + "step": 532 + }, + { + "epoch": 0.2665, + "grad_norm": 0.12253780956369799, + "learning_rate": 1e-05, + "loss": 0.0177, + "step": 533 + }, + { + "epoch": 0.267, + "grad_norm": 0.15575473599510573, + "learning_rate": 1e-05, + "loss": 0.0192, + "step": 534 + }, + { + "epoch": 0.2675, + "grad_norm": 0.14690747155640696, + "learning_rate": 1e-05, + "loss": 0.0222, + "step": 535 + }, + { + "epoch": 0.268, + "grad_norm": 0.13584546405544728, + "learning_rate": 1e-05, + "loss": 0.0237, + "step": 536 + }, + { + "epoch": 0.2685, + "grad_norm": 0.13430763220790742, + "learning_rate": 1e-05, + "loss": 0.0291, + "step": 537 + }, + { + "epoch": 0.269, + "grad_norm": 0.14208572873353734, + "learning_rate": 1e-05, + "loss": 0.0187, + "step": 538 + }, + { + "epoch": 0.2695, + "grad_norm": 0.14058928149963162, + "learning_rate": 1e-05, + "loss": 0.0199, + "step": 539 + }, + { + "epoch": 0.27, + "grad_norm": 0.15100703501541832, + "learning_rate": 1e-05, + "loss": 0.0348, + "step": 540 + }, + { + "epoch": 0.2705, + "grad_norm": 0.12269452397268416, + "learning_rate": 1e-05, + "loss": 0.0247, + "step": 541 + }, + { + "epoch": 0.271, + "grad_norm": 0.1364796501674048, + "learning_rate": 1e-05, + "loss": 0.0227, + "step": 542 + }, + { + "epoch": 0.2715, + "grad_norm": 0.13163932605554884, + "learning_rate": 1e-05, + "loss": 0.0262, + "step": 543 + }, + { + "epoch": 0.272, + "grad_norm": 0.13497428740182482, + "learning_rate": 1e-05, + "loss": 0.0206, + "step": 544 + }, + { + "epoch": 0.272, + "eval_dev_acc": 0.59765625, + "eval_dev_token": 5639.98828125, + "eval_runtime": 359.2369, + "eval_samples_per_second": 0.178, + "eval_steps_per_second": 0.003, + "step": 544 + }, + { + "epoch": 0.2725, + "grad_norm": 0.13930735859181714, + "learning_rate": 1e-05, + "loss": 0.0234, + "step": 545 + }, + { + "epoch": 0.273, + "grad_norm": 0.11985280096835198, + "learning_rate": 1e-05, + "loss": 0.0269, + "step": 546 + }, + { + "epoch": 0.2735, + "grad_norm": 0.17031723198491708, + "learning_rate": 1e-05, + "loss": 0.028, + "step": 547 + }, + { + "epoch": 0.274, + "grad_norm": 0.17166197772315975, + "learning_rate": 1e-05, + "loss": 0.0281, + "step": 548 + }, + { + "epoch": 0.2745, + "grad_norm": 0.1167335581681914, + "learning_rate": 1e-05, + "loss": 0.022, + "step": 549 + }, + { + "epoch": 0.275, + "grad_norm": 0.1443441971157384, + "learning_rate": 1e-05, + "loss": 0.0198, + "step": 550 + }, + { + "epoch": 0.2755, + "grad_norm": 0.1268787923602722, + "learning_rate": 1e-05, + "loss": 0.017, + "step": 551 + }, + { + "epoch": 0.276, + "grad_norm": 0.11065296478824395, + "learning_rate": 1e-05, + "loss": 0.0157, + "step": 552 + }, + { + "epoch": 0.2765, + "grad_norm": 0.12047907824944362, + "learning_rate": 1e-05, + "loss": 0.016, + "step": 553 + }, + { + "epoch": 0.277, + "grad_norm": 0.13956303855472266, + "learning_rate": 1e-05, + "loss": 0.0216, + "step": 554 + }, + { + "epoch": 0.2775, + "grad_norm": 0.10533407777378404, + "learning_rate": 1e-05, + "loss": 0.0137, + "step": 555 + }, + { + "epoch": 0.278, + "grad_norm": 0.11532013491755984, + "learning_rate": 1e-05, + "loss": 0.0282, + "step": 556 + }, + { + "epoch": 0.2785, + "grad_norm": 0.11921463919727264, + "learning_rate": 1e-05, + "loss": 0.0163, + "step": 557 + }, + { + "epoch": 0.279, + "grad_norm": 0.15645731769207732, + "learning_rate": 1e-05, + "loss": 0.0241, + "step": 558 + }, + { + "epoch": 0.2795, + "grad_norm": 0.12096274696840706, + "learning_rate": 1e-05, + "loss": 0.0167, + "step": 559 + }, + { + "epoch": 0.28, + "grad_norm": 0.149157783124579, + "learning_rate": 1e-05, + "loss": 0.0193, + "step": 560 + }, + { + "epoch": 0.2805, + "grad_norm": 0.16982490839988412, + "learning_rate": 1e-05, + "loss": 0.0283, + "step": 561 + }, + { + "epoch": 0.281, + "grad_norm": 0.12038107977310454, + "learning_rate": 1e-05, + "loss": 0.0154, + "step": 562 + }, + { + "epoch": 0.2815, + "grad_norm": 0.16469919524412158, + "learning_rate": 1e-05, + "loss": 0.0214, + "step": 563 + }, + { + "epoch": 0.282, + "grad_norm": 0.15827423056846177, + "learning_rate": 1e-05, + "loss": 0.0216, + "step": 564 + }, + { + "epoch": 0.2825, + "grad_norm": 0.12058245559465251, + "learning_rate": 1e-05, + "loss": 0.0141, + "step": 565 + }, + { + "epoch": 0.283, + "grad_norm": 0.163789727088167, + "learning_rate": 1e-05, + "loss": 0.0241, + "step": 566 + }, + { + "epoch": 0.2835, + "grad_norm": 0.1390884369932456, + "learning_rate": 1e-05, + "loss": 0.0221, + "step": 567 + }, + { + "epoch": 0.284, + "grad_norm": 0.14472941005878595, + "learning_rate": 1e-05, + "loss": 0.0164, + "step": 568 + }, + { + "epoch": 0.2845, + "grad_norm": 0.15437454042645973, + "learning_rate": 1e-05, + "loss": 0.024, + "step": 569 + }, + { + "epoch": 0.285, + "grad_norm": 0.1207487307624573, + "learning_rate": 1e-05, + "loss": 0.0172, + "step": 570 + }, + { + "epoch": 0.2855, + "grad_norm": 0.1502409849611173, + "learning_rate": 1e-05, + "loss": 0.0298, + "step": 571 + }, + { + "epoch": 0.286, + "grad_norm": 0.16401355690597133, + "learning_rate": 1e-05, + "loss": 0.0225, + "step": 572 + }, + { + "epoch": 0.2865, + "grad_norm": 0.15181464752177645, + "learning_rate": 1e-05, + "loss": 0.0189, + "step": 573 + }, + { + "epoch": 0.287, + "grad_norm": 0.14560432645081878, + "learning_rate": 1e-05, + "loss": 0.0186, + "step": 574 + }, + { + "epoch": 0.2875, + "grad_norm": 0.12603042660981642, + "learning_rate": 1e-05, + "loss": 0.0155, + "step": 575 + }, + { + "epoch": 0.288, + "grad_norm": 0.11638577111126014, + "learning_rate": 1e-05, + "loss": 0.0164, + "step": 576 + }, + { + "epoch": 0.288, + "eval_dev_acc": 0.54296875, + "eval_dev_token": 5801.126953125, + "eval_runtime": 373.1703, + "eval_samples_per_second": 0.172, + "eval_steps_per_second": 0.003, + "step": 576 + }, + { + "epoch": 0.2885, + "grad_norm": 0.13420942083968396, + "learning_rate": 1e-05, + "loss": 0.0181, + "step": 577 + }, + { + "epoch": 0.289, + "grad_norm": 0.12122809121871923, + "learning_rate": 1e-05, + "loss": 0.0134, + "step": 578 + }, + { + "epoch": 0.2895, + "grad_norm": 0.13114866603642533, + "learning_rate": 1e-05, + "loss": 0.0174, + "step": 579 + }, + { + "epoch": 0.29, + "grad_norm": 0.1498609312158644, + "learning_rate": 1e-05, + "loss": 0.0214, + "step": 580 + }, + { + "epoch": 0.2905, + "grad_norm": 0.1527812218308566, + "learning_rate": 1e-05, + "loss": 0.0194, + "step": 581 + }, + { + "epoch": 0.291, + "grad_norm": 0.14711876695343454, + "learning_rate": 1e-05, + "loss": 0.018, + "step": 582 + }, + { + "epoch": 0.2915, + "grad_norm": 0.11529220604038168, + "learning_rate": 1e-05, + "loss": 0.0144, + "step": 583 + }, + { + "epoch": 0.292, + "grad_norm": 0.16180671831014115, + "learning_rate": 1e-05, + "loss": 0.0165, + "step": 584 + }, + { + "epoch": 0.2925, + "grad_norm": 0.13621545825638848, + "learning_rate": 1e-05, + "loss": 0.015, + "step": 585 + }, + { + "epoch": 0.293, + "grad_norm": 0.15473239935591382, + "learning_rate": 1e-05, + "loss": 0.0164, + "step": 586 + }, + { + "epoch": 0.2935, + "grad_norm": 0.15716799171541335, + "learning_rate": 1e-05, + "loss": 0.0194, + "step": 587 + }, + { + "epoch": 0.294, + "grad_norm": 0.1684941322847538, + "learning_rate": 1e-05, + "loss": 0.022, + "step": 588 + }, + { + "epoch": 0.2945, + "grad_norm": 0.15453918821249785, + "learning_rate": 1e-05, + "loss": 0.0188, + "step": 589 + }, + { + "epoch": 0.295, + "grad_norm": 0.140163345657633, + "learning_rate": 1e-05, + "loss": 0.0208, + "step": 590 + }, + { + "epoch": 0.2955, + "grad_norm": 0.15010258665645038, + "learning_rate": 1e-05, + "loss": 0.0215, + "step": 591 + }, + { + "epoch": 0.296, + "grad_norm": 0.14661643221841641, + "learning_rate": 1e-05, + "loss": 0.0191, + "step": 592 + }, + { + "epoch": 0.2965, + "grad_norm": 0.15435066476462508, + "learning_rate": 1e-05, + "loss": 0.0231, + "step": 593 + }, + { + "epoch": 0.297, + "grad_norm": 0.17094702806791945, + "learning_rate": 1e-05, + "loss": 0.0251, + "step": 594 + }, + { + "epoch": 0.2975, + "grad_norm": 0.1371139566901347, + "learning_rate": 1e-05, + "loss": 0.0186, + "step": 595 + }, + { + "epoch": 0.298, + "grad_norm": 0.11779673830033237, + "learning_rate": 1e-05, + "loss": 0.0269, + "step": 596 + }, + { + "epoch": 0.2985, + "grad_norm": 0.11853976704548681, + "learning_rate": 1e-05, + "loss": 0.0154, + "step": 597 + }, + { + "epoch": 0.299, + "grad_norm": 0.14881574569113099, + "learning_rate": 1e-05, + "loss": 0.0246, + "step": 598 + }, + { + "epoch": 0.2995, + "grad_norm": 0.11792409287393274, + "learning_rate": 1e-05, + "loss": 0.0164, + "step": 599 + }, + { + "epoch": 0.3, + "grad_norm": 0.13831559531762572, + "learning_rate": 1e-05, + "loss": 0.0257, + "step": 600 + }, + { + "epoch": 0.3005, + "grad_norm": 0.13756632720301187, + "learning_rate": 1e-05, + "loss": 0.0214, + "step": 601 + }, + { + "epoch": 0.301, + "grad_norm": 0.10998907458045305, + "learning_rate": 1e-05, + "loss": 0.015, + "step": 602 + }, + { + "epoch": 0.3015, + "grad_norm": 0.135955562101373, + "learning_rate": 1e-05, + "loss": 0.0211, + "step": 603 + }, + { + "epoch": 0.302, + "grad_norm": 0.1214956422000124, + "learning_rate": 1e-05, + "loss": 0.0219, + "step": 604 + }, + { + "epoch": 0.3025, + "grad_norm": 0.15757702522309963, + "learning_rate": 1e-05, + "loss": 0.018, + "step": 605 + }, + { + "epoch": 0.303, + "grad_norm": 0.1350858708023801, + "learning_rate": 1e-05, + "loss": 0.0211, + "step": 606 + }, + { + "epoch": 0.3035, + "grad_norm": 0.10610433140412452, + "learning_rate": 1e-05, + "loss": 0.0147, + "step": 607 + }, + { + "epoch": 0.304, + "grad_norm": 0.11514647079357257, + "learning_rate": 1e-05, + "loss": 0.0192, + "step": 608 + }, + { + "epoch": 0.304, + "eval_dev_acc": 0.62109375, + "eval_dev_token": 5367.916015625, + "eval_runtime": 354.8095, + "eval_samples_per_second": 0.18, + "eval_steps_per_second": 0.003, + "step": 608 + }, + { + "epoch": 0.3045, + "grad_norm": 0.12603567923188372, + "learning_rate": 1e-05, + "loss": 0.0188, + "step": 609 + }, + { + "epoch": 0.305, + "grad_norm": 0.14277125754270012, + "learning_rate": 1e-05, + "loss": 0.022, + "step": 610 + }, + { + "epoch": 0.3055, + "grad_norm": 0.12862855181841676, + "learning_rate": 1e-05, + "loss": 0.021, + "step": 611 + }, + { + "epoch": 0.306, + "grad_norm": 0.1227953424403543, + "learning_rate": 1e-05, + "loss": 0.018, + "step": 612 + }, + { + "epoch": 0.3065, + "grad_norm": 0.11646820367498804, + "learning_rate": 1e-05, + "loss": 0.0131, + "step": 613 + }, + { + "epoch": 0.307, + "grad_norm": 0.14701145754992329, + "learning_rate": 1e-05, + "loss": 0.0186, + "step": 614 + }, + { + "epoch": 0.3075, + "grad_norm": 0.1493073818813876, + "learning_rate": 1e-05, + "loss": 0.0254, + "step": 615 + }, + { + "epoch": 0.308, + "grad_norm": 0.1352952895732537, + "learning_rate": 1e-05, + "loss": 0.0181, + "step": 616 + }, + { + "epoch": 0.3085, + "grad_norm": 0.13007743097982305, + "learning_rate": 1e-05, + "loss": 0.0171, + "step": 617 + }, + { + "epoch": 0.309, + "grad_norm": 0.1665432351262121, + "learning_rate": 1e-05, + "loss": 0.0228, + "step": 618 + }, + { + "epoch": 0.3095, + "grad_norm": 0.16442931730443322, + "learning_rate": 1e-05, + "loss": 0.0238, + "step": 619 + }, + { + "epoch": 0.31, + "grad_norm": 0.16320986192220768, + "learning_rate": 1e-05, + "loss": 0.0238, + "step": 620 + }, + { + "epoch": 0.3105, + "grad_norm": 0.13880254871235365, + "learning_rate": 1e-05, + "loss": 0.0179, + "step": 621 + }, + { + "epoch": 0.311, + "grad_norm": 0.13609379700738453, + "learning_rate": 1e-05, + "loss": 0.0195, + "step": 622 + }, + { + "epoch": 0.3115, + "grad_norm": 0.1368415516519621, + "learning_rate": 1e-05, + "loss": 0.024, + "step": 623 + }, + { + "epoch": 0.312, + "grad_norm": 0.12821586481120512, + "learning_rate": 1e-05, + "loss": 0.0191, + "step": 624 + }, + { + "epoch": 0.3125, + "grad_norm": 0.13644927854222083, + "learning_rate": 1e-05, + "loss": 0.0154, + "step": 625 + }, + { + "epoch": 0.313, + "grad_norm": 0.15158164143556496, + "learning_rate": 1e-05, + "loss": 0.0318, + "step": 626 + }, + { + "epoch": 0.3135, + "grad_norm": 0.12404550422721679, + "learning_rate": 1e-05, + "loss": 0.0202, + "step": 627 + }, + { + "epoch": 0.314, + "grad_norm": 0.1235074023832298, + "learning_rate": 1e-05, + "loss": 0.0167, + "step": 628 + }, + { + "epoch": 0.3145, + "grad_norm": 0.16094487436899907, + "learning_rate": 1e-05, + "loss": 0.0227, + "step": 629 + }, + { + "epoch": 0.315, + "grad_norm": 0.11086598912590964, + "learning_rate": 1e-05, + "loss": 0.0158, + "step": 630 + }, + { + "epoch": 0.3155, + "grad_norm": 0.1147741974179167, + "learning_rate": 1e-05, + "loss": 0.0136, + "step": 631 + }, + { + "epoch": 0.316, + "grad_norm": 0.12346095617438974, + "learning_rate": 1e-05, + "loss": 0.017, + "step": 632 + }, + { + "epoch": 0.3165, + "grad_norm": 0.1235267138232638, + "learning_rate": 1e-05, + "loss": 0.0131, + "step": 633 + }, + { + "epoch": 0.317, + "grad_norm": 0.11979162262432065, + "learning_rate": 1e-05, + "loss": 0.0194, + "step": 634 + }, + { + "epoch": 0.3175, + "grad_norm": 0.12253729986288973, + "learning_rate": 1e-05, + "loss": 0.0205, + "step": 635 + }, + { + "epoch": 0.318, + "grad_norm": 0.1374736081434109, + "learning_rate": 1e-05, + "loss": 0.0207, + "step": 636 + }, + { + "epoch": 0.3185, + "grad_norm": 0.11667911740285354, + "learning_rate": 1e-05, + "loss": 0.0164, + "step": 637 + }, + { + "epoch": 0.319, + "grad_norm": 0.13725799823509804, + "learning_rate": 1e-05, + "loss": 0.0177, + "step": 638 + }, + { + "epoch": 0.3195, + "grad_norm": 0.1461325036101512, + "learning_rate": 1e-05, + "loss": 0.0233, + "step": 639 + }, + { + "epoch": 0.32, + "grad_norm": 0.1486586288765987, + "learning_rate": 1e-05, + "loss": 0.022, + "step": 640 + }, + { + "epoch": 0.32, + "eval_dev_acc": 0.52734375, + "eval_dev_token": 5585.80859375, + "eval_runtime": 360.5581, + "eval_samples_per_second": 0.178, + "eval_steps_per_second": 0.003, + "step": 640 + }, + { + "epoch": 0.3205, + "grad_norm": 0.13037027619165104, + "learning_rate": 1e-05, + "loss": 0.0181, + "step": 641 + }, + { + "epoch": 0.321, + "grad_norm": 0.1384777662387777, + "learning_rate": 1e-05, + "loss": 0.0284, + "step": 642 + }, + { + "epoch": 0.3215, + "grad_norm": 0.11731142200376247, + "learning_rate": 1e-05, + "loss": 0.0136, + "step": 643 + }, + { + "epoch": 0.322, + "grad_norm": 0.13199000719975476, + "learning_rate": 1e-05, + "loss": 0.0147, + "step": 644 + }, + { + "epoch": 0.3225, + "grad_norm": 0.145679314202878, + "learning_rate": 1e-05, + "loss": 0.0227, + "step": 645 + }, + { + "epoch": 0.323, + "grad_norm": 0.13813521110883425, + "learning_rate": 1e-05, + "loss": 0.0173, + "step": 646 + }, + { + "epoch": 0.3235, + "grad_norm": 0.11216370610734963, + "learning_rate": 1e-05, + "loss": 0.0125, + "step": 647 + }, + { + "epoch": 0.324, + "grad_norm": 0.09898218700430327, + "learning_rate": 1e-05, + "loss": 0.0165, + "step": 648 + }, + { + "epoch": 0.3245, + "grad_norm": 0.13555813085878698, + "learning_rate": 1e-05, + "loss": 0.0163, + "step": 649 + }, + { + "epoch": 0.325, + "grad_norm": 0.11552480540546263, + "learning_rate": 1e-05, + "loss": 0.0161, + "step": 650 + }, + { + "epoch": 0.3255, + "grad_norm": 0.12028253181729011, + "learning_rate": 1e-05, + "loss": 0.014, + "step": 651 + }, + { + "epoch": 0.326, + "grad_norm": 0.11773491790468957, + "learning_rate": 1e-05, + "loss": 0.0143, + "step": 652 + }, + { + "epoch": 0.3265, + "grad_norm": 0.11052002031571376, + "learning_rate": 1e-05, + "loss": 0.0177, + "step": 653 + }, + { + "epoch": 0.327, + "grad_norm": 0.1251016102612686, + "learning_rate": 1e-05, + "loss": 0.0134, + "step": 654 + }, + { + "epoch": 0.3275, + "grad_norm": 0.13329112874236815, + "learning_rate": 1e-05, + "loss": 0.0148, + "step": 655 + }, + { + "epoch": 0.328, + "grad_norm": 0.11382501473889628, + "learning_rate": 1e-05, + "loss": 0.0145, + "step": 656 + }, + { + "epoch": 0.3285, + "grad_norm": 0.1319495587226548, + "learning_rate": 1e-05, + "loss": 0.0139, + "step": 657 + }, + { + "epoch": 0.329, + "grad_norm": 0.12070785233460224, + "learning_rate": 1e-05, + "loss": 0.014, + "step": 658 + }, + { + "epoch": 0.3295, + "grad_norm": 0.12142680030465443, + "learning_rate": 1e-05, + "loss": 0.0159, + "step": 659 + }, + { + "epoch": 0.33, + "grad_norm": 0.12182666413282645, + "learning_rate": 1e-05, + "loss": 0.0114, + "step": 660 + }, + { + "epoch": 0.3305, + "grad_norm": 0.13190056217824564, + "learning_rate": 1e-05, + "loss": 0.0163, + "step": 661 + }, + { + "epoch": 0.331, + "grad_norm": 0.12804397999806036, + "learning_rate": 1e-05, + "loss": 0.016, + "step": 662 + }, + { + "epoch": 0.3315, + "grad_norm": 0.1461414693983946, + "learning_rate": 1e-05, + "loss": 0.0179, + "step": 663 + }, + { + "epoch": 0.332, + "grad_norm": 0.1467248720157808, + "learning_rate": 1e-05, + "loss": 0.0171, + "step": 664 + }, + { + "epoch": 0.3325, + "grad_norm": 0.1393703645756879, + "learning_rate": 1e-05, + "loss": 0.017, + "step": 665 + }, + { + "epoch": 0.333, + "grad_norm": 0.1677851073130961, + "learning_rate": 1e-05, + "loss": 0.033, + "step": 666 + }, + { + "epoch": 0.3335, + "grad_norm": 0.13245384270982133, + "learning_rate": 1e-05, + "loss": 0.0163, + "step": 667 + }, + { + "epoch": 0.334, + "grad_norm": 0.12289205645457782, + "learning_rate": 1e-05, + "loss": 0.015, + "step": 668 + }, + { + "epoch": 0.3345, + "grad_norm": 0.13290806824539741, + "learning_rate": 1e-05, + "loss": 0.0131, + "step": 669 + }, + { + "epoch": 0.335, + "grad_norm": 0.12256221521384754, + "learning_rate": 1e-05, + "loss": 0.0138, + "step": 670 + }, + { + "epoch": 0.3355, + "grad_norm": 0.11871572464334247, + "learning_rate": 1e-05, + "loss": 0.0156, + "step": 671 + }, + { + "epoch": 0.336, + "grad_norm": 0.1425273432040885, + "learning_rate": 1e-05, + "loss": 0.0132, + "step": 672 + }, + { + "epoch": 0.336, + "eval_dev_acc": 0.5625, + "eval_dev_token": 5492.04296875, + "eval_runtime": 348.043, + "eval_samples_per_second": 0.184, + "eval_steps_per_second": 0.003, + "step": 672 + }, + { + "epoch": 0.3365, + "grad_norm": 0.12612838576017849, + "learning_rate": 1e-05, + "loss": 0.0127, + "step": 673 + }, + { + "epoch": 0.337, + "grad_norm": 0.1294118778329942, + "learning_rate": 1e-05, + "loss": 0.0161, + "step": 674 + }, + { + "epoch": 0.3375, + "grad_norm": 0.11771619437889824, + "learning_rate": 1e-05, + "loss": 0.0142, + "step": 675 + }, + { + "epoch": 0.338, + "grad_norm": 0.13434389137713848, + "learning_rate": 1e-05, + "loss": 0.0157, + "step": 676 + }, + { + "epoch": 0.3385, + "grad_norm": 0.2579148520419769, + "learning_rate": 1e-05, + "loss": 0.0322, + "step": 677 + }, + { + "epoch": 0.339, + "grad_norm": 0.12876645046050272, + "learning_rate": 1e-05, + "loss": 0.0127, + "step": 678 + }, + { + "epoch": 0.3395, + "grad_norm": 0.12336988858308351, + "learning_rate": 1e-05, + "loss": 0.0114, + "step": 679 + }, + { + "epoch": 0.34, + "grad_norm": 0.11038801232074134, + "learning_rate": 1e-05, + "loss": 0.0112, + "step": 680 + }, + { + "epoch": 0.3405, + "grad_norm": 0.13782079916676085, + "learning_rate": 1e-05, + "loss": 0.0156, + "step": 681 + }, + { + "epoch": 0.341, + "grad_norm": 0.12593807949317973, + "learning_rate": 1e-05, + "loss": 0.0179, + "step": 682 + }, + { + "epoch": 0.3415, + "grad_norm": 0.13416291611922937, + "learning_rate": 1e-05, + "loss": 0.0167, + "step": 683 + }, + { + "epoch": 0.342, + "grad_norm": 0.14107509427243767, + "learning_rate": 1e-05, + "loss": 0.0182, + "step": 684 + }, + { + "epoch": 0.3425, + "grad_norm": 0.13829290958101634, + "learning_rate": 1e-05, + "loss": 0.0133, + "step": 685 + }, + { + "epoch": 0.343, + "grad_norm": 0.12072602797225344, + "learning_rate": 1e-05, + "loss": 0.0135, + "step": 686 + }, + { + "epoch": 0.3435, + "grad_norm": 0.09808985286323638, + "learning_rate": 1e-05, + "loss": 0.0109, + "step": 687 + }, + { + "epoch": 0.344, + "grad_norm": 0.1237155662701831, + "learning_rate": 1e-05, + "loss": 0.0137, + "step": 688 + }, + { + "epoch": 0.3445, + "grad_norm": 0.11512509686864711, + "learning_rate": 1e-05, + "loss": 0.0131, + "step": 689 + }, + { + "epoch": 0.345, + "grad_norm": 0.10310189822258317, + "learning_rate": 1e-05, + "loss": 0.011, + "step": 690 + }, + { + "epoch": 0.3455, + "grad_norm": 0.17008589258309467, + "learning_rate": 1e-05, + "loss": 0.0219, + "step": 691 + }, + { + "epoch": 0.346, + "grad_norm": 0.12175425158539896, + "learning_rate": 1e-05, + "loss": 0.014, + "step": 692 + }, + { + "epoch": 0.3465, + "grad_norm": 0.11242731302801981, + "learning_rate": 1e-05, + "loss": 0.0142, + "step": 693 + }, + { + "epoch": 0.347, + "grad_norm": 0.13975508336225442, + "learning_rate": 1e-05, + "loss": 0.0149, + "step": 694 + }, + { + "epoch": 0.3475, + "grad_norm": 0.08820258618918772, + "learning_rate": 1e-05, + "loss": 0.008, + "step": 695 + }, + { + "epoch": 0.348, + "grad_norm": 0.1343553646574964, + "learning_rate": 1e-05, + "loss": 0.014, + "step": 696 + }, + { + "epoch": 0.3485, + "grad_norm": 0.13274844121268298, + "learning_rate": 1e-05, + "loss": 0.0143, + "step": 697 + }, + { + "epoch": 0.349, + "grad_norm": 0.1412865550899799, + "learning_rate": 1e-05, + "loss": 0.0164, + "step": 698 + }, + { + "epoch": 0.3495, + "grad_norm": 0.1471608978417448, + "learning_rate": 1e-05, + "loss": 0.0144, + "step": 699 + }, + { + "epoch": 0.35, + "grad_norm": 0.13861936123681107, + "learning_rate": 1e-05, + "loss": 0.0151, + "step": 700 + }, + { + "epoch": 0.3505, + "grad_norm": 0.11790173787959472, + "learning_rate": 1e-05, + "loss": 0.0252, + "step": 701 + }, + { + "epoch": 0.351, + "grad_norm": 0.12166501219045824, + "learning_rate": 1e-05, + "loss": 0.0145, + "step": 702 + }, + { + "epoch": 0.3515, + "grad_norm": 0.1082871078184047, + "learning_rate": 1e-05, + "loss": 0.0095, + "step": 703 + }, + { + "epoch": 0.352, + "grad_norm": 0.12226846848831563, + "learning_rate": 1e-05, + "loss": 0.0141, + "step": 704 + }, + { + "epoch": 0.352, + "eval_dev_acc": 0.52734375, + "eval_dev_token": 5760.470703125, + "eval_runtime": 408.3746, + "eval_samples_per_second": 0.157, + "eval_steps_per_second": 0.002, + "step": 704 + }, + { + "epoch": 0.3525, + "grad_norm": 0.09666366634628189, + "learning_rate": 1e-05, + "loss": 0.0097, + "step": 705 + }, + { + "epoch": 0.353, + "grad_norm": 0.11283217042776503, + "learning_rate": 1e-05, + "loss": 0.0143, + "step": 706 + }, + { + "epoch": 0.3535, + "grad_norm": 0.12289011751838193, + "learning_rate": 1e-05, + "loss": 0.0173, + "step": 707 + }, + { + "epoch": 0.354, + "grad_norm": 0.11335657340497375, + "learning_rate": 1e-05, + "loss": 0.0193, + "step": 708 + }, + { + "epoch": 0.3545, + "grad_norm": 0.12878402333619293, + "learning_rate": 1e-05, + "loss": 0.0198, + "step": 709 + }, + { + "epoch": 0.355, + "grad_norm": 0.09768170830344952, + "learning_rate": 1e-05, + "loss": 0.0123, + "step": 710 + }, + { + "epoch": 0.3555, + "grad_norm": 0.11142711749521704, + "learning_rate": 1e-05, + "loss": 0.0142, + "step": 711 + }, + { + "epoch": 0.356, + "grad_norm": 0.12263582497303413, + "learning_rate": 1e-05, + "loss": 0.0125, + "step": 712 + }, + { + "epoch": 0.3565, + "grad_norm": 0.10602173709981424, + "learning_rate": 1e-05, + "loss": 0.013, + "step": 713 + }, + { + "epoch": 0.357, + "grad_norm": 0.09797092044857854, + "learning_rate": 1e-05, + "loss": 0.0097, + "step": 714 + }, + { + "epoch": 0.3575, + "grad_norm": 0.10267028455310084, + "learning_rate": 1e-05, + "loss": 0.0153, + "step": 715 + }, + { + "epoch": 0.358, + "grad_norm": 0.11247269902696218, + "learning_rate": 1e-05, + "loss": 0.0124, + "step": 716 + }, + { + "epoch": 0.3585, + "grad_norm": 0.10192090643527008, + "learning_rate": 1e-05, + "loss": 0.01, + "step": 717 + }, + { + "epoch": 0.359, + "grad_norm": 0.15447030723754146, + "learning_rate": 1e-05, + "loss": 0.0191, + "step": 718 + }, + { + "epoch": 0.3595, + "grad_norm": 0.12653173296866044, + "learning_rate": 1e-05, + "loss": 0.0144, + "step": 719 + }, + { + "epoch": 0.36, + "grad_norm": 0.09798115770372441, + "learning_rate": 1e-05, + "loss": 0.0113, + "step": 720 + }, + { + "epoch": 0.3605, + "grad_norm": 0.13673705245890774, + "learning_rate": 1e-05, + "loss": 0.0176, + "step": 721 + }, + { + "epoch": 0.361, + "grad_norm": 0.10484924187213118, + "learning_rate": 1e-05, + "loss": 0.011, + "step": 722 + }, + { + "epoch": 0.3615, + "grad_norm": 0.12026390551992476, + "learning_rate": 1e-05, + "loss": 0.0161, + "step": 723 + }, + { + "epoch": 0.362, + "grad_norm": 0.12248845158519388, + "learning_rate": 1e-05, + "loss": 0.0135, + "step": 724 + }, + { + "epoch": 0.3625, + "grad_norm": 0.08242254382606763, + "learning_rate": 1e-05, + "loss": 0.0103, + "step": 725 + }, + { + "epoch": 0.363, + "grad_norm": 0.1310711546429888, + "learning_rate": 1e-05, + "loss": 0.0213, + "step": 726 + }, + { + "epoch": 0.3635, + "grad_norm": 0.11504216894290854, + "learning_rate": 1e-05, + "loss": 0.0122, + "step": 727 + }, + { + "epoch": 0.364, + "grad_norm": 0.12368075631500317, + "learning_rate": 1e-05, + "loss": 0.0184, + "step": 728 + }, + { + "epoch": 0.3645, + "grad_norm": 0.12437061544598803, + "learning_rate": 1e-05, + "loss": 0.0152, + "step": 729 + }, + { + "epoch": 0.365, + "grad_norm": 0.13397286445240938, + "learning_rate": 1e-05, + "loss": 0.0158, + "step": 730 + }, + { + "epoch": 0.3655, + "grad_norm": 0.0982171426550068, + "learning_rate": 1e-05, + "loss": 0.0096, + "step": 731 + }, + { + "epoch": 0.366, + "grad_norm": 0.10415731829601732, + "learning_rate": 1e-05, + "loss": 0.0105, + "step": 732 + }, + { + "epoch": 0.3665, + "grad_norm": 0.13524982542339864, + "learning_rate": 1e-05, + "loss": 0.0183, + "step": 733 + }, + { + "epoch": 0.367, + "grad_norm": 0.09664339538491498, + "learning_rate": 1e-05, + "loss": 0.0115, + "step": 734 + }, + { + "epoch": 0.3675, + "grad_norm": 0.0851015567710096, + "learning_rate": 1e-05, + "loss": 0.0112, + "step": 735 + }, + { + "epoch": 0.368, + "grad_norm": 0.10062979284816816, + "learning_rate": 1e-05, + "loss": 0.0113, + "step": 736 + }, + { + "epoch": 0.368, + "eval_dev_acc": 0.53515625, + "eval_dev_token": 5898.23046875, + "eval_runtime": 365.57, + "eval_samples_per_second": 0.175, + "eval_steps_per_second": 0.003, + "step": 736 + }, + { + "epoch": 0.3685, + "grad_norm": 0.11264161967062039, + "learning_rate": 1e-05, + "loss": 0.0108, + "step": 737 + }, + { + "epoch": 0.369, + "grad_norm": 0.11222433927286389, + "learning_rate": 1e-05, + "loss": 0.0104, + "step": 738 + }, + { + "epoch": 0.3695, + "grad_norm": 0.20055167671089585, + "learning_rate": 1e-05, + "loss": 0.013, + "step": 739 + }, + { + "epoch": 0.37, + "grad_norm": 0.10491538007846005, + "learning_rate": 1e-05, + "loss": 0.0131, + "step": 740 + }, + { + "epoch": 0.3705, + "grad_norm": 0.09174967069041229, + "learning_rate": 1e-05, + "loss": 0.0095, + "step": 741 + }, + { + "epoch": 0.371, + "grad_norm": 0.10582756451393364, + "learning_rate": 1e-05, + "loss": 0.012, + "step": 742 + }, + { + "epoch": 0.3715, + "grad_norm": 0.09194993895839906, + "learning_rate": 1e-05, + "loss": 0.0097, + "step": 743 + }, + { + "epoch": 0.372, + "grad_norm": 0.08858743590625234, + "learning_rate": 1e-05, + "loss": 0.01, + "step": 744 + }, + { + "epoch": 0.3725, + "grad_norm": 0.10826764845042156, + "learning_rate": 1e-05, + "loss": 0.0145, + "step": 745 + }, + { + "epoch": 0.373, + "grad_norm": 0.11033032167695773, + "learning_rate": 1e-05, + "loss": 0.0113, + "step": 746 + }, + { + "epoch": 0.3735, + "grad_norm": 0.15107498232603372, + "learning_rate": 1e-05, + "loss": 0.0157, + "step": 747 + }, + { + "epoch": 0.374, + "grad_norm": 0.11411131491498813, + "learning_rate": 1e-05, + "loss": 0.0114, + "step": 748 + }, + { + "epoch": 0.3745, + "grad_norm": 0.12425138196940645, + "learning_rate": 1e-05, + "loss": 0.0138, + "step": 749 + }, + { + "epoch": 0.375, + "grad_norm": 0.10647093971928946, + "learning_rate": 1e-05, + "loss": 0.0107, + "step": 750 + }, + { + "epoch": 0.3755, + "grad_norm": 0.12413448325714936, + "learning_rate": 1e-05, + "loss": 0.014, + "step": 751 + }, + { + "epoch": 0.376, + "grad_norm": 0.105340917878943, + "learning_rate": 1e-05, + "loss": 0.0103, + "step": 752 + }, + { + "epoch": 0.3765, + "grad_norm": 0.11802541191692037, + "learning_rate": 1e-05, + "loss": 0.0127, + "step": 753 + }, + { + "epoch": 0.377, + "grad_norm": 0.09864810460683521, + "learning_rate": 1e-05, + "loss": 0.0128, + "step": 754 + }, + { + "epoch": 0.3775, + "grad_norm": 0.12491513055109611, + "learning_rate": 1e-05, + "loss": 0.0102, + "step": 755 + }, + { + "epoch": 0.378, + "grad_norm": 0.11778790720208179, + "learning_rate": 1e-05, + "loss": 0.0093, + "step": 756 + }, + { + "epoch": 0.3785, + "grad_norm": 0.11902239371415295, + "learning_rate": 1e-05, + "loss": 0.0115, + "step": 757 + }, + { + "epoch": 0.379, + "grad_norm": 0.1025498591924567, + "learning_rate": 1e-05, + "loss": 0.0099, + "step": 758 + }, + { + "epoch": 0.3795, + "grad_norm": 0.14120840112868438, + "learning_rate": 1e-05, + "loss": 0.0123, + "step": 759 + }, + { + "epoch": 0.38, + "grad_norm": 0.08964665828244849, + "learning_rate": 1e-05, + "loss": 0.0116, + "step": 760 + }, + { + "epoch": 0.3805, + "grad_norm": 0.13533754381134197, + "learning_rate": 1e-05, + "loss": 0.0142, + "step": 761 + }, + { + "epoch": 0.381, + "grad_norm": 0.11151852649444051, + "learning_rate": 1e-05, + "loss": 0.0122, + "step": 762 + }, + { + "epoch": 0.3815, + "grad_norm": 0.12448616858204287, + "learning_rate": 1e-05, + "loss": 0.0148, + "step": 763 + }, + { + "epoch": 0.382, + "grad_norm": 0.10160526390201502, + "learning_rate": 1e-05, + "loss": 0.0102, + "step": 764 + }, + { + "epoch": 0.3825, + "grad_norm": 0.12329039775788013, + "learning_rate": 1e-05, + "loss": 0.0226, + "step": 765 + }, + { + "epoch": 0.383, + "grad_norm": 0.1706851101549876, + "learning_rate": 1e-05, + "loss": 0.013, + "step": 766 + }, + { + "epoch": 0.3835, + "grad_norm": 0.11518698920716465, + "learning_rate": 1e-05, + "loss": 0.0136, + "step": 767 + }, + { + "epoch": 0.384, + "grad_norm": 0.1130084278865893, + "learning_rate": 1e-05, + "loss": 0.0151, + "step": 768 + }, + { + "epoch": 0.384, + "eval_dev_acc": 0.505859375, + "eval_dev_token": 5660.353515625, + "eval_runtime": 362.2613, + "eval_samples_per_second": 0.177, + "eval_steps_per_second": 0.003, + "step": 768 + }, + { + "epoch": 0.3845, + "grad_norm": 0.12092852490034717, + "learning_rate": 1e-05, + "loss": 0.0111, + "step": 769 + }, + { + "epoch": 0.385, + "grad_norm": 0.12041159291779986, + "learning_rate": 1e-05, + "loss": 0.0157, + "step": 770 + }, + { + "epoch": 0.3855, + "grad_norm": 0.13135896730332378, + "learning_rate": 1e-05, + "loss": 0.0149, + "step": 771 + }, + { + "epoch": 0.386, + "grad_norm": 0.09838622926936438, + "learning_rate": 1e-05, + "loss": 0.0113, + "step": 772 + }, + { + "epoch": 0.3865, + "grad_norm": 0.1118823935585986, + "learning_rate": 1e-05, + "loss": 0.016, + "step": 773 + }, + { + "epoch": 0.387, + "grad_norm": 0.10549287704509497, + "learning_rate": 1e-05, + "loss": 0.0097, + "step": 774 + }, + { + "epoch": 0.3875, + "grad_norm": 0.1232106501038667, + "learning_rate": 1e-05, + "loss": 0.013, + "step": 775 + }, + { + "epoch": 0.388, + "grad_norm": 0.12975165037101072, + "learning_rate": 1e-05, + "loss": 0.0121, + "step": 776 + }, + { + "epoch": 0.3885, + "grad_norm": 0.13595262265606586, + "learning_rate": 1e-05, + "loss": 0.0126, + "step": 777 + }, + { + "epoch": 0.389, + "grad_norm": 0.1371181387315353, + "learning_rate": 1e-05, + "loss": 0.0123, + "step": 778 + }, + { + "epoch": 0.3895, + "grad_norm": 0.13359565264106144, + "learning_rate": 1e-05, + "loss": 0.0153, + "step": 779 + }, + { + "epoch": 0.39, + "grad_norm": 0.11480062436980976, + "learning_rate": 1e-05, + "loss": 0.0107, + "step": 780 + }, + { + "epoch": 0.3905, + "grad_norm": 0.09947922362782227, + "learning_rate": 1e-05, + "loss": 0.0086, + "step": 781 + }, + { + "epoch": 0.391, + "grad_norm": 0.08734624126570777, + "learning_rate": 1e-05, + "loss": 0.0076, + "step": 782 + }, + { + "epoch": 0.3915, + "grad_norm": 0.10267346744796824, + "learning_rate": 1e-05, + "loss": 0.0097, + "step": 783 + }, + { + "epoch": 0.392, + "grad_norm": 0.09576192367034056, + "learning_rate": 1e-05, + "loss": 0.0083, + "step": 784 + }, + { + "epoch": 0.3925, + "grad_norm": 0.14141610877259214, + "learning_rate": 1e-05, + "loss": 0.0139, + "step": 785 + }, + { + "epoch": 0.393, + "grad_norm": 0.12071117391984963, + "learning_rate": 1e-05, + "loss": 0.0115, + "step": 786 + }, + { + "epoch": 0.3935, + "grad_norm": 0.13172358788988653, + "learning_rate": 1e-05, + "loss": 0.0129, + "step": 787 + }, + { + "epoch": 0.394, + "grad_norm": 0.1345424657278948, + "learning_rate": 1e-05, + "loss": 0.014, + "step": 788 + }, + { + "epoch": 0.3945, + "grad_norm": 0.1166885723717584, + "learning_rate": 1e-05, + "loss": 0.0125, + "step": 789 + }, + { + "epoch": 0.395, + "grad_norm": 0.1513194581227132, + "learning_rate": 1e-05, + "loss": 0.0145, + "step": 790 + }, + { + "epoch": 0.3955, + "grad_norm": 0.11105132556458801, + "learning_rate": 1e-05, + "loss": 0.011, + "step": 791 + }, + { + "epoch": 0.396, + "grad_norm": 0.0989302250949553, + "learning_rate": 1e-05, + "loss": 0.0086, + "step": 792 + }, + { + "epoch": 0.3965, + "grad_norm": 0.1384321782028591, + "learning_rate": 1e-05, + "loss": 0.0122, + "step": 793 + }, + { + "epoch": 0.397, + "grad_norm": 0.1439582094147518, + "learning_rate": 1e-05, + "loss": 0.0142, + "step": 794 + }, + { + "epoch": 0.3975, + "grad_norm": 0.11905534302900607, + "learning_rate": 1e-05, + "loss": 0.0102, + "step": 795 + }, + { + "epoch": 0.398, + "grad_norm": 0.1353943654211476, + "learning_rate": 1e-05, + "loss": 0.015, + "step": 796 + }, + { + "epoch": 0.3985, + "grad_norm": 0.1227008050574365, + "learning_rate": 1e-05, + "loss": 0.0159, + "step": 797 + }, + { + "epoch": 0.399, + "grad_norm": 0.10084479670557596, + "learning_rate": 1e-05, + "loss": 0.0103, + "step": 798 + }, + { + "epoch": 0.3995, + "grad_norm": 0.11430101131806415, + "learning_rate": 1e-05, + "loss": 0.0128, + "step": 799 + }, + { + "epoch": 0.4, + "grad_norm": 0.12720193634725216, + "learning_rate": 1e-05, + "loss": 0.0166, + "step": 800 + }, + { + "epoch": 0.4, + "eval_dev_acc": 0.49609375, + "eval_dev_token": 5933.87109375, + "eval_runtime": 371.4205, + "eval_samples_per_second": 0.172, + "eval_steps_per_second": 0.003, + "step": 800 + }, + { + "epoch": 0.4005, + "grad_norm": 0.10747534966369286, + "learning_rate": 1e-05, + "loss": 0.0113, + "step": 801 + }, + { + "epoch": 0.401, + "grad_norm": 0.09755157150747987, + "learning_rate": 1e-05, + "loss": 0.0094, + "step": 802 + }, + { + "epoch": 0.4015, + "grad_norm": 0.1093754763997552, + "learning_rate": 1e-05, + "loss": 0.0136, + "step": 803 + }, + { + "epoch": 0.402, + "grad_norm": 0.12186788180512477, + "learning_rate": 1e-05, + "loss": 0.0112, + "step": 804 + }, + { + "epoch": 0.4025, + "grad_norm": 0.12341274893925132, + "learning_rate": 1e-05, + "loss": 0.0126, + "step": 805 + }, + { + "epoch": 0.403, + "grad_norm": 0.1000051489528446, + "learning_rate": 1e-05, + "loss": 0.0171, + "step": 806 + }, + { + "epoch": 0.4035, + "grad_norm": 0.09210699513663904, + "learning_rate": 1e-05, + "loss": 0.0097, + "step": 807 + }, + { + "epoch": 0.404, + "grad_norm": 0.12629053026155362, + "learning_rate": 1e-05, + "loss": 0.0126, + "step": 808 + }, + { + "epoch": 0.4045, + "grad_norm": 0.11979707428750866, + "learning_rate": 1e-05, + "loss": 0.0129, + "step": 809 + }, + { + "epoch": 0.405, + "grad_norm": 0.13240620090939892, + "learning_rate": 1e-05, + "loss": 0.0173, + "step": 810 + }, + { + "epoch": 0.4055, + "grad_norm": 0.11509826968311627, + "learning_rate": 1e-05, + "loss": 0.0133, + "step": 811 + }, + { + "epoch": 0.406, + "grad_norm": 0.09930674216692448, + "learning_rate": 1e-05, + "loss": 0.0103, + "step": 812 + }, + { + "epoch": 0.4065, + "grad_norm": 0.12486374889735856, + "learning_rate": 1e-05, + "loss": 0.0152, + "step": 813 + }, + { + "epoch": 0.407, + "grad_norm": 0.09439307719243419, + "learning_rate": 1e-05, + "loss": 0.0113, + "step": 814 + }, + { + "epoch": 0.4075, + "grad_norm": 0.09010069214916468, + "learning_rate": 1e-05, + "loss": 0.0101, + "step": 815 + }, + { + "epoch": 0.408, + "grad_norm": 0.10807091465236611, + "learning_rate": 1e-05, + "loss": 0.0136, + "step": 816 + }, + { + "epoch": 0.4085, + "grad_norm": 0.09320554728801374, + "learning_rate": 1e-05, + "loss": 0.0102, + "step": 817 + }, + { + "epoch": 0.409, + "grad_norm": 0.09578310039513883, + "learning_rate": 1e-05, + "loss": 0.0105, + "step": 818 + }, + { + "epoch": 0.4095, + "grad_norm": 0.10795646602867415, + "learning_rate": 1e-05, + "loss": 0.0141, + "step": 819 + }, + { + "epoch": 0.41, + "grad_norm": 0.11260765818079684, + "learning_rate": 1e-05, + "loss": 0.0123, + "step": 820 + }, + { + "epoch": 0.4105, + "grad_norm": 0.13162780397133028, + "learning_rate": 1e-05, + "loss": 0.0141, + "step": 821 + }, + { + "epoch": 0.411, + "grad_norm": 0.10884500486087925, + "learning_rate": 1e-05, + "loss": 0.0122, + "step": 822 + }, + { + "epoch": 0.4115, + "grad_norm": 0.12472839162847292, + "learning_rate": 1e-05, + "loss": 0.0135, + "step": 823 + }, + { + "epoch": 0.412, + "grad_norm": 0.13289735991638021, + "learning_rate": 1e-05, + "loss": 0.0112, + "step": 824 + }, + { + "epoch": 0.4125, + "grad_norm": 0.12509974441211302, + "learning_rate": 1e-05, + "loss": 0.0256, + "step": 825 + }, + { + "epoch": 0.413, + "grad_norm": 0.12014632147622897, + "learning_rate": 1e-05, + "loss": 0.0113, + "step": 826 + }, + { + "epoch": 0.4135, + "grad_norm": 0.09172916013688245, + "learning_rate": 1e-05, + "loss": 0.0082, + "step": 827 + }, + { + "epoch": 0.414, + "grad_norm": 0.09305774811224422, + "learning_rate": 1e-05, + "loss": 0.0074, + "step": 828 + }, + { + "epoch": 0.4145, + "grad_norm": 0.12720506111352092, + "learning_rate": 1e-05, + "loss": 0.0091, + "step": 829 + }, + { + "epoch": 0.415, + "grad_norm": 0.0815065287803298, + "learning_rate": 1e-05, + "loss": 0.0061, + "step": 830 + }, + { + "epoch": 0.4155, + "grad_norm": 0.09730425117259746, + "learning_rate": 1e-05, + "loss": 0.0079, + "step": 831 + }, + { + "epoch": 0.416, + "grad_norm": 0.09579694307116488, + "learning_rate": 1e-05, + "loss": 0.0098, + "step": 832 + }, + { + "epoch": 0.416, + "eval_dev_acc": 0.513671875, + "eval_dev_token": 4446.53125, + "eval_runtime": 329.208, + "eval_samples_per_second": 0.194, + "eval_steps_per_second": 0.003, + "step": 832 + } + ], + "logging_steps": 1.0, + "max_steps": 2000, + "num_input_tokens_seen": 0, + "num_train_epochs": 9223372036854775807, + "save_steps": 32, + "stateful_callbacks": { + "TrainerControl": { + "args": { + "should_epoch_stop": false, + "should_evaluate": false, + "should_log": false, + "should_save": true, + "should_training_stop": false + }, + "attributes": {} + } + }, + "total_flos": 224786117410816.0, + "train_batch_size": 8, + "trial_name": null, + "trial_params": null +} diff --git a/tldr-14b-step-832/training_args.bin b/tldr-14b-step-832/training_args.bin new file mode 100644 index 0000000000000000000000000000000000000000..4f5d02ddd18e1788b01766ecb83eb47b67f647d9 --- /dev/null +++ b/tldr-14b-step-832/training_args.bin @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:e58fa949caa5f03669bd0d8bb18548b753852f3f732f36df28a00d4b854effa3 +size 8440 diff --git a/tldr-14b-step-832/zero_to_fp32.py b/tldr-14b-step-832/zero_to_fp32.py new file mode 100644 index 0000000000000000000000000000000000000000..e69ecd9acb5a235ffbf927091051106d902b3d39 --- /dev/null +++ b/tldr-14b-step-832/zero_to_fp32.py @@ -0,0 +1,674 @@ +#!/usr/bin/env python + +# Copyright (c) Microsoft Corporation. +# SPDX-License-Identifier: Apache-2.0 + +# DeepSpeed Team + +# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets +# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in +# the future. Once extracted, the weights don't require DeepSpeed and can be used in any +# application. +# +# example: +# python zero_to_fp32.py . output_dir/ +# or +# python zero_to_fp32.py . output_dir/ --safe_serialization + +import argparse +import torch +import glob +import math +import os +import re +import json +from tqdm import tqdm +from collections import OrderedDict +from dataclasses import dataclass + +# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with +# DeepSpeed data structures it has to be available in the current python environment. +from deepspeed.utils import logger +from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS, + FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES, + FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS) + + +@dataclass +class zero_model_state: + buffers: dict() + param_shapes: dict() + shared_params: list + ds_version: int + frozen_param_shapes: dict() + frozen_param_fragments: dict() + + +debug = 0 + +# load to cpu +device = torch.device('cpu') + + +def atoi(text): + return int(text) if text.isdigit() else text + + +def natural_keys(text): + ''' + alist.sort(key=natural_keys) sorts in human order + http://nedbatchelder.com/blog/200712/human_sorting.html + (See Toothy's implementation in the comments) + ''' + return [atoi(c) for c in re.split(r'(\d+)', text)] + + +def get_model_state_file(checkpoint_dir, zero_stage): + if not os.path.isdir(checkpoint_dir): + raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist") + + # there should be only one file + if zero_stage <= 2: + file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt") + elif zero_stage == 3: + file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt") + + if not os.path.exists(file): + raise FileNotFoundError(f"can't find model states file at '{file}'") + + return file + + +def get_checkpoint_files(checkpoint_dir, glob_pattern): + # XXX: need to test that this simple glob rule works for multi-node setup too + ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys) + + if len(ckpt_files) == 0: + raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'") + + return ckpt_files + + +def get_optim_files(checkpoint_dir): + return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt") + + +def get_model_state_files(checkpoint_dir): + return get_checkpoint_files(checkpoint_dir, "*_model_states.pt") + + +def parse_model_states(files): + zero_model_states = [] + for file in files: + state_dict = torch.load(file, map_location=device) + + if BUFFER_NAMES not in state_dict: + raise ValueError(f"{file} is not a model state checkpoint") + buffer_names = state_dict[BUFFER_NAMES] + if debug: + print("Found buffers:", buffer_names) + + # recover just the buffers while restoring them to fp32 if they were saved in fp16 + buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names} + param_shapes = state_dict[PARAM_SHAPES] + + # collect parameters that are included in param_shapes + param_names = [] + for s in param_shapes: + for name in s.keys(): + param_names.append(name) + + # update with frozen parameters + frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None) + if frozen_param_shapes is not None: + if debug: + print(f"Found frozen_param_shapes: {frozen_param_shapes}") + param_names += list(frozen_param_shapes.keys()) + + # handle shared params + shared_params = [[k, v] for k, v in state_dict["shared_params"].items()] + + ds_version = state_dict.get(DS_VERSION, None) + + frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None) + + z_model_state = zero_model_state(buffers=buffers, + param_shapes=param_shapes, + shared_params=shared_params, + ds_version=ds_version, + frozen_param_shapes=frozen_param_shapes, + frozen_param_fragments=frozen_param_fragments) + zero_model_states.append(z_model_state) + + return zero_model_states + + +def parse_optim_states(files, ds_checkpoint_dir): + total_files = len(files) + state_dicts = [] + for f in files: + state_dict = torch.load(f, map_location=device) + # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights + # and also handle the case where it was already removed by another helper script + state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None) + state_dicts.append(state_dict) + + if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]: + raise ValueError(f"{files[0]} is not a zero checkpoint") + zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE] + world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT] + + # For ZeRO-2 each param group can have different partition_count as data parallelism for expert + # parameters can be different from data parallelism for non-expert parameters. So we can just + # use the max of the partition_count to get the dp world_size. + + if type(world_size) is list: + world_size = max(world_size) + + if world_size != total_files: + raise ValueError( + f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. " + "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes." + ) + + # the groups are named differently in each stage + if zero_stage <= 2: + fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS + elif zero_stage == 3: + fp32_groups_key = FP32_FLAT_GROUPS + else: + raise ValueError(f"unknown zero stage {zero_stage}") + + if zero_stage <= 2: + fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))] + elif zero_stage == 3: + # if there is more than one param group, there will be multiple flattened tensors - one + # flattened tensor per group - for simplicity merge them into a single tensor + # + # XXX: could make the script more memory efficient for when there are multiple groups - it + # will require matching the sub-lists of param_shapes for each param group flattened tensor + + fp32_flat_groups = [ + torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts)) + ] + + return zero_stage, world_size, fp32_flat_groups + + +def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters): + """ + Returns fp32 state_dict reconstructed from ds checkpoint + + Args: + - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are) + + """ + print(f"Processing zero checkpoint '{ds_checkpoint_dir}'") + + optim_files = get_optim_files(ds_checkpoint_dir) + zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir) + print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}") + + model_files = get_model_state_files(ds_checkpoint_dir) + + zero_model_states = parse_model_states(model_files) + print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}') + + if zero_stage <= 2: + return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states, + exclude_frozen_parameters) + elif zero_stage == 3: + return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states, + exclude_frozen_parameters) + + +def _zero2_merge_frozen_params(state_dict, zero_model_states): + if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0: + return + + frozen_param_shapes = zero_model_states[0].frozen_param_shapes + frozen_param_fragments = zero_model_states[0].frozen_param_fragments + + if debug: + num_elem = sum(s.numel() for s in frozen_param_shapes.values()) + print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}') + + wanted_params = len(frozen_param_shapes) + wanted_numel = sum(s.numel() for s in frozen_param_shapes.values()) + avail_numel = sum([p.numel() for p in frozen_param_fragments.values()]) + print(f'Frozen params: Have {avail_numel} numels to process.') + print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params') + + total_params = 0 + total_numel = 0 + for name, shape in frozen_param_shapes.items(): + total_params += 1 + unpartitioned_numel = shape.numel() + total_numel += unpartitioned_numel + + state_dict[name] = frozen_param_fragments[name] + + if debug: + print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ") + + print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements") + + +def _has_callable(obj, fn): + attr = getattr(obj, fn, None) + return callable(attr) + + +def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states): + param_shapes = zero_model_states[0].param_shapes + + # Reconstruction protocol: + # + # XXX: document this + + if debug: + for i in range(world_size): + for j in range(len(fp32_flat_groups[0])): + print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}") + + # XXX: memory usage doubles here (zero2) + num_param_groups = len(fp32_flat_groups[0]) + merged_single_partition_of_fp32_groups = [] + for i in range(num_param_groups): + merged_partitions = [sd[i] for sd in fp32_flat_groups] + full_single_fp32_vector = torch.cat(merged_partitions, 0) + merged_single_partition_of_fp32_groups.append(full_single_fp32_vector) + avail_numel = sum( + [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups]) + + if debug: + wanted_params = sum([len(shapes) for shapes in param_shapes]) + wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes]) + # not asserting if there is a mismatch due to possible padding + print(f"Have {avail_numel} numels to process.") + print(f"Need {wanted_numel} numels in {wanted_params} params.") + + # params + # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support + # out-of-core computing solution + total_numel = 0 + total_params = 0 + for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups): + offset = 0 + avail_numel = full_single_fp32_vector.numel() + for name, shape in shapes.items(): + + unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape) + total_numel += unpartitioned_numel + total_params += 1 + + if debug: + print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ") + state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape) + offset += unpartitioned_numel + + # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and + # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex + # paddings performed in the code it's almost impossible to predict the exact numbers w/o the + # live optimizer object, so we are checking that the numbers are within the right range + align_to = 2 * world_size + + def zero2_align(x): + return align_to * math.ceil(x / align_to) + + if debug: + print(f"original offset={offset}, avail_numel={avail_numel}") + + offset = zero2_align(offset) + avail_numel = zero2_align(avail_numel) + + if debug: + print(f"aligned offset={offset}, avail_numel={avail_numel}") + + # Sanity check + if offset != avail_numel: + raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong") + + print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements") + + +def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states, + exclude_frozen_parameters): + state_dict = OrderedDict() + + # buffers + buffers = zero_model_states[0].buffers + state_dict.update(buffers) + if debug: + print(f"added {len(buffers)} buffers") + + if not exclude_frozen_parameters: + _zero2_merge_frozen_params(state_dict, zero_model_states) + + _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states) + + # recover shared parameters + for pair in zero_model_states[0].shared_params: + if pair[1] in state_dict: + state_dict[pair[0]] = state_dict[pair[1]] + + return state_dict + + +def zero3_partitioned_param_info(unpartitioned_numel, world_size): + remainder = unpartitioned_numel % world_size + padding_numel = (world_size - remainder) if remainder else 0 + partitioned_numel = math.ceil(unpartitioned_numel / world_size) + return partitioned_numel, padding_numel + + +def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states): + if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0: + return + + if debug: + for i in range(world_size): + num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values()) + print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}') + + frozen_param_shapes = zero_model_states[0].frozen_param_shapes + wanted_params = len(frozen_param_shapes) + wanted_numel = sum(s.numel() for s in frozen_param_shapes.values()) + avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size + print(f'Frozen params: Have {avail_numel} numels to process.') + print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params') + + total_params = 0 + total_numel = 0 + for name, shape in zero_model_states[0].frozen_param_shapes.items(): + total_params += 1 + unpartitioned_numel = shape.numel() + total_numel += unpartitioned_numel + + param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states) + state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape) + + partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size) + + if debug: + print( + f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}" + ) + + print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements") + + +def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states): + param_shapes = zero_model_states[0].param_shapes + avail_numel = fp32_flat_groups[0].numel() * world_size + # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each + # param, re-consolidating each param, while dealing with padding if any + + # merge list of dicts, preserving order + param_shapes = {k: v for d in param_shapes for k, v in d.items()} + + if debug: + for i in range(world_size): + print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}") + + wanted_params = len(param_shapes) + wanted_numel = sum(shape.numel() for shape in param_shapes.values()) + # not asserting if there is a mismatch due to possible padding + avail_numel = fp32_flat_groups[0].numel() * world_size + print(f"Trainable params: Have {avail_numel} numels to process.") + print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.") + + # params + # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support + # out-of-core computing solution + offset = 0 + total_numel = 0 + total_params = 0 + for name, shape in tqdm(param_shapes.items(), desc='Gathering Sharded Weights'): + unpartitioned_numel = shape.numel() + total_numel += unpartitioned_numel + total_params += 1 + partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size) + + if debug: + print( + f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}" + ) + + # XXX: memory usage doubles here + state_dict[name] = torch.cat( + tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)), + 0).narrow(0, 0, unpartitioned_numel).view(shape) + offset += partitioned_numel + + offset *= world_size + + # Sanity check + if offset != avail_numel: + raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong") + + print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements") + + +def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states, + exclude_frozen_parameters): + state_dict = OrderedDict() + + # buffers + buffers = zero_model_states[0].buffers + state_dict.update(buffers) + if debug: + print(f"added {len(buffers)} buffers") + + if not exclude_frozen_parameters: + _zero3_merge_frozen_params(state_dict, world_size, zero_model_states) + + _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states) + + # recover shared parameters + for pair in zero_model_states[0].shared_params: + if pair[1] in state_dict: + state_dict[pair[0]] = state_dict[pair[1]] + + return state_dict + + +def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False): + """ + Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with + ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example + via a model hub. + + Args: + - ``checkpoint_dir``: path to the desired checkpoint folder + - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14`` + - ``exclude_frozen_parameters``: exclude frozen parameters + + Returns: + - pytorch ``state_dict`` + + Note: this approach may not work if your application doesn't have sufficient free CPU memory and + you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with + the checkpoint. + + A typical usage might be :: + + from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint + # do the training and checkpoint saving + state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu + model = model.cpu() # move to cpu + model.load_state_dict(state_dict) + # submit to model hub or save the model to share with others + + In this example the ``model`` will no longer be usable in the deepspeed context of the same + application. i.e. you will need to re-initialize the deepspeed engine, since + ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it. + + If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead. + + """ + if tag is None: + latest_path = os.path.join(checkpoint_dir, 'latest') + if os.path.isfile(latest_path): + with open(latest_path, 'r') as fd: + tag = fd.read().strip() + else: + raise ValueError(f"Unable to find 'latest' file at {latest_path}") + + ds_checkpoint_dir = os.path.join(checkpoint_dir, tag) + + if not os.path.isdir(ds_checkpoint_dir): + raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist") + + return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters) + + +def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, + output_dir, + max_shard_size="5GB", + safe_serialization=False, + tag=None, + exclude_frozen_parameters=False): + """ + Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be + loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed. + + Args: + - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``) + - ``output_dir``: directory to the pytorch fp32 state_dict output files + - ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB + - ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`). + - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14`` + - ``exclude_frozen_parameters``: exclude frozen parameters + """ + # Dependency pre-check + if safe_serialization: + try: + from safetensors.torch import save_file + except ImportError: + print('If you want to use `safe_serialization`, please `pip install safetensors`') + raise + if max_shard_size is not None: + try: + from huggingface_hub import split_torch_state_dict_into_shards + except ImportError: + print('If you want to use `max_shard_size`, please `pip install huggingface_hub`') + raise + + # Convert zero checkpoint to state_dict + state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters) + + # Shard the model if it is too big. + weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin" + if max_shard_size is not None: + filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors") + state_dict_split = split_torch_state_dict_into_shards(state_dict, + filename_pattern=filename_pattern, + max_shard_size=max_shard_size) + else: + from collections import namedtuple + StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"]) + state_dict_split = StateDictSplit(is_sharded=False, + filename_to_tensors={weights_name: list(state_dict.keys())}) + + # Save the model + filename_to_tensors = state_dict_split.filename_to_tensors.items() + for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"): + shard = {tensor: state_dict[tensor].contiguous() for tensor in tensors} + output_path = os.path.join(output_dir, shard_file) + if safe_serialization: + save_file(shard, output_path, metadata={"format": "pt"}) + else: + torch.save(shard, output_path) + + # Save index if sharded + if state_dict_split.is_sharded: + index = { + "metadata": state_dict_split.metadata, + "weight_map": state_dict_split.tensor_to_filename, + } + save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json" + save_index_file = os.path.join(output_dir, save_index_file) + with open(save_index_file, "w", encoding="utf-8") as f: + content = json.dumps(index, indent=2, sort_keys=True) + "\n" + f.write(content) + + +def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None): + """ + 1. Put the provided model to cpu + 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` + 3. Load it into the provided model + + Args: + - ``model``: the model object to update + - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``) + - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14`` + + Returns: + - ``model`: modified model + + Make sure you have plenty of CPU memory available before you call this function. If you don't + have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it + conveniently placed for you in the checkpoint folder. + + A typical usage might be :: + + from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint + model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir) + # submit to model hub or save the model to share with others + + Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context + of the same application. i.e. you will need to re-initialize the deepspeed engine, since + ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it. + + """ + logger.info(f"Extracting fp32 weights") + state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag) + + logger.info(f"Overwriting model with fp32 weights") + model = model.cpu() + model.load_state_dict(state_dict, strict=False) + + return model + + +if __name__ == "__main__": + parser = argparse.ArgumentParser() + parser.add_argument("checkpoint_dir", + type=str, + help="path to the desired checkpoint folder, e.g., path/checkpoint-12") + parser.add_argument("output_dir", + type=str, + help="directory to the pytorch fp32 state_dict output files" + "(e.g. path/checkpoint-12-output/)") + parser.add_argument( + "--max_shard_size", + type=str, + default="5GB", + help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size" + "lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`" + "We default it to 5GB in order for models to be able to run easily on free-tier google colab instances" + "without CPU OOM issues.") + parser.add_argument( + "--safe_serialization", + default=False, + action='store_true', + help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).") + parser.add_argument("-t", + "--tag", + type=str, + default=None, + help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1") + parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters") + parser.add_argument("-d", "--debug", action='store_true', help="enable debug") + args = parser.parse_args() + + debug = args.debug + + convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, + args.output_dir, + max_shard_size=args.max_shard_size, + safe_serialization=args.safe_serialization, + tag=args.tag, + exclude_frozen_parameters=args.exclude_frozen_parameters) diff --git a/tldr-7b-checkpoint-256/adapter_model/config.json b/tldr-7b-checkpoint-256/adapter_model/config.json new file mode 100644 index 0000000000000000000000000000000000000000..302a300f7b516601023158ee87709cc00f22298e --- /dev/null +++ b/tldr-7b-checkpoint-256/adapter_model/config.json @@ -0,0 +1,31 @@ +{ + "_name_or_path": "/cpfs/user/lizhongzhi/huggingface_model/huggingface_model/DeepSeek-R1-Distill-Qwen-7B/", + "architectures": [ + "Qwen2ForCausalLM" + ], + "attention_dropout": 0.0, + "bos_token_id": 151643, + "eos_token_id": 151643, + "hidden_act": "silu", + "hidden_size": 3584, + "initializer_range": 0.02, + "intermediate_size": 18944, + "max_position_embeddings": 131072, + "max_window_layers": 28, + "model_type": "qwen2", + "num_attention_heads": 28, + "num_hidden_layers": 28, + "num_key_value_heads": 4, + "pad_token_id": 151643, + "rms_norm_eps": 1e-06, + "rope_scaling": null, + "rope_theta": 10000, + "sliding_window": null, + "tie_word_embeddings": false, + "torch_dtype": "bfloat16", + "transformers_version": "4.46.3", + "use_cache": true, + "use_mrope": false, + "use_sliding_window": false, + "vocab_size": 152064 +} diff --git a/tldr-7b-checkpoint-256/adapter_model/generation_config.json b/tldr-7b-checkpoint-256/adapter_model/generation_config.json new file mode 100644 index 0000000000000000000000000000000000000000..59e60f99f4acabf5f765a866cb6d7060779fdcdf --- /dev/null +++ b/tldr-7b-checkpoint-256/adapter_model/generation_config.json @@ -0,0 +1,9 @@ +{ + "_from_model_config": true, + "bos_token_id": 151646, + "do_sample": true, + "eos_token_id": 151643, + "temperature": 0.6, + "top_p": 0.95, + "transformers_version": "4.46.3" +} diff --git a/tldr-7b-checkpoint-256/adapter_model/model.safetensors b/tldr-7b-checkpoint-256/adapter_model/model.safetensors new file mode 100644 index 0000000000000000000000000000000000000000..9dbadae1e8fdc500705b641ecdd022147b2b651b --- /dev/null +++ b/tldr-7b-checkpoint-256/adapter_model/model.safetensors @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:6c395ebed7ddc70201e0286c0c4e97807244814db18d40bf2bd3b6dd88c08f7b +size 701024 diff --git a/tldr-7b-checkpoint-256/config.json b/tldr-7b-checkpoint-256/config.json new file mode 100644 index 0000000000000000000000000000000000000000..302a300f7b516601023158ee87709cc00f22298e --- /dev/null +++ b/tldr-7b-checkpoint-256/config.json @@ -0,0 +1,31 @@ +{ + "_name_or_path": "/cpfs/user/lizhongzhi/huggingface_model/huggingface_model/DeepSeek-R1-Distill-Qwen-7B/", + "architectures": [ + "Qwen2ForCausalLM" + ], + "attention_dropout": 0.0, + "bos_token_id": 151643, + "eos_token_id": 151643, + "hidden_act": "silu", + "hidden_size": 3584, + "initializer_range": 0.02, + "intermediate_size": 18944, + "max_position_embeddings": 131072, + "max_window_layers": 28, + "model_type": "qwen2", + "num_attention_heads": 28, + "num_hidden_layers": 28, + "num_key_value_heads": 4, + "pad_token_id": 151643, + "rms_norm_eps": 1e-06, + "rope_scaling": null, + "rope_theta": 10000, + "sliding_window": null, + "tie_word_embeddings": false, + "torch_dtype": "bfloat16", + "transformers_version": "4.46.3", + "use_cache": true, + "use_mrope": false, + "use_sliding_window": false, + "vocab_size": 152064 +} diff --git a/tldr-7b-checkpoint-256/generation_config.json b/tldr-7b-checkpoint-256/generation_config.json new file mode 100644 index 0000000000000000000000000000000000000000..59e60f99f4acabf5f765a866cb6d7060779fdcdf --- /dev/null +++ b/tldr-7b-checkpoint-256/generation_config.json @@ -0,0 +1,9 @@ +{ + "_from_model_config": true, + "bos_token_id": 151646, + "do_sample": true, + "eos_token_id": 151643, + "temperature": 0.6, + "top_p": 0.95, + "transformers_version": "4.46.3" +} diff --git a/tldr-7b-checkpoint-256/latest b/tldr-7b-checkpoint-256/latest new file mode 100644 index 0000000000000000000000000000000000000000..b747f9725067064e241a7a3bed90583971af8ad1 --- /dev/null +++ b/tldr-7b-checkpoint-256/latest @@ -0,0 +1 @@ +global_step256 \ No newline at end of file diff --git a/tldr-7b-checkpoint-256/long2short_proportions.json b/tldr-7b-checkpoint-256/long2short_proportions.json new file mode 100644 index 0000000000000000000000000000000000000000..b92c68e811ab70ad5401991a9e596fa895341726 --- /dev/null +++ b/tldr-7b-checkpoint-256/long2short_proportions.json @@ -0,0 +1,365 @@ +[ + { + "global_step": 0, + "cot_domain_weight": [ + 0.8, + 0.2 + ], + "cot_domain_name": [ + "/cpfs/user/lizhongzhi/data/data/gsm8k/long2short_prm12k_gsm8k_merge_data/dynamic_long_short_data/gsm8k_prm12k_s1/prm12k_gsm8k_short_shortest.jsonl", + "/cpfs/user/lizhongzhi/data/data/gsm8k/liang/s1_7b_r1_prompt.jsonl" + ] + }, + { + "global_step": 8, + "cot_domain_weight": [ + 0.81966233253479, + 0.18033766746520996 + ], + "cot_domain_name": [ + "/cpfs/user/lizhongzhi/data/data/gsm8k/long2short_prm12k_gsm8k_merge_data/dynamic_long_short_data/gsm8k_prm12k_s1/prm12k_gsm8k_short_shortest.jsonl", + "/cpfs/user/lizhongzhi/data/data/gsm8k/liang/s1_7b_r1_prompt.jsonl" + ] + }, + { + "global_step": 16, + "cot_domain_weight": [ + 0.7872583270072937, + 0.2127416729927063 + ], + "cot_domain_name": [ + "/cpfs/user/lizhongzhi/data/data/gsm8k/long2short_prm12k_gsm8k_merge_data/dynamic_long_short_data/gsm8k_prm12k_s1/prm12k_gsm8k_short_shortest.jsonl", + "/cpfs/user/lizhongzhi/data/data/gsm8k/liang/s1_7b_r1_prompt.jsonl" + ] + }, + { + "global_step": 24, + "cot_domain_weight": [ + 0.7460198998451233, + 0.2539801001548767 + ], + "cot_domain_name": [ + "/cpfs/user/lizhongzhi/data/data/gsm8k/long2short_prm12k_gsm8k_merge_data/dynamic_long_short_data/gsm8k_prm12k_s1/prm12k_gsm8k_short_shortest.jsonl", + "/cpfs/user/lizhongzhi/data/data/gsm8k/liang/s1_7b_r1_prompt.jsonl" + ] + }, + { + "global_step": 32, + "cot_domain_weight": [ + 0.6744258410715319, + 0.32557415892846814 + ], + "cot_domain_name": [ + "/cpfs/user/lizhongzhi/data/data/gsm8k/long2short_prm12k_gsm8k_merge_data/dynamic_long_short_data/gsm8k_prm12k_s1/prm12k_gsm8k_short_shortest.jsonl", + "/cpfs/user/lizhongzhi/data/data/gsm8k/liang/s1_7b_r1_prompt.jsonl" + ] + }, + { + "global_step": 40, + "cot_domain_weight": [ + 0.5970645546913147, + 0.4029354453086853 + ], + "cot_domain_name": [ + "/cpfs/user/lizhongzhi/data/data/gsm8k/long2short_prm12k_gsm8k_merge_data/dynamic_long_short_data/gsm8k_prm12k_s1/prm12k_gsm8k_short_shortest.jsonl", + "/cpfs/user/lizhongzhi/data/data/gsm8k/liang/s1_7b_r1_prompt.jsonl" + ] + }, + { + "global_step": 48, + "cot_domain_weight": [ + 0.3999738454834315, + 0.6000261545165685 + ], + "cot_domain_name": [ + "/cpfs/user/lizhongzhi/data/data/gsm8k/long2short_prm12k_gsm8k_merge_data/dynamic_long_short_data/gsm8k_prm12k_s1/prm12k_gsm8k_short_shortest.jsonl", + "/cpfs/user/lizhongzhi/data/data/gsm8k/liang/s1_7b_r1_prompt.jsonl" + ] + }, + { + "global_step": 56, + "cot_domain_weight": [ + 0.2720071835522165, + 0.7279928164477835 + ], + "cot_domain_name": [ + "/cpfs/user/lizhongzhi/data/data/gsm8k/long2short_prm12k_gsm8k_merge_data/dynamic_long_short_data/gsm8k_prm12k_s1/prm12k_gsm8k_short_shortest.jsonl", + "/cpfs/user/lizhongzhi/data/data/gsm8k/liang/s1_7b_r1_prompt.jsonl" + ] + }, + { + "global_step": 64, + "cot_domain_weight": [ + 0.2883644063798553, + 0.7116355936201447 + ], + "cot_domain_name": [ + "/cpfs/user/lizhongzhi/data/data/gsm8k/long2short_prm12k_gsm8k_merge_data/dynamic_long_short_data/gsm8k_prm12k_s1/prm12k_gsm8k_short_shortest.jsonl", + "/cpfs/user/lizhongzhi/data/data/gsm8k/liang/s1_7b_r1_prompt.jsonl" + ] + }, + { + "global_step": 72, + "cot_domain_weight": [ + 0.3323897124180455, + 0.6676102875819545 + ], + "cot_domain_name": [ + "/cpfs/user/lizhongzhi/data/data/gsm8k/long2short_prm12k_gsm8k_merge_data/dynamic_long_short_data/gsm8k_prm12k_s1/prm12k_gsm8k_short_shortest.jsonl", + "/cpfs/user/lizhongzhi/data/data/gsm8k/liang/s1_7b_r1_prompt.jsonl" + ] + }, + { + "global_step": 80, + "cot_domain_weight": [ + 0.3198286903057673, + 0.6801713096942327 + ], + "cot_domain_name": [ + "/cpfs/user/lizhongzhi/data/data/gsm8k/long2short_prm12k_gsm8k_merge_data/dynamic_long_short_data/gsm8k_prm12k_s1/prm12k_gsm8k_short_shortest.jsonl", + "/cpfs/user/lizhongzhi/data/data/gsm8k/liang/s1_7b_r1_prompt.jsonl" + ] + }, + { + "global_step": 88, + "cot_domain_weight": [ + 0.30956872162632476, + 0.6904312783736752 + ], + "cot_domain_name": [ + "/cpfs/user/lizhongzhi/data/data/gsm8k/long2short_prm12k_gsm8k_merge_data/dynamic_long_short_data/gsm8k_prm12k_s1/prm12k_gsm8k_short_shortest.jsonl", + "/cpfs/user/lizhongzhi/data/data/gsm8k/liang/s1_7b_r1_prompt.jsonl" + ] + }, + { + "global_step": 96, + "cot_domain_weight": [ + 0.28148205765974865, + 0.7185179423402513 + ], + "cot_domain_name": [ + "/cpfs/user/lizhongzhi/data/data/gsm8k/long2short_prm12k_gsm8k_merge_data/dynamic_long_short_data/gsm8k_prm12k_s1/prm12k_gsm8k_short_shortest.jsonl", + "/cpfs/user/lizhongzhi/data/data/gsm8k/liang/s1_7b_r1_prompt.jsonl" + ] + }, + { + "global_step": 104, + "cot_domain_weight": [ + 0.19276975382521383, + 0.8072302461747862 + ], + "cot_domain_name": [ + "/cpfs/user/lizhongzhi/data/data/gsm8k/long2short_prm12k_gsm8k_merge_data/dynamic_long_short_data/gsm8k_prm12k_s1/prm12k_gsm8k_short_shortest.jsonl", + "/cpfs/user/lizhongzhi/data/data/gsm8k/liang/s1_7b_r1_prompt.jsonl" + ] + }, + { + "global_step": 112, + "cot_domain_weight": [ + 0.11667832421803193, + 0.8833216757819681 + ], + "cot_domain_name": [ + "/cpfs/user/lizhongzhi/data/data/gsm8k/long2short_prm12k_gsm8k_merge_data/dynamic_long_short_data/gsm8k_prm12k_s1/prm12k_gsm8k_short_shortest.jsonl", + "/cpfs/user/lizhongzhi/data/data/gsm8k/liang/s1_7b_r1_prompt.jsonl" + ] + }, + { + "global_step": 120, + "cot_domain_weight": [ + 0.10653018285729127, + 0.8934698171427087 + ], + "cot_domain_name": [ + "/cpfs/user/lizhongzhi/data/data/gsm8k/long2short_prm12k_gsm8k_merge_data/dynamic_long_short_data/gsm8k_prm12k_s1/prm12k_gsm8k_short_shortest.jsonl", + "/cpfs/user/lizhongzhi/data/data/gsm8k/liang/s1_7b_r1_prompt.jsonl" + ] + }, + { + "global_step": 128, + "cot_domain_weight": [ + 0.08691881046262705, + 0.9130811895373729 + ], + "cot_domain_name": [ + "/cpfs/user/lizhongzhi/data/data/gsm8k/long2short_prm12k_gsm8k_merge_data/dynamic_long_short_data/gsm8k_prm12k_s1/prm12k_gsm8k_short_shortest.jsonl", + "/cpfs/user/lizhongzhi/data/data/gsm8k/liang/s1_7b_r1_prompt.jsonl" + ] + }, + { + "global_step": 136, + "cot_domain_weight": [ + 0.07620099413993937, + 0.9237990058600606 + ], + "cot_domain_name": [ + "/cpfs/user/lizhongzhi/data/data/gsm8k/long2short_prm12k_gsm8k_merge_data/dynamic_long_short_data/gsm8k_prm12k_s1/prm12k_gsm8k_short_shortest.jsonl", + "/cpfs/user/lizhongzhi/data/data/gsm8k/liang/s1_7b_r1_prompt.jsonl" + ] + }, + { + "global_step": 144, + "cot_domain_weight": [ + 0.09678315443384017, + 0.9032168455661598 + ], + "cot_domain_name": [ + "/cpfs/user/lizhongzhi/data/data/gsm8k/long2short_prm12k_gsm8k_merge_data/dynamic_long_short_data/gsm8k_prm12k_s1/prm12k_gsm8k_short_shortest.jsonl", + "/cpfs/user/lizhongzhi/data/data/gsm8k/liang/s1_7b_r1_prompt.jsonl" + ] + }, + { + "global_step": 152, + "cot_domain_weight": [ + 0.06039547920227051, + 0.9396045207977295 + ], + "cot_domain_name": [ + "/cpfs/user/lizhongzhi/data/data/gsm8k/long2short_prm12k_gsm8k_merge_data/dynamic_long_short_data/gsm8k_prm12k_s1/prm12k_gsm8k_short_shortest.jsonl", + "/cpfs/user/lizhongzhi/data/data/gsm8k/liang/s1_7b_r1_prompt.jsonl" + ] + }, + { + "global_step": 160, + "cot_domain_weight": [ + 0.04663034069109073, + 0.9533696593089093 + ], + "cot_domain_name": [ + "/cpfs/user/lizhongzhi/data/data/gsm8k/long2short_prm12k_gsm8k_merge_data/dynamic_long_short_data/gsm8k_prm12k_s1/prm12k_gsm8k_short_shortest.jsonl", + "/cpfs/user/lizhongzhi/data/data/gsm8k/liang/s1_7b_r1_prompt.jsonl" + ] + }, + { + "global_step": 168, + "cot_domain_weight": [ + 0.026384488927624624, + 0.9736155110723754 + ], + "cot_domain_name": [ + "/cpfs/user/lizhongzhi/data/data/gsm8k/long2short_prm12k_gsm8k_merge_data/dynamic_long_short_data/gsm8k_prm12k_s1/prm12k_gsm8k_short_shortest.jsonl", + "/cpfs/user/lizhongzhi/data/data/gsm8k/liang/s1_7b_r1_prompt.jsonl" + ] + }, + { + "global_step": 176, + "cot_domain_weight": [ + 0.01369204708991822, + 0.9863079529100818 + ], + "cot_domain_name": [ + "/cpfs/user/lizhongzhi/data/data/gsm8k/long2short_prm12k_gsm8k_merge_data/dynamic_long_short_data/gsm8k_prm12k_s1/prm12k_gsm8k_short_shortest.jsonl", + "/cpfs/user/lizhongzhi/data/data/gsm8k/liang/s1_7b_r1_prompt.jsonl" + ] + }, + { + "global_step": 184, + "cot_domain_weight": [ + 0.008808859025084685, + 0.9911911409749153 + ], + "cot_domain_name": [ + "/cpfs/user/lizhongzhi/data/data/gsm8k/long2short_prm12k_gsm8k_merge_data/dynamic_long_short_data/gsm8k_prm12k_s1/prm12k_gsm8k_short_shortest.jsonl", + "/cpfs/user/lizhongzhi/data/data/gsm8k/liang/s1_7b_r1_prompt.jsonl" + ] + }, + { + "global_step": 192, + "cot_domain_weight": [ + 0.008046488434985519, + 0.9919535115650144 + ], + "cot_domain_name": [ + "/cpfs/user/lizhongzhi/data/data/gsm8k/long2short_prm12k_gsm8k_merge_data/dynamic_long_short_data/gsm8k_prm12k_s1/prm12k_gsm8k_short_shortest.jsonl", + "/cpfs/user/lizhongzhi/data/data/gsm8k/liang/s1_7b_r1_prompt.jsonl" + ] + }, + { + "global_step": 200, + "cot_domain_weight": [ + 0.006645676632023577, + 0.9933543233679765 + ], + "cot_domain_name": [ + "/cpfs/user/lizhongzhi/data/data/gsm8k/long2short_prm12k_gsm8k_merge_data/dynamic_long_short_data/gsm8k_prm12k_s1/prm12k_gsm8k_short_shortest.jsonl", + "/cpfs/user/lizhongzhi/data/data/gsm8k/liang/s1_7b_r1_prompt.jsonl" + ] + }, + { + "global_step": 208, + "cot_domain_weight": [ + 0.006015583141017519, + 0.9939844168589825 + ], + "cot_domain_name": [ + "/cpfs/user/lizhongzhi/data/data/gsm8k/long2short_prm12k_gsm8k_merge_data/dynamic_long_short_data/gsm8k_prm12k_s1/prm12k_gsm8k_short_shortest.jsonl", + "/cpfs/user/lizhongzhi/data/data/gsm8k/liang/s1_7b_r1_prompt.jsonl" + ] + }, + { + "global_step": 216, + "cot_domain_weight": [ + 0.004511566495152915, + 0.9954884335048471 + ], + "cot_domain_name": [ + "/cpfs/user/lizhongzhi/data/data/gsm8k/long2short_prm12k_gsm8k_merge_data/dynamic_long_short_data/gsm8k_prm12k_s1/prm12k_gsm8k_short_shortest.jsonl", + "/cpfs/user/lizhongzhi/data/data/gsm8k/liang/s1_7b_r1_prompt.jsonl" + ] + }, + { + "global_step": 224, + "cot_domain_weight": [ + 0.002732270716591211, + 0.9972677292834088 + ], + "cot_domain_name": [ + "/cpfs/user/lizhongzhi/data/data/gsm8k/long2short_prm12k_gsm8k_merge_data/dynamic_long_short_data/gsm8k_prm12k_s1/prm12k_gsm8k_short_shortest.jsonl", + "/cpfs/user/lizhongzhi/data/data/gsm8k/liang/s1_7b_r1_prompt.jsonl" + ] + }, + { + "global_step": 232, + "cot_domain_weight": [ + 0.0021831512748239114, + 0.9978168487251761 + ], + "cot_domain_name": [ + "/cpfs/user/lizhongzhi/data/data/gsm8k/long2short_prm12k_gsm8k_merge_data/dynamic_long_short_data/gsm8k_prm12k_s1/prm12k_gsm8k_short_shortest.jsonl", + "/cpfs/user/lizhongzhi/data/data/gsm8k/liang/s1_7b_r1_prompt.jsonl" + ] + }, + { + "global_step": 240, + "cot_domain_weight": [ + 0.0022364268058571715, + 0.9977635731941429 + ], + "cot_domain_name": [ + "/cpfs/user/lizhongzhi/data/data/gsm8k/long2short_prm12k_gsm8k_merge_data/dynamic_long_short_data/gsm8k_prm12k_s1/prm12k_gsm8k_short_shortest.jsonl", + "/cpfs/user/lizhongzhi/data/data/gsm8k/liang/s1_7b_r1_prompt.jsonl" + ] + }, + { + "global_step": 248, + "cot_domain_weight": [ + 0.003314645357360453, + 0.9966853546426395 + ], + "cot_domain_name": [ + "/cpfs/user/lizhongzhi/data/data/gsm8k/long2short_prm12k_gsm8k_merge_data/dynamic_long_short_data/gsm8k_prm12k_s1/prm12k_gsm8k_short_shortest.jsonl", + "/cpfs/user/lizhongzhi/data/data/gsm8k/liang/s1_7b_r1_prompt.jsonl" + ] + }, + { + "global_step": 256, + "cot_domain_weight": [ + 0.0036412973637667506, + 0.9963587026362333 + ], + "cot_domain_name": [ + "/cpfs/user/lizhongzhi/data/data/gsm8k/long2short_prm12k_gsm8k_merge_data/dynamic_long_short_data/gsm8k_prm12k_s1/prm12k_gsm8k_short_shortest.jsonl", + "/cpfs/user/lizhongzhi/data/data/gsm8k/liang/s1_7b_r1_prompt.jsonl" + ] + } +] \ No newline at end of file diff --git a/tldr-7b-checkpoint-256/model-00001-of-00004.safetensors b/tldr-7b-checkpoint-256/model-00001-of-00004.safetensors new file mode 100644 index 0000000000000000000000000000000000000000..dc6c4437d6047ca8d68e0cf79772b4af2dcc4f8d --- /dev/null +++ b/tldr-7b-checkpoint-256/model-00001-of-00004.safetensors @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:fd3a2c81fafdb17a408b824be2275f058cb26c4e480e3e735a0f15aa19e14151 +size 4877660776 diff --git a/tldr-7b-checkpoint-256/model-00002-of-00004.safetensors b/tldr-7b-checkpoint-256/model-00002-of-00004.safetensors new file mode 100644 index 0000000000000000000000000000000000000000..40dc5321a7a336ad4444b655b5b1508533052e5b --- /dev/null +++ b/tldr-7b-checkpoint-256/model-00002-of-00004.safetensors @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:3dd211dd8f37c904872ea4ed8153c6bd012a34630da2a664d8ebdbaf76d4d15e +size 4932751008 diff --git a/tldr-7b-checkpoint-256/model-00003-of-00004.safetensors b/tldr-7b-checkpoint-256/model-00003-of-00004.safetensors new file mode 100644 index 0000000000000000000000000000000000000000..860c0ec9471a5c55c4c6232e70ba6893a0c17235 --- /dev/null +++ b/tldr-7b-checkpoint-256/model-00003-of-00004.safetensors @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:2a2faecbc251c1baceeadb56f43a7fc3f7224b771a9665ad74609069f5c9a934 +size 4330865200 diff --git a/tldr-7b-checkpoint-256/model-00004-of-00004.safetensors b/tldr-7b-checkpoint-256/model-00004-of-00004.safetensors new file mode 100644 index 0000000000000000000000000000000000000000..594d524977c529a7257f70e6ce50380c952a318a --- /dev/null +++ b/tldr-7b-checkpoint-256/model-00004-of-00004.safetensors @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:e1e94c33e6f48f80370536173c5059e771a69081642e879e48f40fe67bcb990a +size 1089994880 diff --git a/tldr-7b-checkpoint-256/model.safetensors.index.json b/tldr-7b-checkpoint-256/model.safetensors.index.json new file mode 100644 index 0000000000000000000000000000000000000000..6ca5084b88f1a95fef37f1b94c6e87ff69422bb7 --- /dev/null +++ b/tldr-7b-checkpoint-256/model.safetensors.index.json @@ -0,0 +1,346 @@ +{ + "metadata": { + "total_size": 15231233024 + }, + "weight_map": { + "lm_head.weight": "model-00004-of-00004.safetensors", + "model.embed_tokens.weight": "model-00001-of-00004.safetensors", + "model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors", + "model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors", + "model.layers.0.self_attn.k_proj.bias": "model-00001-of-00004.safetensors", + "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.0.self_attn.q_proj.bias": "model-00001-of-00004.safetensors", + "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.0.self_attn.v_proj.bias": "model-00001-of-00004.safetensors", + "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors", + "model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors", + "model.layers.1.self_attn.k_proj.bias": "model-00001-of-00004.safetensors", + "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.1.self_attn.q_proj.bias": "model-00001-of-00004.safetensors", + "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.1.self_attn.v_proj.bias": "model-00001-of-00004.safetensors", + "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.10.mlp.down_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.10.mlp.gate_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.10.mlp.up_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.10.post_attention_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.10.self_attn.k_proj.bias": "model-00002-of-00004.safetensors", + "model.layers.10.self_attn.k_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.10.self_attn.o_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.10.self_attn.q_proj.bias": "model-00002-of-00004.safetensors", + "model.layers.10.self_attn.q_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.10.self_attn.v_proj.bias": "model-00002-of-00004.safetensors", + "model.layers.10.self_attn.v_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.11.mlp.down_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.11.mlp.gate_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.11.mlp.up_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.11.post_attention_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.11.self_attn.k_proj.bias": "model-00002-of-00004.safetensors", + "model.layers.11.self_attn.k_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.11.self_attn.o_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.11.self_attn.q_proj.bias": "model-00002-of-00004.safetensors", + "model.layers.11.self_attn.q_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.11.self_attn.v_proj.bias": "model-00002-of-00004.safetensors", + "model.layers.11.self_attn.v_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.12.mlp.down_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.12.mlp.gate_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.12.mlp.up_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.12.post_attention_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.12.self_attn.k_proj.bias": "model-00002-of-00004.safetensors", + "model.layers.12.self_attn.k_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.12.self_attn.o_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.12.self_attn.q_proj.bias": "model-00002-of-00004.safetensors", + "model.layers.12.self_attn.q_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.12.self_attn.v_proj.bias": "model-00002-of-00004.safetensors", + "model.layers.12.self_attn.v_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.13.mlp.gate_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.13.mlp.up_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.13.self_attn.k_proj.bias": "model-00002-of-00004.safetensors", + "model.layers.13.self_attn.k_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.13.self_attn.o_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.13.self_attn.q_proj.bias": "model-00002-of-00004.safetensors", + "model.layers.13.self_attn.q_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.13.self_attn.v_proj.bias": "model-00002-of-00004.safetensors", + "model.layers.13.self_attn.v_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.14.mlp.down_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.14.mlp.gate_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.14.mlp.up_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.14.self_attn.k_proj.bias": "model-00002-of-00004.safetensors", + "model.layers.14.self_attn.k_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.14.self_attn.q_proj.bias": "model-00002-of-00004.safetensors", + "model.layers.14.self_attn.q_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.14.self_attn.v_proj.bias": "model-00002-of-00004.safetensors", + "model.layers.14.self_attn.v_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.15.input_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.15.mlp.down_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.15.mlp.gate_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.15.mlp.up_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.15.post_attention_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.15.self_attn.k_proj.bias": "model-00002-of-00004.safetensors", + "model.layers.15.self_attn.k_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.15.self_attn.o_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.15.self_attn.q_proj.bias": "model-00002-of-00004.safetensors", + "model.layers.15.self_attn.q_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.15.self_attn.v_proj.bias": "model-00002-of-00004.safetensors", + "model.layers.15.self_attn.v_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.16.input_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.16.mlp.down_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.16.mlp.gate_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.16.mlp.up_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.16.post_attention_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.16.self_attn.k_proj.bias": "model-00002-of-00004.safetensors", + "model.layers.16.self_attn.k_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.16.self_attn.o_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.16.self_attn.q_proj.bias": "model-00002-of-00004.safetensors", + "model.layers.16.self_attn.q_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.16.self_attn.v_proj.bias": "model-00002-of-00004.safetensors", + "model.layers.16.self_attn.v_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.17.input_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.17.mlp.down_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.17.mlp.gate_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.17.mlp.up_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.17.post_attention_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.17.self_attn.k_proj.bias": "model-00002-of-00004.safetensors", + "model.layers.17.self_attn.k_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.17.self_attn.o_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.17.self_attn.q_proj.bias": "model-00002-of-00004.safetensors", + "model.layers.17.self_attn.q_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.17.self_attn.v_proj.bias": "model-00002-of-00004.safetensors", + "model.layers.17.self_attn.v_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.18.input_layernorm.weight": "model-00003-of-00004.safetensors", + "model.layers.18.mlp.down_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.18.mlp.gate_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.18.mlp.up_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.18.post_attention_layernorm.weight": "model-00003-of-00004.safetensors", + "model.layers.18.self_attn.k_proj.bias": "model-00002-of-00004.safetensors", + "model.layers.18.self_attn.k_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.18.self_attn.o_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.18.self_attn.q_proj.bias": "model-00002-of-00004.safetensors", + "model.layers.18.self_attn.q_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.18.self_attn.v_proj.bias": "model-00002-of-00004.safetensors", + "model.layers.18.self_attn.v_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.19.input_layernorm.weight": "model-00003-of-00004.safetensors", + "model.layers.19.mlp.down_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.19.mlp.gate_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.19.mlp.up_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.19.post_attention_layernorm.weight": "model-00003-of-00004.safetensors", + "model.layers.19.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.layers.19.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.19.self_attn.o_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.19.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.layers.19.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.19.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.layers.19.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors", + "model.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors", + "model.layers.2.self_attn.k_proj.bias": "model-00001-of-00004.safetensors", + "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.2.self_attn.q_proj.bias": "model-00001-of-00004.safetensors", + "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.2.self_attn.v_proj.bias": "model-00001-of-00004.safetensors", + "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.20.input_layernorm.weight": "model-00003-of-00004.safetensors", + "model.layers.20.mlp.down_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.20.mlp.gate_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.20.mlp.up_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.20.post_attention_layernorm.weight": "model-00003-of-00004.safetensors", + "model.layers.20.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.layers.20.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.20.self_attn.o_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.20.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.layers.20.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.20.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.layers.20.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.21.input_layernorm.weight": "model-00003-of-00004.safetensors", + "model.layers.21.mlp.down_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.21.mlp.gate_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.21.mlp.up_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.21.post_attention_layernorm.weight": "model-00003-of-00004.safetensors", + "model.layers.21.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.layers.21.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.21.self_attn.o_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.21.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.layers.21.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.21.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.layers.21.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.22.input_layernorm.weight": "model-00003-of-00004.safetensors", + "model.layers.22.mlp.down_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.22.mlp.gate_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.22.mlp.up_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.22.post_attention_layernorm.weight": "model-00003-of-00004.safetensors", + "model.layers.22.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.layers.22.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.22.self_attn.o_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.22.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.layers.22.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.22.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.layers.22.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.23.input_layernorm.weight": "model-00003-of-00004.safetensors", + "model.layers.23.mlp.down_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.23.mlp.gate_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.23.mlp.up_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.23.post_attention_layernorm.weight": "model-00003-of-00004.safetensors", + "model.layers.23.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.layers.23.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.23.self_attn.o_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.23.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.layers.23.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.23.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.layers.23.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.24.input_layernorm.weight": "model-00003-of-00004.safetensors", + "model.layers.24.mlp.down_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.24.mlp.gate_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.24.mlp.up_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.24.post_attention_layernorm.weight": "model-00003-of-00004.safetensors", + "model.layers.24.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.layers.24.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.24.self_attn.o_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.24.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.layers.24.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.24.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.layers.24.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.25.input_layernorm.weight": "model-00003-of-00004.safetensors", + "model.layers.25.mlp.down_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.25.mlp.gate_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.25.mlp.up_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.25.post_attention_layernorm.weight": "model-00003-of-00004.safetensors", + "model.layers.25.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.layers.25.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.25.self_attn.o_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.25.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.layers.25.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.25.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.layers.25.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.26.input_layernorm.weight": "model-00003-of-00004.safetensors", + "model.layers.26.mlp.down_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.26.mlp.gate_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.26.mlp.up_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.26.post_attention_layernorm.weight": "model-00003-of-00004.safetensors", + "model.layers.26.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.layers.26.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.26.self_attn.o_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.26.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.layers.26.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.26.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.layers.26.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.27.input_layernorm.weight": "model-00003-of-00004.safetensors", + "model.layers.27.mlp.down_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.27.mlp.gate_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.27.mlp.up_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.27.post_attention_layernorm.weight": "model-00003-of-00004.safetensors", + "model.layers.27.self_attn.k_proj.bias": "model-00003-of-00004.safetensors", + "model.layers.27.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.27.self_attn.o_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.27.self_attn.q_proj.bias": "model-00003-of-00004.safetensors", + "model.layers.27.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.27.self_attn.v_proj.bias": "model-00003-of-00004.safetensors", + "model.layers.27.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", + "model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors", + "model.layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors", + "model.layers.3.self_attn.k_proj.bias": "model-00001-of-00004.safetensors", + "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.3.self_attn.q_proj.bias": "model-00001-of-00004.safetensors", + "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.3.self_attn.v_proj.bias": "model-00001-of-00004.safetensors", + "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors", + "model.layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors", + "model.layers.4.self_attn.k_proj.bias": "model-00001-of-00004.safetensors", + "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.4.self_attn.q_proj.bias": "model-00001-of-00004.safetensors", + "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.4.self_attn.v_proj.bias": "model-00001-of-00004.safetensors", + "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.5.input_layernorm.weight": "model-00001-of-00004.safetensors", + "model.layers.5.mlp.down_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.5.mlp.up_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00004.safetensors", + "model.layers.5.self_attn.k_proj.bias": "model-00001-of-00004.safetensors", + "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.5.self_attn.q_proj.bias": "model-00001-of-00004.safetensors", + "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.5.self_attn.v_proj.bias": "model-00001-of-00004.safetensors", + "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.6.input_layernorm.weight": "model-00001-of-00004.safetensors", + "model.layers.6.mlp.down_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.6.mlp.up_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00004.safetensors", + "model.layers.6.self_attn.k_proj.bias": "model-00001-of-00004.safetensors", + "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.6.self_attn.q_proj.bias": "model-00001-of-00004.safetensors", + "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.6.self_attn.v_proj.bias": "model-00001-of-00004.safetensors", + "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.7.input_layernorm.weight": "model-00001-of-00004.safetensors", + "model.layers.7.mlp.down_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.7.mlp.up_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00004.safetensors", + "model.layers.7.self_attn.k_proj.bias": "model-00001-of-00004.safetensors", + "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.7.self_attn.q_proj.bias": "model-00001-of-00004.safetensors", + "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.7.self_attn.v_proj.bias": "model-00001-of-00004.safetensors", + "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.8.input_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.8.mlp.down_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.8.mlp.gate_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.8.mlp.up_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.8.post_attention_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.8.self_attn.k_proj.bias": "model-00001-of-00004.safetensors", + "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.8.self_attn.q_proj.bias": "model-00001-of-00004.safetensors", + "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.8.self_attn.v_proj.bias": "model-00001-of-00004.safetensors", + "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00004.safetensors", + "model.layers.9.input_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.9.mlp.down_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.9.mlp.gate_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.9.mlp.up_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.9.post_attention_layernorm.weight": "model-00002-of-00004.safetensors", + "model.layers.9.self_attn.k_proj.bias": "model-00002-of-00004.safetensors", + "model.layers.9.self_attn.k_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.9.self_attn.o_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.9.self_attn.q_proj.bias": "model-00002-of-00004.safetensors", + "model.layers.9.self_attn.q_proj.weight": "model-00002-of-00004.safetensors", + "model.layers.9.self_attn.v_proj.bias": "model-00002-of-00004.safetensors", + "model.layers.9.self_attn.v_proj.weight": "model-00002-of-00004.safetensors", + "model.norm.weight": "model-00003-of-00004.safetensors" + } +} diff --git a/tldr-7b-checkpoint-256/rng_state_0.pth b/tldr-7b-checkpoint-256/rng_state_0.pth new file mode 100644 index 0000000000000000000000000000000000000000..7577efaa8690b667d5be6dc7081597fca6d05418 --- /dev/null +++ b/tldr-7b-checkpoint-256/rng_state_0.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:99597ef7442635c9fc7e33f58ab65a1f097883076cda723846953702c5b1bb41 +size 15920 diff --git a/tldr-7b-checkpoint-256/rng_state_1.pth b/tldr-7b-checkpoint-256/rng_state_1.pth new file mode 100644 index 0000000000000000000000000000000000000000..e2acc4b52c2fd5341e236a599394a92e9439e434 --- /dev/null +++ b/tldr-7b-checkpoint-256/rng_state_1.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:e9986a5b4d0c0854c31b0a552b36c8d61c4166799896370911745287d59eb2f1 +size 15920 diff --git a/tldr-7b-checkpoint-256/rng_state_2.pth b/tldr-7b-checkpoint-256/rng_state_2.pth new file mode 100644 index 0000000000000000000000000000000000000000..7eb35633e784fe907ab4362e0bf1aa58ec5278a8 --- /dev/null +++ b/tldr-7b-checkpoint-256/rng_state_2.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:62d0a03a6899b1d9c6471730a5f27a61c6d5decea4fa364e33de7339d74afa6a +size 15920 diff --git a/tldr-7b-checkpoint-256/rng_state_3.pth b/tldr-7b-checkpoint-256/rng_state_3.pth new file mode 100644 index 0000000000000000000000000000000000000000..c1e144f3ae453cec3ad456f9b835b08bb304b911 --- /dev/null +++ b/tldr-7b-checkpoint-256/rng_state_3.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:e5d2deda76dfce536554e9a353390020e1434a02190925740d534a1f14df2db5 +size 15920 diff --git a/tldr-7b-checkpoint-256/rng_state_4.pth b/tldr-7b-checkpoint-256/rng_state_4.pth new file mode 100644 index 0000000000000000000000000000000000000000..2ca3b5614575ca55699acf0c75e8ffce6b66f5df --- /dev/null +++ b/tldr-7b-checkpoint-256/rng_state_4.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:8ea03f5389460add8ac4bb962ff352abda89dc8283120a1b75a0b08a8701c3d0 +size 15920 diff --git a/tldr-7b-checkpoint-256/rng_state_5.pth b/tldr-7b-checkpoint-256/rng_state_5.pth new file mode 100644 index 0000000000000000000000000000000000000000..0c053487eec8542fed1a43e14a7fc28de8e514b6 --- /dev/null +++ b/tldr-7b-checkpoint-256/rng_state_5.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:d0efd6bdda2dc5f3a2dc45fe493b81426aefc76e034baaf43d92cd400d55abbf +size 15920 diff --git a/tldr-7b-checkpoint-256/rng_state_6.pth b/tldr-7b-checkpoint-256/rng_state_6.pth new file mode 100644 index 0000000000000000000000000000000000000000..c6fd7fb3dae2ea67456cc5f1b4a27cfca728711d --- /dev/null +++ b/tldr-7b-checkpoint-256/rng_state_6.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:15abd0cbcd121c12ef3480b67be50888f282d5deb1f190c5739144faa876b79e +size 15920 diff --git a/tldr-7b-checkpoint-256/rng_state_7.pth b/tldr-7b-checkpoint-256/rng_state_7.pth new file mode 100644 index 0000000000000000000000000000000000000000..5341ca9ae1d22502999bfae1f88178bd73e95e2d --- /dev/null +++ b/tldr-7b-checkpoint-256/rng_state_7.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:dfbfa4971e4f22128a2a3938f9e09ee46a74b13ba2c990c12f6badfb97ceb345 +size 15920 diff --git a/tldr-7b-checkpoint-256/scheduler.pt b/tldr-7b-checkpoint-256/scheduler.pt new file mode 100644 index 0000000000000000000000000000000000000000..51c73463fced862c9e3af7b2d86f814e4e517fc7 --- /dev/null +++ b/tldr-7b-checkpoint-256/scheduler.pt @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:8fb3eaf688658712768ae645e4a2b5f778a59201f17641a26e210365d8c2ef6f +size 1064 diff --git a/tldr-7b-checkpoint-256/special_tokens_map.json b/tldr-7b-checkpoint-256/special_tokens_map.json new file mode 100644 index 0000000000000000000000000000000000000000..1d385d62cf08bca35254547902b792c243656ec1 --- /dev/null +++ b/tldr-7b-checkpoint-256/special_tokens_map.json @@ -0,0 +1,23 @@ +{ + "bos_token": { + "content": "<|begin▁of▁sentence|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false + }, + "eos_token": { + "content": "<|end▁of▁sentence|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false + }, + "pad_token": { + "content": "<|end▁of▁sentence|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false + } +} diff --git a/tldr-7b-checkpoint-256/tokenizer.json b/tldr-7b-checkpoint-256/tokenizer.json new file mode 100644 index 0000000000000000000000000000000000000000..1a2db243e47cbc113f6b2ddcc388aeeb8fe1a94c --- /dev/null +++ b/tldr-7b-checkpoint-256/tokenizer.json @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:e20ddafc659ba90242154b55275402edeca0715e5dbb30f56815a4ce081f4893 +size 11422778 diff --git a/tldr-7b-checkpoint-256/tokenizer_config.json b/tldr-7b-checkpoint-256/tokenizer_config.json new file mode 100644 index 0000000000000000000000000000000000000000..d36d867d39875eaa6078ba7c77be919699f19889 --- /dev/null +++ b/tldr-7b-checkpoint-256/tokenizer_config.json @@ -0,0 +1,195 @@ +{ + "add_bos_token": true, + "add_eos_token": false, + "add_prefix_space": null, + "added_tokens_decoder": { + "151643": { + "content": "<|end▁of▁sentence|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "151644": { + "content": "<|User|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": false + }, + "151645": { + "content": "<|Assistant|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": false + }, + "151646": { + "content": "<|begin▁of▁sentence|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "151647": { + "content": "<|EOT|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": false + }, + "151648": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": false + }, + "151649": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": false + }, + "151650": { + "content": "<|quad_start|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "151651": { + "content": "<|quad_end|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "151652": { + "content": "<|vision_start|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "151653": { + "content": "<|vision_end|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "151654": { + "content": "<|vision_pad|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "151655": { + "content": "<|image_pad|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "151656": { + "content": "<|video_pad|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "151657": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": false + }, + "151658": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": false + }, + "151659": { + "content": "<|fim_prefix|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": false + }, + "151660": { + "content": "<|fim_middle|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": false + }, + "151661": { + "content": "<|fim_suffix|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": false + }, + "151662": { + "content": "<|fim_pad|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": false + }, + "151663": { + "content": "<|repo_name|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": false + }, + "151664": { + "content": "<|file_sep|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": false + } + }, + "bos_token": "<|begin▁of▁sentence|>", + "chat_template": "{% if not add_generation_prompt is defined %}{% set add_generation_prompt = false %}{% endif %}{% set ns = namespace(is_first=false, is_tool=false, is_output_first=true, system_prompt='') %}{%- for message in messages %}{%- if message['role'] == 'system' %}{% set ns.system_prompt = message['content'] %}{%- endif %}{%- endfor %}{{bos_token}}{{ns.system_prompt}}{%- for message in messages %}{%- if message['role'] == 'user' %}{%- set ns.is_tool = false -%}{{'<|User|>' + message['content']}}{%- endif %}{%- if message['role'] == 'assistant' and message['content'] is none %}{%- set ns.is_tool = false -%}{%- for tool in message['tool_calls']%}{%- if not ns.is_first %}{{'<|Assistant|><|tool▁calls▁begin|><|tool▁call▁begin|>' + tool['type'] + '<|tool▁sep|>' + tool['function']['name'] + '\\n' + '```json' + '\\n' + tool['function']['arguments'] + '\\n' + '```' + '<|tool▁call▁end|>'}}{%- set ns.is_first = true -%}{%- else %}{{'\\n' + '<|tool▁call▁begin|>' + tool['type'] + '<|tool▁sep|>' + tool['function']['name'] + '\\n' + '```json' + '\\n' + tool['function']['arguments'] + '\\n' + '```' + '<|tool▁call▁end|>'}}{{'<|tool▁calls▁end|><|end▁of▁sentence|>'}}{%- endif %}{%- endfor %}{%- endif %}{%- if message['role'] == 'assistant' and message['content'] is not none %}{%- if ns.is_tool %}{{'<|tool▁outputs▁end|>' + message['content'] + '<|end▁of▁sentence|>'}}{%- set ns.is_tool = false -%}{%- else %}{% set content = message['content'] %}{% if '' in content %}{% set content = content.split('')[-1] %}{% endif %}{{'<|Assistant|>' + content + '<|end▁of▁sentence|>'}}{%- endif %}{%- endif %}{%- if message['role'] == 'tool' %}{%- set ns.is_tool = true -%}{%- if ns.is_output_first %}{{'<|tool▁outputs▁begin|><|tool▁output▁begin|>' + message['content'] + '<|tool▁output▁end|>'}}{%- set ns.is_output_first = false %}{%- else %}{{'\\n<|tool▁output▁begin|>' + message['content'] + '<|tool▁output▁end|>'}}{%- endif %}{%- endif %}{%- endfor -%}{% if ns.is_tool %}{{'<|tool▁outputs▁end|>'}}{% endif %}{% if add_generation_prompt and not ns.is_tool %}{{'<|Assistant|>\\n'}}{% endif %}", + "clean_up_tokenization_spaces": false, + "eos_token": "<|end▁of▁sentence|>", + "legacy": true, + "model_max_length": 8192, + "pad_token": "<|end▁of▁sentence|>", + "padding_side": "left", + "sp_model_kwargs": {}, + "tokenizer_class": "LlamaTokenizer", + "unk_token": null, + "use_default_system_prompt": false +} diff --git a/tldr-7b-checkpoint-256/trainer_state.json b/tldr-7b-checkpoint-256/trainer_state.json new file mode 100644 index 0000000000000000000000000000000000000000..3a18f191c1cda758a652765a591c76d124cad5d6 --- /dev/null +++ b/tldr-7b-checkpoint-256/trainer_state.json @@ -0,0 +1,2113 @@ +{ + "best_metric": null, + "best_model_checkpoint": null, + "epoch": 1.0, + "eval_steps": 8, + "global_step": 256, + "is_hyper_param_search": false, + "is_local_process_zero": true, + "is_world_process_zero": true, + "log_history": [ + { + "epoch": 0.00390625, + "grad_norm": 3.380525042530954, + "learning_rate": 1e-05, + "loss": 0.2859, + "step": 1 + }, + { + "epoch": 0.0078125, + "grad_norm": 2.6901012326349156, + "learning_rate": 1e-05, + "loss": 0.2117, + "step": 2 + }, + { + "epoch": 0.01171875, + "grad_norm": 3.191447237922227, + "learning_rate": 1e-05, + "loss": 0.2602, + "step": 3 + }, + { + "epoch": 0.015625, + "grad_norm": 2.204083519446381, + "learning_rate": 1e-05, + "loss": 0.1972, + "step": 4 + }, + { + "epoch": 0.01953125, + "grad_norm": 2.0481149317155687, + "learning_rate": 1e-05, + "loss": 0.2338, + "step": 5 + }, + { + "epoch": 0.0234375, + "grad_norm": 1.6269814174466988, + "learning_rate": 1e-05, + "loss": 0.214, + "step": 6 + }, + { + "epoch": 0.02734375, + "grad_norm": 1.6908703624878527, + "learning_rate": 1e-05, + "loss": 0.2088, + "step": 7 + }, + { + "epoch": 0.03125, + "grad_norm": 1.2059719622160197, + "learning_rate": 1e-05, + "loss": 0.1975, + "step": 8 + }, + { + "epoch": 0.03125, + "eval_dev_acc": 0.515625, + "eval_dev_token": 4849.7578125, + "eval_runtime": 168.4394, + "eval_samples_per_second": 0.095, + "eval_steps_per_second": 0.006, + "step": 8 + }, + { + "epoch": 0.03515625, + "grad_norm": 1.6837720712641369, + "learning_rate": 1e-05, + "loss": 0.1873, + "step": 9 + }, + { + "epoch": 0.0390625, + "grad_norm": 1.2504651087103098, + "learning_rate": 1e-05, + "loss": 0.1959, + "step": 10 + }, + { + "epoch": 0.04296875, + "grad_norm": 1.3187603751382884, + "learning_rate": 1e-05, + "loss": 0.2135, + "step": 11 + }, + { + "epoch": 0.046875, + "grad_norm": 1.3545446581007174, + "learning_rate": 1e-05, + "loss": 0.2428, + "step": 12 + }, + { + "epoch": 0.05078125, + "grad_norm": 1.6286051945906104, + "learning_rate": 1e-05, + "loss": 0.1708, + "step": 13 + }, + { + "epoch": 0.0546875, + "grad_norm": 1.6081830921647842, + "learning_rate": 1e-05, + "loss": 0.1471, + "step": 14 + }, + { + "epoch": 0.05859375, + "grad_norm": 1.4305460955933824, + "learning_rate": 1e-05, + "loss": 0.1837, + "step": 15 + }, + { + "epoch": 0.0625, + "grad_norm": 1.3961670104174644, + "learning_rate": 1e-05, + "loss": 0.1352, + "step": 16 + }, + { + "epoch": 0.0625, + "eval_dev_acc": 0.4296875, + "eval_dev_token": 5067.265625, + "eval_runtime": 167.2848, + "eval_samples_per_second": 0.096, + "eval_steps_per_second": 0.006, + "step": 16 + }, + { + "epoch": 0.06640625, + "grad_norm": 1.5507019702345457, + "learning_rate": 1e-05, + "loss": 0.1657, + "step": 17 + }, + { + "epoch": 0.0703125, + "grad_norm": 1.3395286968352729, + "learning_rate": 1e-05, + "loss": 0.1824, + "step": 18 + }, + { + "epoch": 0.07421875, + "grad_norm": 2.201219146342779, + "learning_rate": 1e-05, + "loss": 0.1391, + "step": 19 + }, + { + "epoch": 0.078125, + "grad_norm": 1.75559779570709, + "learning_rate": 1e-05, + "loss": 0.1351, + "step": 20 + }, + { + "epoch": 0.08203125, + "grad_norm": 2.0359121335172428, + "learning_rate": 1e-05, + "loss": 0.1748, + "step": 21 + }, + { + "epoch": 0.0859375, + "grad_norm": 1.6822343317370052, + "learning_rate": 1e-05, + "loss": 0.1582, + "step": 22 + }, + { + "epoch": 0.08984375, + "grad_norm": 1.9664935447837442, + "learning_rate": 1e-05, + "loss": 0.1338, + "step": 23 + }, + { + "epoch": 0.09375, + "grad_norm": 1.1463903797363937, + "learning_rate": 1e-05, + "loss": 0.1139, + "step": 24 + }, + { + "epoch": 0.09375, + "eval_dev_acc": 0.4296875, + "eval_dev_token": 4994.296875, + "eval_runtime": 168.4043, + "eval_samples_per_second": 0.095, + "eval_steps_per_second": 0.006, + "step": 24 + }, + { + "epoch": 0.09765625, + "grad_norm": 2.1728621095149627, + "learning_rate": 1e-05, + "loss": 0.1471, + "step": 25 + }, + { + "epoch": 0.1015625, + "grad_norm": 1.6714738223766954, + "learning_rate": 1e-05, + "loss": 0.1349, + "step": 26 + }, + { + "epoch": 0.10546875, + "grad_norm": 1.5574316583381629, + "learning_rate": 1e-05, + "loss": 0.1356, + "step": 27 + }, + { + "epoch": 0.109375, + "grad_norm": 1.4728847084572547, + "learning_rate": 1e-05, + "loss": 0.1509, + "step": 28 + }, + { + "epoch": 0.11328125, + "grad_norm": 1.4769394661942852, + "learning_rate": 1e-05, + "loss": 0.1294, + "step": 29 + }, + { + "epoch": 0.1171875, + "grad_norm": 1.8550097520759188, + "learning_rate": 1e-05, + "loss": 0.1208, + "step": 30 + }, + { + "epoch": 0.12109375, + "grad_norm": 1.75157088447911, + "learning_rate": 1e-05, + "loss": 0.0993, + "step": 31 + }, + { + "epoch": 0.125, + "grad_norm": 1.6233472727407252, + "learning_rate": 1e-05, + "loss": 0.1412, + "step": 32 + }, + { + "epoch": 0.125, + "eval_dev_acc": 0.4609375, + "eval_dev_token": 4228.15625, + "eval_runtime": 159.0398, + "eval_samples_per_second": 0.101, + "eval_steps_per_second": 0.006, + "step": 32 + }, + { + "epoch": 0.12890625, + "grad_norm": 1.5246001678514782, + "learning_rate": 1e-05, + "loss": 0.1268, + "step": 33 + }, + { + "epoch": 0.1328125, + "grad_norm": 1.020147996755851, + "learning_rate": 1e-05, + "loss": 0.166, + "step": 34 + }, + { + "epoch": 0.13671875, + "grad_norm": 0.9795032964583498, + "learning_rate": 1e-05, + "loss": 0.1223, + "step": 35 + }, + { + "epoch": 0.140625, + "grad_norm": 1.0328587053324862, + "learning_rate": 1e-05, + "loss": 0.0889, + "step": 36 + }, + { + "epoch": 0.14453125, + "grad_norm": 0.8587530858129762, + "learning_rate": 1e-05, + "loss": 0.1618, + "step": 37 + }, + { + "epoch": 0.1484375, + "grad_norm": 1.0451234874371433, + "learning_rate": 1e-05, + "loss": 0.1973, + "step": 38 + }, + { + "epoch": 0.15234375, + "grad_norm": 1.032741287831154, + "learning_rate": 1e-05, + "loss": 0.1999, + "step": 39 + }, + { + "epoch": 0.15625, + "grad_norm": 1.0128010813738295, + "learning_rate": 1e-05, + "loss": 0.1314, + "step": 40 + }, + { + "epoch": 0.15625, + "eval_dev_acc": 0.40625, + "eval_dev_token": 5015.7421875, + "eval_runtime": 167.9354, + "eval_samples_per_second": 0.095, + "eval_steps_per_second": 0.006, + "step": 40 + }, + { + "epoch": 0.16015625, + "grad_norm": 0.7085331860395175, + "learning_rate": 1e-05, + "loss": 0.1424, + "step": 41 + }, + { + "epoch": 0.1640625, + "grad_norm": 0.8522197113830303, + "learning_rate": 1e-05, + "loss": 0.1523, + "step": 42 + }, + { + "epoch": 0.16796875, + "grad_norm": 0.9700458234990689, + "learning_rate": 1e-05, + "loss": 0.1655, + "step": 43 + }, + { + "epoch": 0.171875, + "grad_norm": 2.0713947251278855, + "learning_rate": 1e-05, + "loss": 0.2946, + "step": 44 + }, + { + "epoch": 0.17578125, + "grad_norm": 1.6441862242379885, + "learning_rate": 1e-05, + "loss": 0.2547, + "step": 45 + }, + { + "epoch": 0.1796875, + "grad_norm": 1.7959964112861366, + "learning_rate": 1e-05, + "loss": 0.3009, + "step": 46 + }, + { + "epoch": 0.18359375, + "grad_norm": 1.3449858551505456, + "learning_rate": 1e-05, + "loss": 0.2094, + "step": 47 + }, + { + "epoch": 0.1875, + "grad_norm": 1.2087309569022056, + "learning_rate": 1e-05, + "loss": 0.1908, + "step": 48 + }, + { + "epoch": 0.1875, + "eval_dev_acc": 0.34375, + "eval_dev_token": 4538.84375, + "eval_runtime": 161.6976, + "eval_samples_per_second": 0.099, + "eval_steps_per_second": 0.006, + "step": 48 + }, + { + "epoch": 0.19140625, + "grad_norm": 1.1559146316352948, + "learning_rate": 1e-05, + "loss": 0.3036, + "step": 49 + }, + { + "epoch": 0.1953125, + "grad_norm": 1.131769529502962, + "learning_rate": 1e-05, + "loss": 0.2441, + "step": 50 + }, + { + "epoch": 0.19921875, + "grad_norm": 1.4116452844735226, + "learning_rate": 1e-05, + "loss": 0.2028, + "step": 51 + }, + { + "epoch": 0.203125, + "grad_norm": 0.7550364491986332, + "learning_rate": 1e-05, + "loss": 0.215, + "step": 52 + }, + { + "epoch": 0.20703125, + "grad_norm": 1.3915284765850489, + "learning_rate": 1e-05, + "loss": 0.2878, + "step": 53 + }, + { + "epoch": 0.2109375, + "grad_norm": 1.6351241901381652, + "learning_rate": 1e-05, + "loss": 0.2446, + "step": 54 + }, + { + "epoch": 0.21484375, + "grad_norm": 1.6083218458029132, + "learning_rate": 1e-05, + "loss": 0.2088, + "step": 55 + }, + { + "epoch": 0.21875, + "grad_norm": 0.7434150303822764, + "learning_rate": 1e-05, + "loss": 0.2262, + "step": 56 + }, + { + "epoch": 0.21875, + "eval_dev_acc": 0.30708661675453186, + "eval_dev_token": 5670.251953125, + "eval_runtime": 174.7692, + "eval_samples_per_second": 0.092, + "eval_steps_per_second": 0.006, + "step": 56 + }, + { + "epoch": 0.22265625, + "grad_norm": 1.0769799759099778, + "learning_rate": 1e-05, + "loss": 0.208, + "step": 57 + }, + { + "epoch": 0.2265625, + "grad_norm": 0.9298141621627772, + "learning_rate": 1e-05, + "loss": 0.1687, + "step": 58 + }, + { + "epoch": 0.23046875, + "grad_norm": 1.285492123129724, + "learning_rate": 1e-05, + "loss": 0.2427, + "step": 59 + }, + { + "epoch": 0.234375, + "grad_norm": 0.8346778861730894, + "learning_rate": 1e-05, + "loss": 0.219, + "step": 60 + }, + { + "epoch": 0.23828125, + "grad_norm": 0.9873196942775492, + "learning_rate": 1e-05, + "loss": 0.242, + "step": 61 + }, + { + "epoch": 0.2421875, + "grad_norm": 0.9596507860915271, + "learning_rate": 1e-05, + "loss": 0.2148, + "step": 62 + }, + { + "epoch": 0.24609375, + "grad_norm": 1.0988562593647762, + "learning_rate": 1e-05, + "loss": 0.2396, + "step": 63 + }, + { + "epoch": 0.25, + "grad_norm": 0.9707635131928222, + "learning_rate": 1e-05, + "loss": 0.238, + "step": 64 + }, + { + "epoch": 0.25, + "eval_dev_acc": 0.5390625, + "eval_dev_token": 4394.921875, + "eval_runtime": 161.3481, + "eval_samples_per_second": 0.099, + "eval_steps_per_second": 0.006, + "step": 64 + }, + { + "epoch": 0.25390625, + "grad_norm": 0.8083595053544823, + "learning_rate": 1e-05, + "loss": 0.293, + "step": 65 + }, + { + "epoch": 0.2578125, + "grad_norm": 0.6893947679382126, + "learning_rate": 1e-05, + "loss": 0.2866, + "step": 66 + }, + { + "epoch": 0.26171875, + "grad_norm": 1.0271679359276198, + "learning_rate": 1e-05, + "loss": 0.2276, + "step": 67 + }, + { + "epoch": 0.265625, + "grad_norm": 1.1776528602190077, + "learning_rate": 1e-05, + "loss": 0.1887, + "step": 68 + }, + { + "epoch": 0.26953125, + "grad_norm": 1.163717423684938, + "learning_rate": 1e-05, + "loss": 0.2147, + "step": 69 + }, + { + "epoch": 0.2734375, + "grad_norm": 0.8134427746893115, + "learning_rate": 1e-05, + "loss": 0.2342, + "step": 70 + }, + { + "epoch": 0.27734375, + "grad_norm": 1.4269332848478926, + "learning_rate": 1e-05, + "loss": 0.1919, + "step": 71 + }, + { + "epoch": 0.28125, + "grad_norm": 0.8200789264174901, + "learning_rate": 1e-05, + "loss": 0.2175, + "step": 72 + }, + { + "epoch": 0.28125, + "eval_dev_acc": 0.53125, + "eval_dev_token": 4859.7421875, + "eval_runtime": 166.6197, + "eval_samples_per_second": 0.096, + "eval_steps_per_second": 0.006, + "step": 72 + }, + { + "epoch": 0.28515625, + "grad_norm": 1.007316679088458, + "learning_rate": 1e-05, + "loss": 0.3108, + "step": 73 + }, + { + "epoch": 0.2890625, + "grad_norm": 0.6637709768510952, + "learning_rate": 1e-05, + "loss": 0.1794, + "step": 74 + }, + { + "epoch": 0.29296875, + "grad_norm": 1.0144512803754202, + "learning_rate": 1e-05, + "loss": 0.1905, + "step": 75 + }, + { + "epoch": 0.296875, + "grad_norm": 1.2499777112248354, + "learning_rate": 1e-05, + "loss": 0.2014, + "step": 76 + }, + { + "epoch": 0.30078125, + "grad_norm": 1.0642239482819718, + "learning_rate": 1e-05, + "loss": 0.1648, + "step": 77 + }, + { + "epoch": 0.3046875, + "grad_norm": 0.8739614674360524, + "learning_rate": 1e-05, + "loss": 0.1537, + "step": 78 + }, + { + "epoch": 0.30859375, + "grad_norm": 0.5320613340314281, + "learning_rate": 1e-05, + "loss": 0.2128, + "step": 79 + }, + { + "epoch": 0.3125, + "grad_norm": 1.2802208673828028, + "learning_rate": 1e-05, + "loss": 0.1939, + "step": 80 + }, + { + "epoch": 0.3125, + "eval_dev_acc": 0.4609375, + "eval_dev_token": 5065.421875, + "eval_runtime": 168.4523, + "eval_samples_per_second": 0.095, + "eval_steps_per_second": 0.006, + "step": 80 + }, + { + "epoch": 0.31640625, + "grad_norm": 1.1564057868614226, + "learning_rate": 1e-05, + "loss": 0.2215, + "step": 81 + }, + { + "epoch": 0.3203125, + "grad_norm": 0.7104999594850884, + "learning_rate": 1e-05, + "loss": 0.1224, + "step": 82 + }, + { + "epoch": 0.32421875, + "grad_norm": 0.6466657594813067, + "learning_rate": 1e-05, + "loss": 0.145, + "step": 83 + }, + { + "epoch": 0.328125, + "grad_norm": 1.3499118701284736, + "learning_rate": 1e-05, + "loss": 0.1963, + "step": 84 + }, + { + "epoch": 0.33203125, + "grad_norm": 0.6363338361760021, + "learning_rate": 1e-05, + "loss": 0.1781, + "step": 85 + }, + { + "epoch": 0.3359375, + "grad_norm": 0.8807906150832371, + "learning_rate": 1e-05, + "loss": 0.1426, + "step": 86 + }, + { + "epoch": 0.33984375, + "grad_norm": 0.7466707582875238, + "learning_rate": 1e-05, + "loss": 0.1629, + "step": 87 + }, + { + "epoch": 0.34375, + "grad_norm": 0.7773292125565866, + "learning_rate": 1e-05, + "loss": 0.181, + "step": 88 + }, + { + "epoch": 0.34375, + "eval_dev_acc": 0.4609375, + "eval_dev_token": 5092.8984375, + "eval_runtime": 168.9275, + "eval_samples_per_second": 0.095, + "eval_steps_per_second": 0.006, + "step": 88 + }, + { + "epoch": 0.34765625, + "grad_norm": 0.9798290139606278, + "learning_rate": 1e-05, + "loss": 0.1725, + "step": 89 + }, + { + "epoch": 0.3515625, + "grad_norm": 1.2761428002675261, + "learning_rate": 1e-05, + "loss": 0.175, + "step": 90 + }, + { + "epoch": 0.35546875, + "grad_norm": 0.5042091805859357, + "learning_rate": 1e-05, + "loss": 0.218, + "step": 91 + }, + { + "epoch": 0.359375, + "grad_norm": 1.017358230975041, + "learning_rate": 1e-05, + "loss": 0.2502, + "step": 92 + }, + { + "epoch": 0.36328125, + "grad_norm": 0.7366049175316091, + "learning_rate": 1e-05, + "loss": 0.1656, + "step": 93 + }, + { + "epoch": 0.3671875, + "grad_norm": 0.9422427666318486, + "learning_rate": 1e-05, + "loss": 0.1455, + "step": 94 + }, + { + "epoch": 0.37109375, + "grad_norm": 0.7689775552730859, + "learning_rate": 1e-05, + "loss": 0.1485, + "step": 95 + }, + { + "epoch": 0.375, + "grad_norm": 0.9090457524355386, + "learning_rate": 1e-05, + "loss": 0.1411, + "step": 96 + }, + { + "epoch": 0.375, + "eval_dev_acc": 0.453125, + "eval_dev_token": 4948.8359375, + "eval_runtime": 165.5377, + "eval_samples_per_second": 0.097, + "eval_steps_per_second": 0.006, + "step": 96 + }, + { + "epoch": 0.37890625, + "grad_norm": 0.7235724828873173, + "learning_rate": 1e-05, + "loss": 0.2193, + "step": 97 + }, + { + "epoch": 0.3828125, + "grad_norm": 0.7200445685294068, + "learning_rate": 1e-05, + "loss": 0.1985, + "step": 98 + }, + { + "epoch": 0.38671875, + "grad_norm": 0.6060156821220763, + "learning_rate": 1e-05, + "loss": 0.2096, + "step": 99 + }, + { + "epoch": 0.390625, + "grad_norm": 0.7114968462244617, + "learning_rate": 1e-05, + "loss": 0.1928, + "step": 100 + }, + { + "epoch": 0.39453125, + "grad_norm": 0.6397518359548336, + "learning_rate": 1e-05, + "loss": 0.2165, + "step": 101 + }, + { + "epoch": 0.3984375, + "grad_norm": 0.7027126137819094, + "learning_rate": 1e-05, + "loss": 0.2263, + "step": 102 + }, + { + "epoch": 0.40234375, + "grad_norm": 0.8648981933002193, + "learning_rate": 1e-05, + "loss": 0.2874, + "step": 103 + }, + { + "epoch": 0.40625, + "grad_norm": 0.9742992968412495, + "learning_rate": 1e-05, + "loss": 0.1755, + "step": 104 + }, + { + "epoch": 0.40625, + "eval_dev_acc": 0.3515625, + "eval_dev_token": 5303.1796875, + "eval_runtime": 173.9477, + "eval_samples_per_second": 0.092, + "eval_steps_per_second": 0.006, + "step": 104 + }, + { + "epoch": 0.41015625, + "grad_norm": 0.6358933759276069, + "learning_rate": 1e-05, + "loss": 0.1907, + "step": 105 + }, + { + "epoch": 0.4140625, + "grad_norm": 0.7859972506268991, + "learning_rate": 1e-05, + "loss": 0.1731, + "step": 106 + }, + { + "epoch": 0.41796875, + "grad_norm": 0.6429885607052577, + "learning_rate": 1e-05, + "loss": 0.187, + "step": 107 + }, + { + "epoch": 0.421875, + "grad_norm": 0.6314004528855494, + "learning_rate": 1e-05, + "loss": 0.2185, + "step": 108 + }, + { + "epoch": 0.42578125, + "grad_norm": 0.8243656111706104, + "learning_rate": 1e-05, + "loss": 0.1384, + "step": 109 + }, + { + "epoch": 0.4296875, + "grad_norm": 0.7310074535827911, + "learning_rate": 1e-05, + "loss": 0.1724, + "step": 110 + }, + { + "epoch": 0.43359375, + "grad_norm": 1.8710293554497974, + "learning_rate": 1e-05, + "loss": 0.273, + "step": 111 + }, + { + "epoch": 0.4375, + "grad_norm": 1.3308164398688347, + "learning_rate": 1e-05, + "loss": 0.2852, + "step": 112 + }, + { + "epoch": 0.4375, + "eval_dev_acc": 0.296875, + "eval_dev_token": 5770.9375, + "eval_runtime": 175.5918, + "eval_samples_per_second": 0.091, + "eval_steps_per_second": 0.006, + "step": 112 + }, + { + "epoch": 0.44140625, + "grad_norm": 0.4499041384963393, + "learning_rate": 1e-05, + "loss": 0.1845, + "step": 113 + }, + { + "epoch": 0.4453125, + "grad_norm": 0.5818915994231291, + "learning_rate": 1e-05, + "loss": 0.2709, + "step": 114 + }, + { + "epoch": 0.44921875, + "grad_norm": 0.6130904000526848, + "learning_rate": 1e-05, + "loss": 0.231, + "step": 115 + }, + { + "epoch": 0.453125, + "grad_norm": 0.7266034880537791, + "learning_rate": 1e-05, + "loss": 0.1555, + "step": 116 + }, + { + "epoch": 0.45703125, + "grad_norm": 0.425032745279421, + "learning_rate": 1e-05, + "loss": 0.1733, + "step": 117 + }, + { + "epoch": 0.4609375, + "grad_norm": 0.41408811254876093, + "learning_rate": 1e-05, + "loss": 0.1793, + "step": 118 + }, + { + "epoch": 0.46484375, + "grad_norm": 0.8433491024471641, + "learning_rate": 1e-05, + "loss": 0.2335, + "step": 119 + }, + { + "epoch": 0.46875, + "grad_norm": 0.5585183306922875, + "learning_rate": 1e-05, + "loss": 0.2515, + "step": 120 + }, + { + "epoch": 0.46875, + "eval_dev_acc": 0.4724409580230713, + "eval_dev_token": 4777.55126953125, + "eval_runtime": 165.1485, + "eval_samples_per_second": 0.097, + "eval_steps_per_second": 0.006, + "step": 120 + }, + { + "epoch": 0.47265625, + "grad_norm": 0.9520218462259554, + "learning_rate": 1e-05, + "loss": 0.2613, + "step": 121 + }, + { + "epoch": 0.4765625, + "grad_norm": 0.4858585527334522, + "learning_rate": 1e-05, + "loss": 0.2379, + "step": 122 + }, + { + "epoch": 0.48046875, + "grad_norm": 0.5772160567620949, + "learning_rate": 1e-05, + "loss": 0.241, + "step": 123 + }, + { + "epoch": 0.484375, + "grad_norm": 0.731954162407159, + "learning_rate": 1e-05, + "loss": 0.2482, + "step": 124 + }, + { + "epoch": 0.48828125, + "grad_norm": 0.49226621710163243, + "learning_rate": 1e-05, + "loss": 0.2333, + "step": 125 + }, + { + "epoch": 0.4921875, + "grad_norm": 0.43779404197089106, + "learning_rate": 1e-05, + "loss": 0.185, + "step": 126 + }, + { + "epoch": 0.49609375, + "grad_norm": 0.6856986141306837, + "learning_rate": 1e-05, + "loss": 0.1943, + "step": 127 + }, + { + "epoch": 0.5, + "grad_norm": 0.6558122415773976, + "learning_rate": 1e-05, + "loss": 0.2185, + "step": 128 + }, + { + "epoch": 0.5, + "eval_dev_acc": 0.4765625, + "eval_dev_token": 4368.859375, + "eval_runtime": 161.9718, + "eval_samples_per_second": 0.099, + "eval_steps_per_second": 0.006, + "step": 128 + }, + { + "epoch": 0.50390625, + "grad_norm": 0.4099906022533745, + "learning_rate": 1e-05, + "loss": 0.2113, + "step": 129 + }, + { + "epoch": 0.5078125, + "grad_norm": 0.49752415105495956, + "learning_rate": 1e-05, + "loss": 0.2217, + "step": 130 + }, + { + "epoch": 0.51171875, + "grad_norm": 0.8912790018467623, + "learning_rate": 1e-05, + "loss": 0.3422, + "step": 131 + }, + { + "epoch": 0.515625, + "grad_norm": 0.6764829647253893, + "learning_rate": 1e-05, + "loss": 0.2055, + "step": 132 + }, + { + "epoch": 0.51953125, + "grad_norm": 0.8399641090693946, + "learning_rate": 1e-05, + "loss": 0.2087, + "step": 133 + }, + { + "epoch": 0.5234375, + "grad_norm": 0.4594160953603203, + "learning_rate": 1e-05, + "loss": 0.2093, + "step": 134 + }, + { + "epoch": 0.52734375, + "grad_norm": 0.7432138703184232, + "learning_rate": 1e-05, + "loss": 0.1969, + "step": 135 + }, + { + "epoch": 0.53125, + "grad_norm": 0.4584467325236011, + "learning_rate": 1e-05, + "loss": 0.1806, + "step": 136 + }, + { + "epoch": 0.53125, + "eval_dev_acc": 0.4765625, + "eval_dev_token": 4603.53125, + "eval_runtime": 164.3452, + "eval_samples_per_second": 0.097, + "eval_steps_per_second": 0.006, + "step": 136 + }, + { + "epoch": 0.53515625, + "grad_norm": 0.6458588312529675, + "learning_rate": 1e-05, + "loss": 0.2087, + "step": 137 + }, + { + "epoch": 0.5390625, + "grad_norm": 0.7370624067340756, + "learning_rate": 1e-05, + "loss": 0.1854, + "step": 138 + }, + { + "epoch": 0.54296875, + "grad_norm": 0.7141604462138248, + "learning_rate": 1e-05, + "loss": 0.2535, + "step": 139 + }, + { + "epoch": 0.546875, + "grad_norm": 0.8212814690178184, + "learning_rate": 1e-05, + "loss": 0.1668, + "step": 140 + }, + { + "epoch": 0.55078125, + "grad_norm": 0.5799692948316157, + "learning_rate": 1e-05, + "loss": 0.2375, + "step": 141 + }, + { + "epoch": 0.5546875, + "grad_norm": 0.5333639624775814, + "learning_rate": 1e-05, + "loss": 0.1737, + "step": 142 + }, + { + "epoch": 0.55859375, + "grad_norm": 0.4076841439195106, + "learning_rate": 1e-05, + "loss": 0.1627, + "step": 143 + }, + { + "epoch": 0.5625, + "grad_norm": 0.4118175478201596, + "learning_rate": 1e-05, + "loss": 0.1576, + "step": 144 + }, + { + "epoch": 0.5625, + "eval_dev_acc": 0.5234375, + "eval_dev_token": 5125.0703125, + "eval_runtime": 168.804, + "eval_samples_per_second": 0.095, + "eval_steps_per_second": 0.006, + "step": 144 + }, + { + "epoch": 0.56640625, + "grad_norm": 0.5988381099011506, + "learning_rate": 1e-05, + "loss": 0.1656, + "step": 145 + }, + { + "epoch": 0.5703125, + "grad_norm": 0.9328153493065982, + "learning_rate": 1e-05, + "loss": 0.1788, + "step": 146 + }, + { + "epoch": 0.57421875, + "grad_norm": 0.8013592126955402, + "learning_rate": 1e-05, + "loss": 0.2009, + "step": 147 + }, + { + "epoch": 0.578125, + "grad_norm": 0.4868159061171701, + "learning_rate": 1e-05, + "loss": 0.217, + "step": 148 + }, + { + "epoch": 0.58203125, + "grad_norm": 0.6758953539585006, + "learning_rate": 1e-05, + "loss": 0.2344, + "step": 149 + }, + { + "epoch": 0.5859375, + "grad_norm": 0.8609458752061137, + "learning_rate": 1e-05, + "loss": 0.1939, + "step": 150 + }, + { + "epoch": 0.58984375, + "grad_norm": 0.45913847739444186, + "learning_rate": 1e-05, + "loss": 0.1691, + "step": 151 + }, + { + "epoch": 0.59375, + "grad_norm": 0.8064977044716175, + "learning_rate": 1e-05, + "loss": 0.1949, + "step": 152 + }, + { + "epoch": 0.59375, + "eval_dev_acc": 0.40625, + "eval_dev_token": 4508.484375, + "eval_runtime": 160.3398, + "eval_samples_per_second": 0.1, + "eval_steps_per_second": 0.006, + "step": 152 + }, + { + "epoch": 0.59765625, + "grad_norm": 0.9904042315049291, + "learning_rate": 1e-05, + "loss": 0.2253, + "step": 153 + }, + { + "epoch": 0.6015625, + "grad_norm": 0.5524318414569037, + "learning_rate": 1e-05, + "loss": 0.2535, + "step": 154 + }, + { + "epoch": 0.60546875, + "grad_norm": 0.418186463867415, + "learning_rate": 1e-05, + "loss": 0.1884, + "step": 155 + }, + { + "epoch": 0.609375, + "grad_norm": 0.6311027708045368, + "learning_rate": 1e-05, + "loss": 0.2408, + "step": 156 + }, + { + "epoch": 0.61328125, + "grad_norm": 0.4550696199781805, + "learning_rate": 1e-05, + "loss": 0.173, + "step": 157 + }, + { + "epoch": 0.6171875, + "grad_norm": 0.4596598696608727, + "learning_rate": 1e-05, + "loss": 0.1592, + "step": 158 + }, + { + "epoch": 0.62109375, + "grad_norm": 0.5573937890044522, + "learning_rate": 1e-05, + "loss": 0.1748, + "step": 159 + }, + { + "epoch": 0.625, + "grad_norm": 1.0862165315332113, + "learning_rate": 1e-05, + "loss": 0.2369, + "step": 160 + }, + { + "epoch": 0.625, + "eval_dev_acc": 0.4296875, + "eval_dev_token": 4869.8828125, + "eval_runtime": 167.2914, + "eval_samples_per_second": 0.096, + "eval_steps_per_second": 0.006, + "step": 160 + }, + { + "epoch": 0.62890625, + "grad_norm": 0.46051384064237827, + "learning_rate": 1e-05, + "loss": 0.2086, + "step": 161 + }, + { + "epoch": 0.6328125, + "grad_norm": 0.7125397532570018, + "learning_rate": 1e-05, + "loss": 0.2212, + "step": 162 + }, + { + "epoch": 0.63671875, + "grad_norm": 0.564820498711706, + "learning_rate": 1e-05, + "loss": 0.3019, + "step": 163 + }, + { + "epoch": 0.640625, + "grad_norm": 0.5218656690400247, + "learning_rate": 1e-05, + "loss": 0.1324, + "step": 164 + }, + { + "epoch": 0.64453125, + "grad_norm": 0.4994022980399308, + "learning_rate": 1e-05, + "loss": 0.1438, + "step": 165 + }, + { + "epoch": 0.6484375, + "grad_norm": 0.7016809849517179, + "learning_rate": 1e-05, + "loss": 0.2791, + "step": 166 + }, + { + "epoch": 0.65234375, + "grad_norm": 0.597463304680723, + "learning_rate": 1e-05, + "loss": 0.1749, + "step": 167 + }, + { + "epoch": 0.65625, + "grad_norm": 0.5536855781273838, + "learning_rate": 1e-05, + "loss": 0.2391, + "step": 168 + }, + { + "epoch": 0.65625, + "eval_dev_acc": 0.3203125, + "eval_dev_token": 5451.3671875, + "eval_runtime": 172.7574, + "eval_samples_per_second": 0.093, + "eval_steps_per_second": 0.006, + "step": 168 + }, + { + "epoch": 0.66015625, + "grad_norm": 0.9103508979108635, + "learning_rate": 1e-05, + "loss": 0.2613, + "step": 169 + }, + { + "epoch": 0.6640625, + "grad_norm": 0.4928845564740678, + "learning_rate": 1e-05, + "loss": 0.215, + "step": 170 + }, + { + "epoch": 0.66796875, + "grad_norm": 0.8690405638773996, + "learning_rate": 1e-05, + "loss": 0.2355, + "step": 171 + }, + { + "epoch": 0.671875, + "grad_norm": 0.5511255682147113, + "learning_rate": 1e-05, + "loss": 0.2406, + "step": 172 + }, + { + "epoch": 0.67578125, + "grad_norm": 0.44346107905460214, + "learning_rate": 1e-05, + "loss": 0.1867, + "step": 173 + }, + { + "epoch": 0.6796875, + "grad_norm": 0.4019557678019079, + "learning_rate": 1e-05, + "loss": 0.1488, + "step": 174 + }, + { + "epoch": 0.68359375, + "grad_norm": 0.4139658009208469, + "learning_rate": 1e-05, + "loss": 0.1666, + "step": 175 + }, + { + "epoch": 0.6875, + "grad_norm": 0.45363011716779816, + "learning_rate": 1e-05, + "loss": 0.2006, + "step": 176 + }, + { + "epoch": 0.6875, + "eval_dev_acc": 0.3385826647281647, + "eval_dev_token": 4971.81884765625, + "eval_runtime": 166.9967, + "eval_samples_per_second": 0.096, + "eval_steps_per_second": 0.006, + "step": 176 + }, + { + "epoch": 0.69140625, + "grad_norm": 0.46674698673244774, + "learning_rate": 1e-05, + "loss": 0.1788, + "step": 177 + }, + { + "epoch": 0.6953125, + "grad_norm": 0.5396579551057291, + "learning_rate": 1e-05, + "loss": 0.1857, + "step": 178 + }, + { + "epoch": 0.69921875, + "grad_norm": 0.42472472699800484, + "learning_rate": 1e-05, + "loss": 0.1707, + "step": 179 + }, + { + "epoch": 0.703125, + "grad_norm": 0.4208916108378261, + "learning_rate": 1e-05, + "loss": 0.1736, + "step": 180 + }, + { + "epoch": 0.70703125, + "grad_norm": 0.5161632347165661, + "learning_rate": 1e-05, + "loss": 0.2074, + "step": 181 + }, + { + "epoch": 0.7109375, + "grad_norm": 0.4851147968745633, + "learning_rate": 1e-05, + "loss": 0.2183, + "step": 182 + }, + { + "epoch": 0.71484375, + "grad_norm": 0.5286494967968609, + "learning_rate": 1e-05, + "loss": 0.1877, + "step": 183 + }, + { + "epoch": 0.71875, + "grad_norm": 0.5399316089624949, + "learning_rate": 1e-05, + "loss": 0.209, + "step": 184 + }, + { + "epoch": 0.71875, + "eval_dev_acc": 0.3984375, + "eval_dev_token": 4787.84375, + "eval_runtime": 166.2574, + "eval_samples_per_second": 0.096, + "eval_steps_per_second": 0.006, + "step": 184 + }, + { + "epoch": 0.72265625, + "grad_norm": 0.7188938790166789, + "learning_rate": 1e-05, + "loss": 0.2065, + "step": 185 + }, + { + "epoch": 0.7265625, + "grad_norm": 0.5843767003652576, + "learning_rate": 1e-05, + "loss": 0.2356, + "step": 186 + }, + { + "epoch": 0.73046875, + "grad_norm": 0.4904003204685076, + "learning_rate": 1e-05, + "loss": 0.201, + "step": 187 + }, + { + "epoch": 0.734375, + "grad_norm": 0.485266158116283, + "learning_rate": 1e-05, + "loss": 0.1869, + "step": 188 + }, + { + "epoch": 0.73828125, + "grad_norm": 0.5242977395658632, + "learning_rate": 1e-05, + "loss": 0.2122, + "step": 189 + }, + { + "epoch": 0.7421875, + "grad_norm": 0.5417537780138298, + "learning_rate": 1e-05, + "loss": 0.2799, + "step": 190 + }, + { + "epoch": 0.74609375, + "grad_norm": 0.48949419193338123, + "learning_rate": 1e-05, + "loss": 0.212, + "step": 191 + }, + { + "epoch": 0.75, + "grad_norm": 0.48118963817889204, + "learning_rate": 1e-05, + "loss": 0.2195, + "step": 192 + }, + { + "epoch": 0.75, + "eval_dev_acc": 0.453125, + "eval_dev_token": 5056.7421875, + "eval_runtime": 168.273, + "eval_samples_per_second": 0.095, + "eval_steps_per_second": 0.006, + "step": 192 + }, + { + "epoch": 0.75390625, + "grad_norm": 0.6844465372064547, + "learning_rate": 1e-05, + "loss": 0.1645, + "step": 193 + }, + { + "epoch": 0.7578125, + "grad_norm": 0.49653100043792153, + "learning_rate": 1e-05, + "loss": 0.2023, + "step": 194 + }, + { + "epoch": 0.76171875, + "grad_norm": 0.5539027026151374, + "learning_rate": 1e-05, + "loss": 0.2348, + "step": 195 + }, + { + "epoch": 0.765625, + "grad_norm": 0.5003270709383194, + "learning_rate": 1e-05, + "loss": 0.2545, + "step": 196 + }, + { + "epoch": 0.76953125, + "grad_norm": 0.5666703162116131, + "learning_rate": 1e-05, + "loss": 0.2739, + "step": 197 + }, + { + "epoch": 0.7734375, + "grad_norm": 0.5281121627729704, + "learning_rate": 1e-05, + "loss": 0.1927, + "step": 198 + }, + { + "epoch": 0.77734375, + "grad_norm": 0.4691586351966124, + "learning_rate": 1e-05, + "loss": 0.2101, + "step": 199 + }, + { + "epoch": 0.78125, + "grad_norm": 0.43348894899907703, + "learning_rate": 1e-05, + "loss": 0.1636, + "step": 200 + }, + { + "epoch": 0.78125, + "eval_dev_acc": 0.4296875, + "eval_dev_token": 5082.265625, + "eval_runtime": 169.7777, + "eval_samples_per_second": 0.094, + "eval_steps_per_second": 0.006, + "step": 200 + }, + { + "epoch": 0.78515625, + "grad_norm": 0.4995118305726593, + "learning_rate": 1e-05, + "loss": 0.2149, + "step": 201 + }, + { + "epoch": 0.7890625, + "grad_norm": 0.3958721084761467, + "learning_rate": 1e-05, + "loss": 0.1732, + "step": 202 + }, + { + "epoch": 0.79296875, + "grad_norm": 0.4883258744044862, + "learning_rate": 1e-05, + "loss": 0.219, + "step": 203 + }, + { + "epoch": 0.796875, + "grad_norm": 0.45472746506302575, + "learning_rate": 1e-05, + "loss": 0.2187, + "step": 204 + }, + { + "epoch": 0.80078125, + "grad_norm": 0.45006095039367805, + "learning_rate": 1e-05, + "loss": 0.1924, + "step": 205 + }, + { + "epoch": 0.8046875, + "grad_norm": 0.4127537232406072, + "learning_rate": 1e-05, + "loss": 0.1736, + "step": 206 + }, + { + "epoch": 0.80859375, + "grad_norm": 0.4669392415601201, + "learning_rate": 1e-05, + "loss": 0.1847, + "step": 207 + }, + { + "epoch": 0.8125, + "grad_norm": 0.41469363114093816, + "learning_rate": 1e-05, + "loss": 0.1556, + "step": 208 + }, + { + "epoch": 0.8125, + "eval_dev_acc": 0.4609375, + "eval_dev_token": 4918.28125, + "eval_runtime": 166.5675, + "eval_samples_per_second": 0.096, + "eval_steps_per_second": 0.006, + "step": 208 + }, + { + "epoch": 0.81640625, + "grad_norm": 0.4433576280938302, + "learning_rate": 1e-05, + "loss": 0.1934, + "step": 209 + }, + { + "epoch": 0.8203125, + "grad_norm": 0.4355305023653351, + "learning_rate": 1e-05, + "loss": 0.1742, + "step": 210 + }, + { + "epoch": 0.82421875, + "grad_norm": 0.44938618579632195, + "learning_rate": 1e-05, + "loss": 0.1902, + "step": 211 + }, + { + "epoch": 0.828125, + "grad_norm": 0.5351771463999816, + "learning_rate": 1e-05, + "loss": 0.2148, + "step": 212 + }, + { + "epoch": 0.83203125, + "grad_norm": 0.5839350362138708, + "learning_rate": 1e-05, + "loss": 0.275, + "step": 213 + }, + { + "epoch": 0.8359375, + "grad_norm": 0.6964110745693202, + "learning_rate": 1e-05, + "loss": 0.2179, + "step": 214 + }, + { + "epoch": 0.83984375, + "grad_norm": 0.4337830660702992, + "learning_rate": 1e-05, + "loss": 0.2152, + "step": 215 + }, + { + "epoch": 0.84375, + "grad_norm": 0.46223312750006246, + "learning_rate": 1e-05, + "loss": 0.2405, + "step": 216 + }, + { + "epoch": 0.84375, + "eval_dev_acc": 0.3828125, + "eval_dev_token": 5435.3046875, + "eval_runtime": 173.8173, + "eval_samples_per_second": 0.092, + "eval_steps_per_second": 0.006, + "step": 216 + }, + { + "epoch": 0.84765625, + "grad_norm": 0.5541820526606585, + "learning_rate": 1e-05, + "loss": 0.2751, + "step": 217 + }, + { + "epoch": 0.8515625, + "grad_norm": 0.4662570041545537, + "learning_rate": 1e-05, + "loss": 0.2142, + "step": 218 + }, + { + "epoch": 0.85546875, + "grad_norm": 0.7737037625157579, + "learning_rate": 1e-05, + "loss": 0.2397, + "step": 219 + }, + { + "epoch": 0.859375, + "grad_norm": 0.5572195616624243, + "learning_rate": 1e-05, + "loss": 0.2421, + "step": 220 + }, + { + "epoch": 0.86328125, + "grad_norm": 0.5088509372691609, + "learning_rate": 1e-05, + "loss": 0.1875, + "step": 221 + }, + { + "epoch": 0.8671875, + "grad_norm": 0.508699458613964, + "learning_rate": 1e-05, + "loss": 0.1927, + "step": 222 + }, + { + "epoch": 0.87109375, + "grad_norm": 0.5150091482241945, + "learning_rate": 1e-05, + "loss": 0.2536, + "step": 223 + }, + { + "epoch": 0.875, + "grad_norm": 0.5203627078659161, + "learning_rate": 1e-05, + "loss": 0.2571, + "step": 224 + }, + { + "epoch": 0.875, + "eval_dev_acc": 0.3515625, + "eval_dev_token": 5227.0859375, + "eval_runtime": 170.2355, + "eval_samples_per_second": 0.094, + "eval_steps_per_second": 0.006, + "step": 224 + }, + { + "epoch": 0.87890625, + "grad_norm": 0.5279392216696818, + "learning_rate": 1e-05, + "loss": 0.2278, + "step": 225 + }, + { + "epoch": 0.8828125, + "grad_norm": 0.45017131620724865, + "learning_rate": 1e-05, + "loss": 0.2132, + "step": 226 + }, + { + "epoch": 0.88671875, + "grad_norm": 0.48915211275869575, + "learning_rate": 1e-05, + "loss": 0.2627, + "step": 227 + }, + { + "epoch": 0.890625, + "grad_norm": 0.4606618945421734, + "learning_rate": 1e-05, + "loss": 0.1528, + "step": 228 + }, + { + "epoch": 0.89453125, + "grad_norm": 0.5072593200666395, + "learning_rate": 1e-05, + "loss": 0.2148, + "step": 229 + }, + { + "epoch": 0.8984375, + "grad_norm": 0.5513069869439534, + "learning_rate": 1e-05, + "loss": 0.2319, + "step": 230 + }, + { + "epoch": 0.90234375, + "grad_norm": 0.4917083878550277, + "learning_rate": 1e-05, + "loss": 0.1989, + "step": 231 + }, + { + "epoch": 0.90625, + "grad_norm": 0.4027028580105545, + "learning_rate": 1e-05, + "loss": 0.1398, + "step": 232 + }, + { + "epoch": 0.90625, + "eval_dev_acc": 0.3779527544975281, + "eval_dev_token": 5651.6455078125, + "eval_runtime": 175.5543, + "eval_samples_per_second": 0.091, + "eval_steps_per_second": 0.006, + "step": 232 + }, + { + "epoch": 0.91015625, + "grad_norm": 0.4098440727615931, + "learning_rate": 1e-05, + "loss": 0.1481, + "step": 233 + }, + { + "epoch": 0.9140625, + "grad_norm": 0.4379253949500134, + "learning_rate": 1e-05, + "loss": 0.172, + "step": 234 + }, + { + "epoch": 0.91796875, + "grad_norm": 0.6161974608496972, + "learning_rate": 1e-05, + "loss": 0.2234, + "step": 235 + }, + { + "epoch": 0.921875, + "grad_norm": 0.6431694552333217, + "learning_rate": 1e-05, + "loss": 0.2928, + "step": 236 + }, + { + "epoch": 0.92578125, + "grad_norm": 0.7524837454023333, + "learning_rate": 1e-05, + "loss": 0.3518, + "step": 237 + }, + { + "epoch": 0.9296875, + "grad_norm": 0.5137794157548315, + "learning_rate": 1e-05, + "loss": 0.2371, + "step": 238 + }, + { + "epoch": 0.93359375, + "grad_norm": 0.42726761741926383, + "learning_rate": 1e-05, + "loss": 0.1349, + "step": 239 + }, + { + "epoch": 0.9375, + "grad_norm": 0.50721507122848, + "learning_rate": 1e-05, + "loss": 0.147, + "step": 240 + }, + { + "epoch": 0.9375, + "eval_dev_acc": 0.4375, + "eval_dev_token": 5554.34375, + "eval_runtime": 173.4206, + "eval_samples_per_second": 0.092, + "eval_steps_per_second": 0.006, + "step": 240 + }, + { + "epoch": 0.94140625, + "grad_norm": 0.5085504060972834, + "learning_rate": 1e-05, + "loss": 0.2115, + "step": 241 + }, + { + "epoch": 0.9453125, + "grad_norm": 0.5245333395138617, + "learning_rate": 1e-05, + "loss": 0.2203, + "step": 242 + }, + { + "epoch": 0.94921875, + "grad_norm": 0.5149241747645703, + "learning_rate": 1e-05, + "loss": 0.1935, + "step": 243 + }, + { + "epoch": 0.953125, + "grad_norm": 0.45199967311107936, + "learning_rate": 1e-05, + "loss": 0.1875, + "step": 244 + }, + { + "epoch": 0.95703125, + "grad_norm": 0.6017279864923942, + "learning_rate": 1e-05, + "loss": 0.1964, + "step": 245 + }, + { + "epoch": 0.9609375, + "grad_norm": 0.541548647166723, + "learning_rate": 1e-05, + "loss": 0.2029, + "step": 246 + }, + { + "epoch": 0.96484375, + "grad_norm": 0.7095706252744872, + "learning_rate": 1e-05, + "loss": 0.1824, + "step": 247 + }, + { + "epoch": 0.96875, + "grad_norm": 0.6630534512223186, + "learning_rate": 1e-05, + "loss": 0.2346, + "step": 248 + }, + { + "epoch": 0.96875, + "eval_dev_acc": 0.5234375, + "eval_dev_token": 5464.203125, + "eval_runtime": 173.0858, + "eval_samples_per_second": 0.092, + "eval_steps_per_second": 0.006, + "step": 248 + }, + { + "epoch": 0.97265625, + "grad_norm": 0.7470938668923351, + "learning_rate": 1e-05, + "loss": 0.3028, + "step": 249 + }, + { + "epoch": 0.9765625, + "grad_norm": 0.534162369114681, + "learning_rate": 1e-05, + "loss": 0.243, + "step": 250 + }, + { + "epoch": 0.98046875, + "grad_norm": 0.5240149993617814, + "learning_rate": 1e-05, + "loss": 0.2475, + "step": 251 + }, + { + "epoch": 0.984375, + "grad_norm": 0.48058164633897993, + "learning_rate": 1e-05, + "loss": 0.2234, + "step": 252 + }, + { + "epoch": 0.98828125, + "grad_norm": 0.5427424821749397, + "learning_rate": 1e-05, + "loss": 0.2338, + "step": 253 + }, + { + "epoch": 0.9921875, + "grad_norm": 0.5309304323745797, + "learning_rate": 1e-05, + "loss": 0.2751, + "step": 254 + }, + { + "epoch": 0.99609375, + "grad_norm": 0.4961154954055658, + "learning_rate": 1e-05, + "loss": 0.2329, + "step": 255 + }, + { + "epoch": 1.0, + "grad_norm": 0.519835488758917, + "learning_rate": 1e-05, + "loss": 0.2182, + "step": 256 + }, + { + "epoch": 1.0, + "eval_dev_acc": 0.4453125, + "eval_dev_token": 5674.0546875, + "eval_runtime": 175.8662, + "eval_samples_per_second": 0.091, + "eval_steps_per_second": 0.006, + "step": 256 + } + ], + "logging_steps": 1.0, + "max_steps": 256, + "num_input_tokens_seen": 0, + "num_train_epochs": 9223372036854775807, + "save_steps": 64, + "stateful_callbacks": { + "TrainerControl": { + "args": { + "should_epoch_stop": false, + "should_evaluate": false, + "should_log": false, + "should_save": true, + "should_training_stop": true + }, + "attributes": {} + } + }, + "total_flos": 31380919492608.0, + "train_batch_size": 8, + "trial_name": null, + "trial_params": null +} diff --git a/tldr-7b-checkpoint-256/training_args.bin b/tldr-7b-checkpoint-256/training_args.bin new file mode 100644 index 0000000000000000000000000000000000000000..c23f084720f8fb46f8ff9e8bef5175480d3cce40 --- /dev/null +++ b/tldr-7b-checkpoint-256/training_args.bin @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:293697045c82976ebdb828b71e8c654446c5ec0cc96c6a95e6cd39036cbaa551 +size 8376 diff --git a/tldr-7b-checkpoint-256/zero_to_fp32.py b/tldr-7b-checkpoint-256/zero_to_fp32.py new file mode 100644 index 0000000000000000000000000000000000000000..e69ecd9acb5a235ffbf927091051106d902b3d39 --- /dev/null +++ b/tldr-7b-checkpoint-256/zero_to_fp32.py @@ -0,0 +1,674 @@ +#!/usr/bin/env python + +# Copyright (c) Microsoft Corporation. +# SPDX-License-Identifier: Apache-2.0 + +# DeepSpeed Team + +# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets +# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in +# the future. Once extracted, the weights don't require DeepSpeed and can be used in any +# application. +# +# example: +# python zero_to_fp32.py . output_dir/ +# or +# python zero_to_fp32.py . output_dir/ --safe_serialization + +import argparse +import torch +import glob +import math +import os +import re +import json +from tqdm import tqdm +from collections import OrderedDict +from dataclasses import dataclass + +# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with +# DeepSpeed data structures it has to be available in the current python environment. +from deepspeed.utils import logger +from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS, + FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES, + FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS) + + +@dataclass +class zero_model_state: + buffers: dict() + param_shapes: dict() + shared_params: list + ds_version: int + frozen_param_shapes: dict() + frozen_param_fragments: dict() + + +debug = 0 + +# load to cpu +device = torch.device('cpu') + + +def atoi(text): + return int(text) if text.isdigit() else text + + +def natural_keys(text): + ''' + alist.sort(key=natural_keys) sorts in human order + http://nedbatchelder.com/blog/200712/human_sorting.html + (See Toothy's implementation in the comments) + ''' + return [atoi(c) for c in re.split(r'(\d+)', text)] + + +def get_model_state_file(checkpoint_dir, zero_stage): + if not os.path.isdir(checkpoint_dir): + raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist") + + # there should be only one file + if zero_stage <= 2: + file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt") + elif zero_stage == 3: + file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt") + + if not os.path.exists(file): + raise FileNotFoundError(f"can't find model states file at '{file}'") + + return file + + +def get_checkpoint_files(checkpoint_dir, glob_pattern): + # XXX: need to test that this simple glob rule works for multi-node setup too + ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys) + + if len(ckpt_files) == 0: + raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'") + + return ckpt_files + + +def get_optim_files(checkpoint_dir): + return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt") + + +def get_model_state_files(checkpoint_dir): + return get_checkpoint_files(checkpoint_dir, "*_model_states.pt") + + +def parse_model_states(files): + zero_model_states = [] + for file in files: + state_dict = torch.load(file, map_location=device) + + if BUFFER_NAMES not in state_dict: + raise ValueError(f"{file} is not a model state checkpoint") + buffer_names = state_dict[BUFFER_NAMES] + if debug: + print("Found buffers:", buffer_names) + + # recover just the buffers while restoring them to fp32 if they were saved in fp16 + buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names} + param_shapes = state_dict[PARAM_SHAPES] + + # collect parameters that are included in param_shapes + param_names = [] + for s in param_shapes: + for name in s.keys(): + param_names.append(name) + + # update with frozen parameters + frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None) + if frozen_param_shapes is not None: + if debug: + print(f"Found frozen_param_shapes: {frozen_param_shapes}") + param_names += list(frozen_param_shapes.keys()) + + # handle shared params + shared_params = [[k, v] for k, v in state_dict["shared_params"].items()] + + ds_version = state_dict.get(DS_VERSION, None) + + frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None) + + z_model_state = zero_model_state(buffers=buffers, + param_shapes=param_shapes, + shared_params=shared_params, + ds_version=ds_version, + frozen_param_shapes=frozen_param_shapes, + frozen_param_fragments=frozen_param_fragments) + zero_model_states.append(z_model_state) + + return zero_model_states + + +def parse_optim_states(files, ds_checkpoint_dir): + total_files = len(files) + state_dicts = [] + for f in files: + state_dict = torch.load(f, map_location=device) + # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights + # and also handle the case where it was already removed by another helper script + state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None) + state_dicts.append(state_dict) + + if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]: + raise ValueError(f"{files[0]} is not a zero checkpoint") + zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE] + world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT] + + # For ZeRO-2 each param group can have different partition_count as data parallelism for expert + # parameters can be different from data parallelism for non-expert parameters. So we can just + # use the max of the partition_count to get the dp world_size. + + if type(world_size) is list: + world_size = max(world_size) + + if world_size != total_files: + raise ValueError( + f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. " + "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes." + ) + + # the groups are named differently in each stage + if zero_stage <= 2: + fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS + elif zero_stage == 3: + fp32_groups_key = FP32_FLAT_GROUPS + else: + raise ValueError(f"unknown zero stage {zero_stage}") + + if zero_stage <= 2: + fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))] + elif zero_stage == 3: + # if there is more than one param group, there will be multiple flattened tensors - one + # flattened tensor per group - for simplicity merge them into a single tensor + # + # XXX: could make the script more memory efficient for when there are multiple groups - it + # will require matching the sub-lists of param_shapes for each param group flattened tensor + + fp32_flat_groups = [ + torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts)) + ] + + return zero_stage, world_size, fp32_flat_groups + + +def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters): + """ + Returns fp32 state_dict reconstructed from ds checkpoint + + Args: + - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are) + + """ + print(f"Processing zero checkpoint '{ds_checkpoint_dir}'") + + optim_files = get_optim_files(ds_checkpoint_dir) + zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir) + print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}") + + model_files = get_model_state_files(ds_checkpoint_dir) + + zero_model_states = parse_model_states(model_files) + print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}') + + if zero_stage <= 2: + return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states, + exclude_frozen_parameters) + elif zero_stage == 3: + return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states, + exclude_frozen_parameters) + + +def _zero2_merge_frozen_params(state_dict, zero_model_states): + if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0: + return + + frozen_param_shapes = zero_model_states[0].frozen_param_shapes + frozen_param_fragments = zero_model_states[0].frozen_param_fragments + + if debug: + num_elem = sum(s.numel() for s in frozen_param_shapes.values()) + print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}') + + wanted_params = len(frozen_param_shapes) + wanted_numel = sum(s.numel() for s in frozen_param_shapes.values()) + avail_numel = sum([p.numel() for p in frozen_param_fragments.values()]) + print(f'Frozen params: Have {avail_numel} numels to process.') + print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params') + + total_params = 0 + total_numel = 0 + for name, shape in frozen_param_shapes.items(): + total_params += 1 + unpartitioned_numel = shape.numel() + total_numel += unpartitioned_numel + + state_dict[name] = frozen_param_fragments[name] + + if debug: + print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ") + + print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements") + + +def _has_callable(obj, fn): + attr = getattr(obj, fn, None) + return callable(attr) + + +def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states): + param_shapes = zero_model_states[0].param_shapes + + # Reconstruction protocol: + # + # XXX: document this + + if debug: + for i in range(world_size): + for j in range(len(fp32_flat_groups[0])): + print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}") + + # XXX: memory usage doubles here (zero2) + num_param_groups = len(fp32_flat_groups[0]) + merged_single_partition_of_fp32_groups = [] + for i in range(num_param_groups): + merged_partitions = [sd[i] for sd in fp32_flat_groups] + full_single_fp32_vector = torch.cat(merged_partitions, 0) + merged_single_partition_of_fp32_groups.append(full_single_fp32_vector) + avail_numel = sum( + [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups]) + + if debug: + wanted_params = sum([len(shapes) for shapes in param_shapes]) + wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes]) + # not asserting if there is a mismatch due to possible padding + print(f"Have {avail_numel} numels to process.") + print(f"Need {wanted_numel} numels in {wanted_params} params.") + + # params + # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support + # out-of-core computing solution + total_numel = 0 + total_params = 0 + for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups): + offset = 0 + avail_numel = full_single_fp32_vector.numel() + for name, shape in shapes.items(): + + unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape) + total_numel += unpartitioned_numel + total_params += 1 + + if debug: + print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ") + state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape) + offset += unpartitioned_numel + + # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and + # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex + # paddings performed in the code it's almost impossible to predict the exact numbers w/o the + # live optimizer object, so we are checking that the numbers are within the right range + align_to = 2 * world_size + + def zero2_align(x): + return align_to * math.ceil(x / align_to) + + if debug: + print(f"original offset={offset}, avail_numel={avail_numel}") + + offset = zero2_align(offset) + avail_numel = zero2_align(avail_numel) + + if debug: + print(f"aligned offset={offset}, avail_numel={avail_numel}") + + # Sanity check + if offset != avail_numel: + raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong") + + print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements") + + +def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states, + exclude_frozen_parameters): + state_dict = OrderedDict() + + # buffers + buffers = zero_model_states[0].buffers + state_dict.update(buffers) + if debug: + print(f"added {len(buffers)} buffers") + + if not exclude_frozen_parameters: + _zero2_merge_frozen_params(state_dict, zero_model_states) + + _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states) + + # recover shared parameters + for pair in zero_model_states[0].shared_params: + if pair[1] in state_dict: + state_dict[pair[0]] = state_dict[pair[1]] + + return state_dict + + +def zero3_partitioned_param_info(unpartitioned_numel, world_size): + remainder = unpartitioned_numel % world_size + padding_numel = (world_size - remainder) if remainder else 0 + partitioned_numel = math.ceil(unpartitioned_numel / world_size) + return partitioned_numel, padding_numel + + +def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states): + if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0: + return + + if debug: + for i in range(world_size): + num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values()) + print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}') + + frozen_param_shapes = zero_model_states[0].frozen_param_shapes + wanted_params = len(frozen_param_shapes) + wanted_numel = sum(s.numel() for s in frozen_param_shapes.values()) + avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size + print(f'Frozen params: Have {avail_numel} numels to process.') + print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params') + + total_params = 0 + total_numel = 0 + for name, shape in zero_model_states[0].frozen_param_shapes.items(): + total_params += 1 + unpartitioned_numel = shape.numel() + total_numel += unpartitioned_numel + + param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states) + state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape) + + partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size) + + if debug: + print( + f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}" + ) + + print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements") + + +def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states): + param_shapes = zero_model_states[0].param_shapes + avail_numel = fp32_flat_groups[0].numel() * world_size + # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each + # param, re-consolidating each param, while dealing with padding if any + + # merge list of dicts, preserving order + param_shapes = {k: v for d in param_shapes for k, v in d.items()} + + if debug: + for i in range(world_size): + print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}") + + wanted_params = len(param_shapes) + wanted_numel = sum(shape.numel() for shape in param_shapes.values()) + # not asserting if there is a mismatch due to possible padding + avail_numel = fp32_flat_groups[0].numel() * world_size + print(f"Trainable params: Have {avail_numel} numels to process.") + print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.") + + # params + # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support + # out-of-core computing solution + offset = 0 + total_numel = 0 + total_params = 0 + for name, shape in tqdm(param_shapes.items(), desc='Gathering Sharded Weights'): + unpartitioned_numel = shape.numel() + total_numel += unpartitioned_numel + total_params += 1 + partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size) + + if debug: + print( + f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}" + ) + + # XXX: memory usage doubles here + state_dict[name] = torch.cat( + tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)), + 0).narrow(0, 0, unpartitioned_numel).view(shape) + offset += partitioned_numel + + offset *= world_size + + # Sanity check + if offset != avail_numel: + raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong") + + print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements") + + +def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states, + exclude_frozen_parameters): + state_dict = OrderedDict() + + # buffers + buffers = zero_model_states[0].buffers + state_dict.update(buffers) + if debug: + print(f"added {len(buffers)} buffers") + + if not exclude_frozen_parameters: + _zero3_merge_frozen_params(state_dict, world_size, zero_model_states) + + _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states) + + # recover shared parameters + for pair in zero_model_states[0].shared_params: + if pair[1] in state_dict: + state_dict[pair[0]] = state_dict[pair[1]] + + return state_dict + + +def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False): + """ + Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with + ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example + via a model hub. + + Args: + - ``checkpoint_dir``: path to the desired checkpoint folder + - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14`` + - ``exclude_frozen_parameters``: exclude frozen parameters + + Returns: + - pytorch ``state_dict`` + + Note: this approach may not work if your application doesn't have sufficient free CPU memory and + you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with + the checkpoint. + + A typical usage might be :: + + from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint + # do the training and checkpoint saving + state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu + model = model.cpu() # move to cpu + model.load_state_dict(state_dict) + # submit to model hub or save the model to share with others + + In this example the ``model`` will no longer be usable in the deepspeed context of the same + application. i.e. you will need to re-initialize the deepspeed engine, since + ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it. + + If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead. + + """ + if tag is None: + latest_path = os.path.join(checkpoint_dir, 'latest') + if os.path.isfile(latest_path): + with open(latest_path, 'r') as fd: + tag = fd.read().strip() + else: + raise ValueError(f"Unable to find 'latest' file at {latest_path}") + + ds_checkpoint_dir = os.path.join(checkpoint_dir, tag) + + if not os.path.isdir(ds_checkpoint_dir): + raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist") + + return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters) + + +def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, + output_dir, + max_shard_size="5GB", + safe_serialization=False, + tag=None, + exclude_frozen_parameters=False): + """ + Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be + loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed. + + Args: + - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``) + - ``output_dir``: directory to the pytorch fp32 state_dict output files + - ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB + - ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`). + - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14`` + - ``exclude_frozen_parameters``: exclude frozen parameters + """ + # Dependency pre-check + if safe_serialization: + try: + from safetensors.torch import save_file + except ImportError: + print('If you want to use `safe_serialization`, please `pip install safetensors`') + raise + if max_shard_size is not None: + try: + from huggingface_hub import split_torch_state_dict_into_shards + except ImportError: + print('If you want to use `max_shard_size`, please `pip install huggingface_hub`') + raise + + # Convert zero checkpoint to state_dict + state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters) + + # Shard the model if it is too big. + weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin" + if max_shard_size is not None: + filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors") + state_dict_split = split_torch_state_dict_into_shards(state_dict, + filename_pattern=filename_pattern, + max_shard_size=max_shard_size) + else: + from collections import namedtuple + StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"]) + state_dict_split = StateDictSplit(is_sharded=False, + filename_to_tensors={weights_name: list(state_dict.keys())}) + + # Save the model + filename_to_tensors = state_dict_split.filename_to_tensors.items() + for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"): + shard = {tensor: state_dict[tensor].contiguous() for tensor in tensors} + output_path = os.path.join(output_dir, shard_file) + if safe_serialization: + save_file(shard, output_path, metadata={"format": "pt"}) + else: + torch.save(shard, output_path) + + # Save index if sharded + if state_dict_split.is_sharded: + index = { + "metadata": state_dict_split.metadata, + "weight_map": state_dict_split.tensor_to_filename, + } + save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json" + save_index_file = os.path.join(output_dir, save_index_file) + with open(save_index_file, "w", encoding="utf-8") as f: + content = json.dumps(index, indent=2, sort_keys=True) + "\n" + f.write(content) + + +def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None): + """ + 1. Put the provided model to cpu + 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` + 3. Load it into the provided model + + Args: + - ``model``: the model object to update + - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``) + - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14`` + + Returns: + - ``model`: modified model + + Make sure you have plenty of CPU memory available before you call this function. If you don't + have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it + conveniently placed for you in the checkpoint folder. + + A typical usage might be :: + + from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint + model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir) + # submit to model hub or save the model to share with others + + Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context + of the same application. i.e. you will need to re-initialize the deepspeed engine, since + ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it. + + """ + logger.info(f"Extracting fp32 weights") + state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag) + + logger.info(f"Overwriting model with fp32 weights") + model = model.cpu() + model.load_state_dict(state_dict, strict=False) + + return model + + +if __name__ == "__main__": + parser = argparse.ArgumentParser() + parser.add_argument("checkpoint_dir", + type=str, + help="path to the desired checkpoint folder, e.g., path/checkpoint-12") + parser.add_argument("output_dir", + type=str, + help="directory to the pytorch fp32 state_dict output files" + "(e.g. path/checkpoint-12-output/)") + parser.add_argument( + "--max_shard_size", + type=str, + default="5GB", + help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size" + "lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`" + "We default it to 5GB in order for models to be able to run easily on free-tier google colab instances" + "without CPU OOM issues.") + parser.add_argument( + "--safe_serialization", + default=False, + action='store_true', + help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).") + parser.add_argument("-t", + "--tag", + type=str, + default=None, + help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1") + parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters") + parser.add_argument("-d", "--debug", action='store_true', help="enable debug") + args = parser.parse_args() + + debug = args.debug + + convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, + args.output_dir, + max_shard_size=args.max_shard_size, + safe_serialization=args.safe_serialization, + tag=args.tag, + exclude_frozen_parameters=args.exclude_frozen_parameters)