Upload folder using huggingface_hub
Browse files- .gitattributes +1 -0
- adapter_model/config.json +31 -0
- adapter_model/generation_config.json +9 -0
- adapter_model/model.safetensors +3 -0
- config.json +31 -0
- generation_config.json +9 -0
- latest +1 -0
- long2short_proportions.json +365 -0
- model-00001-of-00004.safetensors +3 -0
- model-00002-of-00004.safetensors +3 -0
- model-00003-of-00004.safetensors +3 -0
- model-00004-of-00004.safetensors +3 -0
- model.safetensors.index.json +346 -0
- rng_state_0.pth +3 -0
- rng_state_1.pth +3 -0
- rng_state_2.pth +3 -0
- rng_state_3.pth +3 -0
- rng_state_4.pth +3 -0
- rng_state_5.pth +3 -0
- rng_state_6.pth +3 -0
- rng_state_7.pth +3 -0
- scheduler.pt +3 -0
- special_tokens_map.json +23 -0
- tokenizer.json +3 -0
- tokenizer_config.json +195 -0
- trainer_state.json +2113 -0
- training_args.bin +3 -0
- zero_to_fp32.py +674 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
adapter_model/config.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "/cpfs/user/lizhongzhi/huggingface_model/huggingface_model/DeepSeek-R1-Distill-Qwen-7B/",
|
3 |
+
"architectures": [
|
4 |
+
"Qwen2ForCausalLM"
|
5 |
+
],
|
6 |
+
"attention_dropout": 0.0,
|
7 |
+
"bos_token_id": 151643,
|
8 |
+
"eos_token_id": 151643,
|
9 |
+
"hidden_act": "silu",
|
10 |
+
"hidden_size": 3584,
|
11 |
+
"initializer_range": 0.02,
|
12 |
+
"intermediate_size": 18944,
|
13 |
+
"max_position_embeddings": 131072,
|
14 |
+
"max_window_layers": 28,
|
15 |
+
"model_type": "qwen2",
|
16 |
+
"num_attention_heads": 28,
|
17 |
+
"num_hidden_layers": 28,
|
18 |
+
"num_key_value_heads": 4,
|
19 |
+
"pad_token_id": 151643,
|
20 |
+
"rms_norm_eps": 1e-06,
|
21 |
+
"rope_scaling": null,
|
22 |
+
"rope_theta": 10000,
|
23 |
+
"sliding_window": null,
|
24 |
+
"tie_word_embeddings": false,
|
25 |
+
"torch_dtype": "bfloat16",
|
26 |
+
"transformers_version": "4.46.3",
|
27 |
+
"use_cache": true,
|
28 |
+
"use_mrope": false,
|
29 |
+
"use_sliding_window": false,
|
30 |
+
"vocab_size": 152064
|
31 |
+
}
|
adapter_model/generation_config.json
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 151646,
|
4 |
+
"do_sample": true,
|
5 |
+
"eos_token_id": 151643,
|
6 |
+
"temperature": 0.6,
|
7 |
+
"top_p": 0.95,
|
8 |
+
"transformers_version": "4.46.3"
|
9 |
+
}
|
adapter_model/model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6c395ebed7ddc70201e0286c0c4e97807244814db18d40bf2bd3b6dd88c08f7b
|
3 |
+
size 701024
|
config.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "/cpfs/user/lizhongzhi/huggingface_model/huggingface_model/DeepSeek-R1-Distill-Qwen-7B/",
|
3 |
+
"architectures": [
|
4 |
+
"Qwen2ForCausalLM"
|
5 |
+
],
|
6 |
+
"attention_dropout": 0.0,
|
7 |
+
"bos_token_id": 151643,
|
8 |
+
"eos_token_id": 151643,
|
9 |
+
"hidden_act": "silu",
|
10 |
+
"hidden_size": 3584,
|
11 |
+
"initializer_range": 0.02,
|
12 |
+
"intermediate_size": 18944,
|
13 |
+
"max_position_embeddings": 131072,
|
14 |
+
"max_window_layers": 28,
|
15 |
+
"model_type": "qwen2",
|
16 |
+
"num_attention_heads": 28,
|
17 |
+
"num_hidden_layers": 28,
|
18 |
+
"num_key_value_heads": 4,
|
19 |
+
"pad_token_id": 151643,
|
20 |
+
"rms_norm_eps": 1e-06,
|
21 |
+
"rope_scaling": null,
|
22 |
+
"rope_theta": 10000,
|
23 |
+
"sliding_window": null,
|
24 |
+
"tie_word_embeddings": false,
|
25 |
+
"torch_dtype": "bfloat16",
|
26 |
+
"transformers_version": "4.46.3",
|
27 |
+
"use_cache": true,
|
28 |
+
"use_mrope": false,
|
29 |
+
"use_sliding_window": false,
|
30 |
+
"vocab_size": 152064
|
31 |
+
}
|
generation_config.json
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 151646,
|
4 |
+
"do_sample": true,
|
5 |
+
"eos_token_id": 151643,
|
6 |
+
"temperature": 0.6,
|
7 |
+
"top_p": 0.95,
|
8 |
+
"transformers_version": "4.46.3"
|
9 |
+
}
|
latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step256
|
long2short_proportions.json
ADDED
@@ -0,0 +1,365 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"global_step": 0,
|
4 |
+
"cot_domain_weight": [
|
5 |
+
0.8,
|
6 |
+
0.2
|
7 |
+
],
|
8 |
+
"cot_domain_name": [
|
9 |
+
"/cpfs/user/lizhongzhi/data/data/gsm8k/long2short_prm12k_gsm8k_merge_data/dynamic_long_short_data/gsm8k_prm12k_s1/prm12k_gsm8k_short_shortest.jsonl",
|
10 |
+
"/cpfs/user/lizhongzhi/data/data/gsm8k/liang/s1_7b_r1_prompt.jsonl"
|
11 |
+
]
|
12 |
+
},
|
13 |
+
{
|
14 |
+
"global_step": 8,
|
15 |
+
"cot_domain_weight": [
|
16 |
+
0.81966233253479,
|
17 |
+
0.18033766746520996
|
18 |
+
],
|
19 |
+
"cot_domain_name": [
|
20 |
+
"/cpfs/user/lizhongzhi/data/data/gsm8k/long2short_prm12k_gsm8k_merge_data/dynamic_long_short_data/gsm8k_prm12k_s1/prm12k_gsm8k_short_shortest.jsonl",
|
21 |
+
"/cpfs/user/lizhongzhi/data/data/gsm8k/liang/s1_7b_r1_prompt.jsonl"
|
22 |
+
]
|
23 |
+
},
|
24 |
+
{
|
25 |
+
"global_step": 16,
|
26 |
+
"cot_domain_weight": [
|
27 |
+
0.7872583270072937,
|
28 |
+
0.2127416729927063
|
29 |
+
],
|
30 |
+
"cot_domain_name": [
|
31 |
+
"/cpfs/user/lizhongzhi/data/data/gsm8k/long2short_prm12k_gsm8k_merge_data/dynamic_long_short_data/gsm8k_prm12k_s1/prm12k_gsm8k_short_shortest.jsonl",
|
32 |
+
"/cpfs/user/lizhongzhi/data/data/gsm8k/liang/s1_7b_r1_prompt.jsonl"
|
33 |
+
]
|
34 |
+
},
|
35 |
+
{
|
36 |
+
"global_step": 24,
|
37 |
+
"cot_domain_weight": [
|
38 |
+
0.7460198998451233,
|
39 |
+
0.2539801001548767
|
40 |
+
],
|
41 |
+
"cot_domain_name": [
|
42 |
+
"/cpfs/user/lizhongzhi/data/data/gsm8k/long2short_prm12k_gsm8k_merge_data/dynamic_long_short_data/gsm8k_prm12k_s1/prm12k_gsm8k_short_shortest.jsonl",
|
43 |
+
"/cpfs/user/lizhongzhi/data/data/gsm8k/liang/s1_7b_r1_prompt.jsonl"
|
44 |
+
]
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"global_step": 32,
|
48 |
+
"cot_domain_weight": [
|
49 |
+
0.6744258410715319,
|
50 |
+
0.32557415892846814
|
51 |
+
],
|
52 |
+
"cot_domain_name": [
|
53 |
+
"/cpfs/user/lizhongzhi/data/data/gsm8k/long2short_prm12k_gsm8k_merge_data/dynamic_long_short_data/gsm8k_prm12k_s1/prm12k_gsm8k_short_shortest.jsonl",
|
54 |
+
"/cpfs/user/lizhongzhi/data/data/gsm8k/liang/s1_7b_r1_prompt.jsonl"
|
55 |
+
]
|
56 |
+
},
|
57 |
+
{
|
58 |
+
"global_step": 40,
|
59 |
+
"cot_domain_weight": [
|
60 |
+
0.5970645546913147,
|
61 |
+
0.4029354453086853
|
62 |
+
],
|
63 |
+
"cot_domain_name": [
|
64 |
+
"/cpfs/user/lizhongzhi/data/data/gsm8k/long2short_prm12k_gsm8k_merge_data/dynamic_long_short_data/gsm8k_prm12k_s1/prm12k_gsm8k_short_shortest.jsonl",
|
65 |
+
"/cpfs/user/lizhongzhi/data/data/gsm8k/liang/s1_7b_r1_prompt.jsonl"
|
66 |
+
]
|
67 |
+
},
|
68 |
+
{
|
69 |
+
"global_step": 48,
|
70 |
+
"cot_domain_weight": [
|
71 |
+
0.3999738454834315,
|
72 |
+
0.6000261545165685
|
73 |
+
],
|
74 |
+
"cot_domain_name": [
|
75 |
+
"/cpfs/user/lizhongzhi/data/data/gsm8k/long2short_prm12k_gsm8k_merge_data/dynamic_long_short_data/gsm8k_prm12k_s1/prm12k_gsm8k_short_shortest.jsonl",
|
76 |
+
"/cpfs/user/lizhongzhi/data/data/gsm8k/liang/s1_7b_r1_prompt.jsonl"
|
77 |
+
]
|
78 |
+
},
|
79 |
+
{
|
80 |
+
"global_step": 56,
|
81 |
+
"cot_domain_weight": [
|
82 |
+
0.2720071835522165,
|
83 |
+
0.7279928164477835
|
84 |
+
],
|
85 |
+
"cot_domain_name": [
|
86 |
+
"/cpfs/user/lizhongzhi/data/data/gsm8k/long2short_prm12k_gsm8k_merge_data/dynamic_long_short_data/gsm8k_prm12k_s1/prm12k_gsm8k_short_shortest.jsonl",
|
87 |
+
"/cpfs/user/lizhongzhi/data/data/gsm8k/liang/s1_7b_r1_prompt.jsonl"
|
88 |
+
]
|
89 |
+
},
|
90 |
+
{
|
91 |
+
"global_step": 64,
|
92 |
+
"cot_domain_weight": [
|
93 |
+
0.2883644063798553,
|
94 |
+
0.7116355936201447
|
95 |
+
],
|
96 |
+
"cot_domain_name": [
|
97 |
+
"/cpfs/user/lizhongzhi/data/data/gsm8k/long2short_prm12k_gsm8k_merge_data/dynamic_long_short_data/gsm8k_prm12k_s1/prm12k_gsm8k_short_shortest.jsonl",
|
98 |
+
"/cpfs/user/lizhongzhi/data/data/gsm8k/liang/s1_7b_r1_prompt.jsonl"
|
99 |
+
]
|
100 |
+
},
|
101 |
+
{
|
102 |
+
"global_step": 72,
|
103 |
+
"cot_domain_weight": [
|
104 |
+
0.3323897124180455,
|
105 |
+
0.6676102875819545
|
106 |
+
],
|
107 |
+
"cot_domain_name": [
|
108 |
+
"/cpfs/user/lizhongzhi/data/data/gsm8k/long2short_prm12k_gsm8k_merge_data/dynamic_long_short_data/gsm8k_prm12k_s1/prm12k_gsm8k_short_shortest.jsonl",
|
109 |
+
"/cpfs/user/lizhongzhi/data/data/gsm8k/liang/s1_7b_r1_prompt.jsonl"
|
110 |
+
]
|
111 |
+
},
|
112 |
+
{
|
113 |
+
"global_step": 80,
|
114 |
+
"cot_domain_weight": [
|
115 |
+
0.3198286903057673,
|
116 |
+
0.6801713096942327
|
117 |
+
],
|
118 |
+
"cot_domain_name": [
|
119 |
+
"/cpfs/user/lizhongzhi/data/data/gsm8k/long2short_prm12k_gsm8k_merge_data/dynamic_long_short_data/gsm8k_prm12k_s1/prm12k_gsm8k_short_shortest.jsonl",
|
120 |
+
"/cpfs/user/lizhongzhi/data/data/gsm8k/liang/s1_7b_r1_prompt.jsonl"
|
121 |
+
]
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"global_step": 88,
|
125 |
+
"cot_domain_weight": [
|
126 |
+
0.30956872162632476,
|
127 |
+
0.6904312783736752
|
128 |
+
],
|
129 |
+
"cot_domain_name": [
|
130 |
+
"/cpfs/user/lizhongzhi/data/data/gsm8k/long2short_prm12k_gsm8k_merge_data/dynamic_long_short_data/gsm8k_prm12k_s1/prm12k_gsm8k_short_shortest.jsonl",
|
131 |
+
"/cpfs/user/lizhongzhi/data/data/gsm8k/liang/s1_7b_r1_prompt.jsonl"
|
132 |
+
]
|
133 |
+
},
|
134 |
+
{
|
135 |
+
"global_step": 96,
|
136 |
+
"cot_domain_weight": [
|
137 |
+
0.28148205765974865,
|
138 |
+
0.7185179423402513
|
139 |
+
],
|
140 |
+
"cot_domain_name": [
|
141 |
+
"/cpfs/user/lizhongzhi/data/data/gsm8k/long2short_prm12k_gsm8k_merge_data/dynamic_long_short_data/gsm8k_prm12k_s1/prm12k_gsm8k_short_shortest.jsonl",
|
142 |
+
"/cpfs/user/lizhongzhi/data/data/gsm8k/liang/s1_7b_r1_prompt.jsonl"
|
143 |
+
]
|
144 |
+
},
|
145 |
+
{
|
146 |
+
"global_step": 104,
|
147 |
+
"cot_domain_weight": [
|
148 |
+
0.19276975382521383,
|
149 |
+
0.8072302461747862
|
150 |
+
],
|
151 |
+
"cot_domain_name": [
|
152 |
+
"/cpfs/user/lizhongzhi/data/data/gsm8k/long2short_prm12k_gsm8k_merge_data/dynamic_long_short_data/gsm8k_prm12k_s1/prm12k_gsm8k_short_shortest.jsonl",
|
153 |
+
"/cpfs/user/lizhongzhi/data/data/gsm8k/liang/s1_7b_r1_prompt.jsonl"
|
154 |
+
]
|
155 |
+
},
|
156 |
+
{
|
157 |
+
"global_step": 112,
|
158 |
+
"cot_domain_weight": [
|
159 |
+
0.11667832421803193,
|
160 |
+
0.8833216757819681
|
161 |
+
],
|
162 |
+
"cot_domain_name": [
|
163 |
+
"/cpfs/user/lizhongzhi/data/data/gsm8k/long2short_prm12k_gsm8k_merge_data/dynamic_long_short_data/gsm8k_prm12k_s1/prm12k_gsm8k_short_shortest.jsonl",
|
164 |
+
"/cpfs/user/lizhongzhi/data/data/gsm8k/liang/s1_7b_r1_prompt.jsonl"
|
165 |
+
]
|
166 |
+
},
|
167 |
+
{
|
168 |
+
"global_step": 120,
|
169 |
+
"cot_domain_weight": [
|
170 |
+
0.10653018285729127,
|
171 |
+
0.8934698171427087
|
172 |
+
],
|
173 |
+
"cot_domain_name": [
|
174 |
+
"/cpfs/user/lizhongzhi/data/data/gsm8k/long2short_prm12k_gsm8k_merge_data/dynamic_long_short_data/gsm8k_prm12k_s1/prm12k_gsm8k_short_shortest.jsonl",
|
175 |
+
"/cpfs/user/lizhongzhi/data/data/gsm8k/liang/s1_7b_r1_prompt.jsonl"
|
176 |
+
]
|
177 |
+
},
|
178 |
+
{
|
179 |
+
"global_step": 128,
|
180 |
+
"cot_domain_weight": [
|
181 |
+
0.08691881046262705,
|
182 |
+
0.9130811895373729
|
183 |
+
],
|
184 |
+
"cot_domain_name": [
|
185 |
+
"/cpfs/user/lizhongzhi/data/data/gsm8k/long2short_prm12k_gsm8k_merge_data/dynamic_long_short_data/gsm8k_prm12k_s1/prm12k_gsm8k_short_shortest.jsonl",
|
186 |
+
"/cpfs/user/lizhongzhi/data/data/gsm8k/liang/s1_7b_r1_prompt.jsonl"
|
187 |
+
]
|
188 |
+
},
|
189 |
+
{
|
190 |
+
"global_step": 136,
|
191 |
+
"cot_domain_weight": [
|
192 |
+
0.07620099413993937,
|
193 |
+
0.9237990058600606
|
194 |
+
],
|
195 |
+
"cot_domain_name": [
|
196 |
+
"/cpfs/user/lizhongzhi/data/data/gsm8k/long2short_prm12k_gsm8k_merge_data/dynamic_long_short_data/gsm8k_prm12k_s1/prm12k_gsm8k_short_shortest.jsonl",
|
197 |
+
"/cpfs/user/lizhongzhi/data/data/gsm8k/liang/s1_7b_r1_prompt.jsonl"
|
198 |
+
]
|
199 |
+
},
|
200 |
+
{
|
201 |
+
"global_step": 144,
|
202 |
+
"cot_domain_weight": [
|
203 |
+
0.09678315443384017,
|
204 |
+
0.9032168455661598
|
205 |
+
],
|
206 |
+
"cot_domain_name": [
|
207 |
+
"/cpfs/user/lizhongzhi/data/data/gsm8k/long2short_prm12k_gsm8k_merge_data/dynamic_long_short_data/gsm8k_prm12k_s1/prm12k_gsm8k_short_shortest.jsonl",
|
208 |
+
"/cpfs/user/lizhongzhi/data/data/gsm8k/liang/s1_7b_r1_prompt.jsonl"
|
209 |
+
]
|
210 |
+
},
|
211 |
+
{
|
212 |
+
"global_step": 152,
|
213 |
+
"cot_domain_weight": [
|
214 |
+
0.06039547920227051,
|
215 |
+
0.9396045207977295
|
216 |
+
],
|
217 |
+
"cot_domain_name": [
|
218 |
+
"/cpfs/user/lizhongzhi/data/data/gsm8k/long2short_prm12k_gsm8k_merge_data/dynamic_long_short_data/gsm8k_prm12k_s1/prm12k_gsm8k_short_shortest.jsonl",
|
219 |
+
"/cpfs/user/lizhongzhi/data/data/gsm8k/liang/s1_7b_r1_prompt.jsonl"
|
220 |
+
]
|
221 |
+
},
|
222 |
+
{
|
223 |
+
"global_step": 160,
|
224 |
+
"cot_domain_weight": [
|
225 |
+
0.04663034069109073,
|
226 |
+
0.9533696593089093
|
227 |
+
],
|
228 |
+
"cot_domain_name": [
|
229 |
+
"/cpfs/user/lizhongzhi/data/data/gsm8k/long2short_prm12k_gsm8k_merge_data/dynamic_long_short_data/gsm8k_prm12k_s1/prm12k_gsm8k_short_shortest.jsonl",
|
230 |
+
"/cpfs/user/lizhongzhi/data/data/gsm8k/liang/s1_7b_r1_prompt.jsonl"
|
231 |
+
]
|
232 |
+
},
|
233 |
+
{
|
234 |
+
"global_step": 168,
|
235 |
+
"cot_domain_weight": [
|
236 |
+
0.026384488927624624,
|
237 |
+
0.9736155110723754
|
238 |
+
],
|
239 |
+
"cot_domain_name": [
|
240 |
+
"/cpfs/user/lizhongzhi/data/data/gsm8k/long2short_prm12k_gsm8k_merge_data/dynamic_long_short_data/gsm8k_prm12k_s1/prm12k_gsm8k_short_shortest.jsonl",
|
241 |
+
"/cpfs/user/lizhongzhi/data/data/gsm8k/liang/s1_7b_r1_prompt.jsonl"
|
242 |
+
]
|
243 |
+
},
|
244 |
+
{
|
245 |
+
"global_step": 176,
|
246 |
+
"cot_domain_weight": [
|
247 |
+
0.01369204708991822,
|
248 |
+
0.9863079529100818
|
249 |
+
],
|
250 |
+
"cot_domain_name": [
|
251 |
+
"/cpfs/user/lizhongzhi/data/data/gsm8k/long2short_prm12k_gsm8k_merge_data/dynamic_long_short_data/gsm8k_prm12k_s1/prm12k_gsm8k_short_shortest.jsonl",
|
252 |
+
"/cpfs/user/lizhongzhi/data/data/gsm8k/liang/s1_7b_r1_prompt.jsonl"
|
253 |
+
]
|
254 |
+
},
|
255 |
+
{
|
256 |
+
"global_step": 184,
|
257 |
+
"cot_domain_weight": [
|
258 |
+
0.008808859025084685,
|
259 |
+
0.9911911409749153
|
260 |
+
],
|
261 |
+
"cot_domain_name": [
|
262 |
+
"/cpfs/user/lizhongzhi/data/data/gsm8k/long2short_prm12k_gsm8k_merge_data/dynamic_long_short_data/gsm8k_prm12k_s1/prm12k_gsm8k_short_shortest.jsonl",
|
263 |
+
"/cpfs/user/lizhongzhi/data/data/gsm8k/liang/s1_7b_r1_prompt.jsonl"
|
264 |
+
]
|
265 |
+
},
|
266 |
+
{
|
267 |
+
"global_step": 192,
|
268 |
+
"cot_domain_weight": [
|
269 |
+
0.008046488434985519,
|
270 |
+
0.9919535115650144
|
271 |
+
],
|
272 |
+
"cot_domain_name": [
|
273 |
+
"/cpfs/user/lizhongzhi/data/data/gsm8k/long2short_prm12k_gsm8k_merge_data/dynamic_long_short_data/gsm8k_prm12k_s1/prm12k_gsm8k_short_shortest.jsonl",
|
274 |
+
"/cpfs/user/lizhongzhi/data/data/gsm8k/liang/s1_7b_r1_prompt.jsonl"
|
275 |
+
]
|
276 |
+
},
|
277 |
+
{
|
278 |
+
"global_step": 200,
|
279 |
+
"cot_domain_weight": [
|
280 |
+
0.006645676632023577,
|
281 |
+
0.9933543233679765
|
282 |
+
],
|
283 |
+
"cot_domain_name": [
|
284 |
+
"/cpfs/user/lizhongzhi/data/data/gsm8k/long2short_prm12k_gsm8k_merge_data/dynamic_long_short_data/gsm8k_prm12k_s1/prm12k_gsm8k_short_shortest.jsonl",
|
285 |
+
"/cpfs/user/lizhongzhi/data/data/gsm8k/liang/s1_7b_r1_prompt.jsonl"
|
286 |
+
]
|
287 |
+
},
|
288 |
+
{
|
289 |
+
"global_step": 208,
|
290 |
+
"cot_domain_weight": [
|
291 |
+
0.006015583141017519,
|
292 |
+
0.9939844168589825
|
293 |
+
],
|
294 |
+
"cot_domain_name": [
|
295 |
+
"/cpfs/user/lizhongzhi/data/data/gsm8k/long2short_prm12k_gsm8k_merge_data/dynamic_long_short_data/gsm8k_prm12k_s1/prm12k_gsm8k_short_shortest.jsonl",
|
296 |
+
"/cpfs/user/lizhongzhi/data/data/gsm8k/liang/s1_7b_r1_prompt.jsonl"
|
297 |
+
]
|
298 |
+
},
|
299 |
+
{
|
300 |
+
"global_step": 216,
|
301 |
+
"cot_domain_weight": [
|
302 |
+
0.004511566495152915,
|
303 |
+
0.9954884335048471
|
304 |
+
],
|
305 |
+
"cot_domain_name": [
|
306 |
+
"/cpfs/user/lizhongzhi/data/data/gsm8k/long2short_prm12k_gsm8k_merge_data/dynamic_long_short_data/gsm8k_prm12k_s1/prm12k_gsm8k_short_shortest.jsonl",
|
307 |
+
"/cpfs/user/lizhongzhi/data/data/gsm8k/liang/s1_7b_r1_prompt.jsonl"
|
308 |
+
]
|
309 |
+
},
|
310 |
+
{
|
311 |
+
"global_step": 224,
|
312 |
+
"cot_domain_weight": [
|
313 |
+
0.002732270716591211,
|
314 |
+
0.9972677292834088
|
315 |
+
],
|
316 |
+
"cot_domain_name": [
|
317 |
+
"/cpfs/user/lizhongzhi/data/data/gsm8k/long2short_prm12k_gsm8k_merge_data/dynamic_long_short_data/gsm8k_prm12k_s1/prm12k_gsm8k_short_shortest.jsonl",
|
318 |
+
"/cpfs/user/lizhongzhi/data/data/gsm8k/liang/s1_7b_r1_prompt.jsonl"
|
319 |
+
]
|
320 |
+
},
|
321 |
+
{
|
322 |
+
"global_step": 232,
|
323 |
+
"cot_domain_weight": [
|
324 |
+
0.0021831512748239114,
|
325 |
+
0.9978168487251761
|
326 |
+
],
|
327 |
+
"cot_domain_name": [
|
328 |
+
"/cpfs/user/lizhongzhi/data/data/gsm8k/long2short_prm12k_gsm8k_merge_data/dynamic_long_short_data/gsm8k_prm12k_s1/prm12k_gsm8k_short_shortest.jsonl",
|
329 |
+
"/cpfs/user/lizhongzhi/data/data/gsm8k/liang/s1_7b_r1_prompt.jsonl"
|
330 |
+
]
|
331 |
+
},
|
332 |
+
{
|
333 |
+
"global_step": 240,
|
334 |
+
"cot_domain_weight": [
|
335 |
+
0.0022364268058571715,
|
336 |
+
0.9977635731941429
|
337 |
+
],
|
338 |
+
"cot_domain_name": [
|
339 |
+
"/cpfs/user/lizhongzhi/data/data/gsm8k/long2short_prm12k_gsm8k_merge_data/dynamic_long_short_data/gsm8k_prm12k_s1/prm12k_gsm8k_short_shortest.jsonl",
|
340 |
+
"/cpfs/user/lizhongzhi/data/data/gsm8k/liang/s1_7b_r1_prompt.jsonl"
|
341 |
+
]
|
342 |
+
},
|
343 |
+
{
|
344 |
+
"global_step": 248,
|
345 |
+
"cot_domain_weight": [
|
346 |
+
0.003314645357360453,
|
347 |
+
0.9966853546426395
|
348 |
+
],
|
349 |
+
"cot_domain_name": [
|
350 |
+
"/cpfs/user/lizhongzhi/data/data/gsm8k/long2short_prm12k_gsm8k_merge_data/dynamic_long_short_data/gsm8k_prm12k_s1/prm12k_gsm8k_short_shortest.jsonl",
|
351 |
+
"/cpfs/user/lizhongzhi/data/data/gsm8k/liang/s1_7b_r1_prompt.jsonl"
|
352 |
+
]
|
353 |
+
},
|
354 |
+
{
|
355 |
+
"global_step": 256,
|
356 |
+
"cot_domain_weight": [
|
357 |
+
0.0036412973637667506,
|
358 |
+
0.9963587026362333
|
359 |
+
],
|
360 |
+
"cot_domain_name": [
|
361 |
+
"/cpfs/user/lizhongzhi/data/data/gsm8k/long2short_prm12k_gsm8k_merge_data/dynamic_long_short_data/gsm8k_prm12k_s1/prm12k_gsm8k_short_shortest.jsonl",
|
362 |
+
"/cpfs/user/lizhongzhi/data/data/gsm8k/liang/s1_7b_r1_prompt.jsonl"
|
363 |
+
]
|
364 |
+
}
|
365 |
+
]
|
model-00001-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fd3a2c81fafdb17a408b824be2275f058cb26c4e480e3e735a0f15aa19e14151
|
3 |
+
size 4877660776
|
model-00002-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3dd211dd8f37c904872ea4ed8153c6bd012a34630da2a664d8ebdbaf76d4d15e
|
3 |
+
size 4932751008
|
model-00003-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2a2faecbc251c1baceeadb56f43a7fc3f7224b771a9665ad74609069f5c9a934
|
3 |
+
size 4330865200
|
model-00004-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e1e94c33e6f48f80370536173c5059e771a69081642e879e48f40fe67bcb990a
|
3 |
+
size 1089994880
|
model.safetensors.index.json
ADDED
@@ -0,0 +1,346 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 15231233024
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"lm_head.weight": "model-00004-of-00004.safetensors",
|
7 |
+
"model.embed_tokens.weight": "model-00001-of-00004.safetensors",
|
8 |
+
"model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
9 |
+
"model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
10 |
+
"model.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
11 |
+
"model.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
12 |
+
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
13 |
+
"model.layers.0.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
14 |
+
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
15 |
+
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
16 |
+
"model.layers.0.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
17 |
+
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
18 |
+
"model.layers.0.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
19 |
+
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
20 |
+
"model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
21 |
+
"model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
22 |
+
"model.layers.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
23 |
+
"model.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
24 |
+
"model.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
25 |
+
"model.layers.1.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
26 |
+
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
27 |
+
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
28 |
+
"model.layers.1.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
29 |
+
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
30 |
+
"model.layers.1.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
31 |
+
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
32 |
+
"model.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
33 |
+
"model.layers.10.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
34 |
+
"model.layers.10.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
35 |
+
"model.layers.10.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
36 |
+
"model.layers.10.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
37 |
+
"model.layers.10.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
38 |
+
"model.layers.10.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
39 |
+
"model.layers.10.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
40 |
+
"model.layers.10.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
41 |
+
"model.layers.10.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
42 |
+
"model.layers.10.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
43 |
+
"model.layers.10.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
44 |
+
"model.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
45 |
+
"model.layers.11.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
46 |
+
"model.layers.11.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
47 |
+
"model.layers.11.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
48 |
+
"model.layers.11.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
49 |
+
"model.layers.11.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
50 |
+
"model.layers.11.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
51 |
+
"model.layers.11.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
52 |
+
"model.layers.11.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
53 |
+
"model.layers.11.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
54 |
+
"model.layers.11.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
55 |
+
"model.layers.11.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
56 |
+
"model.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
57 |
+
"model.layers.12.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
58 |
+
"model.layers.12.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
59 |
+
"model.layers.12.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
60 |
+
"model.layers.12.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
61 |
+
"model.layers.12.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
62 |
+
"model.layers.12.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
63 |
+
"model.layers.12.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
64 |
+
"model.layers.12.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
65 |
+
"model.layers.12.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
66 |
+
"model.layers.12.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
67 |
+
"model.layers.12.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
68 |
+
"model.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
69 |
+
"model.layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
70 |
+
"model.layers.13.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
71 |
+
"model.layers.13.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
72 |
+
"model.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
73 |
+
"model.layers.13.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
74 |
+
"model.layers.13.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
75 |
+
"model.layers.13.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
76 |
+
"model.layers.13.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
77 |
+
"model.layers.13.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
78 |
+
"model.layers.13.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
79 |
+
"model.layers.13.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
80 |
+
"model.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
81 |
+
"model.layers.14.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
82 |
+
"model.layers.14.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
83 |
+
"model.layers.14.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
84 |
+
"model.layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
85 |
+
"model.layers.14.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
86 |
+
"model.layers.14.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
87 |
+
"model.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
88 |
+
"model.layers.14.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
89 |
+
"model.layers.14.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
90 |
+
"model.layers.14.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
91 |
+
"model.layers.14.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
92 |
+
"model.layers.15.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
93 |
+
"model.layers.15.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
94 |
+
"model.layers.15.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
95 |
+
"model.layers.15.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
96 |
+
"model.layers.15.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
97 |
+
"model.layers.15.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
98 |
+
"model.layers.15.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
99 |
+
"model.layers.15.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
100 |
+
"model.layers.15.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
101 |
+
"model.layers.15.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
102 |
+
"model.layers.15.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
103 |
+
"model.layers.15.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
104 |
+
"model.layers.16.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
105 |
+
"model.layers.16.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
106 |
+
"model.layers.16.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
107 |
+
"model.layers.16.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
108 |
+
"model.layers.16.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
109 |
+
"model.layers.16.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
110 |
+
"model.layers.16.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
111 |
+
"model.layers.16.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
112 |
+
"model.layers.16.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
113 |
+
"model.layers.16.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
114 |
+
"model.layers.16.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
115 |
+
"model.layers.16.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
116 |
+
"model.layers.17.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
117 |
+
"model.layers.17.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
118 |
+
"model.layers.17.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
119 |
+
"model.layers.17.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
120 |
+
"model.layers.17.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
121 |
+
"model.layers.17.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
122 |
+
"model.layers.17.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
123 |
+
"model.layers.17.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
124 |
+
"model.layers.17.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
125 |
+
"model.layers.17.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
126 |
+
"model.layers.17.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
127 |
+
"model.layers.17.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
128 |
+
"model.layers.18.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
129 |
+
"model.layers.18.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
130 |
+
"model.layers.18.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
131 |
+
"model.layers.18.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
132 |
+
"model.layers.18.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
133 |
+
"model.layers.18.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
134 |
+
"model.layers.18.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
135 |
+
"model.layers.18.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
136 |
+
"model.layers.18.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
137 |
+
"model.layers.18.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
138 |
+
"model.layers.18.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
139 |
+
"model.layers.18.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
140 |
+
"model.layers.19.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
141 |
+
"model.layers.19.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
142 |
+
"model.layers.19.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
143 |
+
"model.layers.19.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
144 |
+
"model.layers.19.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
145 |
+
"model.layers.19.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
146 |
+
"model.layers.19.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
147 |
+
"model.layers.19.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
148 |
+
"model.layers.19.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
149 |
+
"model.layers.19.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
150 |
+
"model.layers.19.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
151 |
+
"model.layers.19.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
152 |
+
"model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
153 |
+
"model.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
154 |
+
"model.layers.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
155 |
+
"model.layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
156 |
+
"model.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
157 |
+
"model.layers.2.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
158 |
+
"model.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
159 |
+
"model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
160 |
+
"model.layers.2.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
161 |
+
"model.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
162 |
+
"model.layers.2.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
163 |
+
"model.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
164 |
+
"model.layers.20.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
165 |
+
"model.layers.20.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
166 |
+
"model.layers.20.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
167 |
+
"model.layers.20.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
168 |
+
"model.layers.20.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
169 |
+
"model.layers.20.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
170 |
+
"model.layers.20.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
171 |
+
"model.layers.20.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
172 |
+
"model.layers.20.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
173 |
+
"model.layers.20.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
174 |
+
"model.layers.20.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
175 |
+
"model.layers.20.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
176 |
+
"model.layers.21.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
177 |
+
"model.layers.21.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
178 |
+
"model.layers.21.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
179 |
+
"model.layers.21.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
180 |
+
"model.layers.21.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
181 |
+
"model.layers.21.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
182 |
+
"model.layers.21.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
183 |
+
"model.layers.21.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
184 |
+
"model.layers.21.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
185 |
+
"model.layers.21.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
186 |
+
"model.layers.21.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
187 |
+
"model.layers.21.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
188 |
+
"model.layers.22.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
189 |
+
"model.layers.22.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
190 |
+
"model.layers.22.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
191 |
+
"model.layers.22.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
192 |
+
"model.layers.22.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
193 |
+
"model.layers.22.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
194 |
+
"model.layers.22.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
195 |
+
"model.layers.22.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
196 |
+
"model.layers.22.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
197 |
+
"model.layers.22.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
198 |
+
"model.layers.22.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
199 |
+
"model.layers.22.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
200 |
+
"model.layers.23.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
201 |
+
"model.layers.23.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
202 |
+
"model.layers.23.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
203 |
+
"model.layers.23.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
204 |
+
"model.layers.23.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
205 |
+
"model.layers.23.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
206 |
+
"model.layers.23.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
207 |
+
"model.layers.23.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
208 |
+
"model.layers.23.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
209 |
+
"model.layers.23.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
210 |
+
"model.layers.23.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
211 |
+
"model.layers.23.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
212 |
+
"model.layers.24.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
213 |
+
"model.layers.24.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
214 |
+
"model.layers.24.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
215 |
+
"model.layers.24.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
216 |
+
"model.layers.24.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
217 |
+
"model.layers.24.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
218 |
+
"model.layers.24.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
219 |
+
"model.layers.24.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
220 |
+
"model.layers.24.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
221 |
+
"model.layers.24.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
222 |
+
"model.layers.24.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
223 |
+
"model.layers.24.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
224 |
+
"model.layers.25.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
225 |
+
"model.layers.25.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
226 |
+
"model.layers.25.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
227 |
+
"model.layers.25.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
228 |
+
"model.layers.25.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
229 |
+
"model.layers.25.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
230 |
+
"model.layers.25.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
231 |
+
"model.layers.25.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
232 |
+
"model.layers.25.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
233 |
+
"model.layers.25.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
234 |
+
"model.layers.25.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
235 |
+
"model.layers.25.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
236 |
+
"model.layers.26.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
237 |
+
"model.layers.26.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
238 |
+
"model.layers.26.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
239 |
+
"model.layers.26.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
240 |
+
"model.layers.26.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
241 |
+
"model.layers.26.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
242 |
+
"model.layers.26.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
243 |
+
"model.layers.26.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
244 |
+
"model.layers.26.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
245 |
+
"model.layers.26.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
246 |
+
"model.layers.26.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
247 |
+
"model.layers.26.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
248 |
+
"model.layers.27.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
249 |
+
"model.layers.27.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
250 |
+
"model.layers.27.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
251 |
+
"model.layers.27.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
252 |
+
"model.layers.27.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
253 |
+
"model.layers.27.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
254 |
+
"model.layers.27.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
255 |
+
"model.layers.27.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
256 |
+
"model.layers.27.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
257 |
+
"model.layers.27.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
258 |
+
"model.layers.27.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
259 |
+
"model.layers.27.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
260 |
+
"model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
261 |
+
"model.layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
262 |
+
"model.layers.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
263 |
+
"model.layers.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
264 |
+
"model.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
265 |
+
"model.layers.3.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
266 |
+
"model.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
267 |
+
"model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
268 |
+
"model.layers.3.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
269 |
+
"model.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
270 |
+
"model.layers.3.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
271 |
+
"model.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
272 |
+
"model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
273 |
+
"model.layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
274 |
+
"model.layers.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
275 |
+
"model.layers.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
276 |
+
"model.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
277 |
+
"model.layers.4.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
278 |
+
"model.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
279 |
+
"model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
280 |
+
"model.layers.4.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
281 |
+
"model.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
282 |
+
"model.layers.4.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
283 |
+
"model.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
284 |
+
"model.layers.5.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
285 |
+
"model.layers.5.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
286 |
+
"model.layers.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
287 |
+
"model.layers.5.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
288 |
+
"model.layers.5.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
289 |
+
"model.layers.5.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
290 |
+
"model.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
291 |
+
"model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
292 |
+
"model.layers.5.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
293 |
+
"model.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
294 |
+
"model.layers.5.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
295 |
+
"model.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
296 |
+
"model.layers.6.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
297 |
+
"model.layers.6.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
298 |
+
"model.layers.6.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
299 |
+
"model.layers.6.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
300 |
+
"model.layers.6.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
301 |
+
"model.layers.6.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
302 |
+
"model.layers.6.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
303 |
+
"model.layers.6.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
304 |
+
"model.layers.6.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
305 |
+
"model.layers.6.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
306 |
+
"model.layers.6.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
307 |
+
"model.layers.6.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
308 |
+
"model.layers.7.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
309 |
+
"model.layers.7.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
310 |
+
"model.layers.7.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
311 |
+
"model.layers.7.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
312 |
+
"model.layers.7.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
313 |
+
"model.layers.7.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
314 |
+
"model.layers.7.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
315 |
+
"model.layers.7.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
316 |
+
"model.layers.7.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
317 |
+
"model.layers.7.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
318 |
+
"model.layers.7.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
319 |
+
"model.layers.7.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
320 |
+
"model.layers.8.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
321 |
+
"model.layers.8.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
322 |
+
"model.layers.8.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
323 |
+
"model.layers.8.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
324 |
+
"model.layers.8.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
325 |
+
"model.layers.8.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
326 |
+
"model.layers.8.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
327 |
+
"model.layers.8.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
328 |
+
"model.layers.8.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
329 |
+
"model.layers.8.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
330 |
+
"model.layers.8.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
331 |
+
"model.layers.8.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
332 |
+
"model.layers.9.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
333 |
+
"model.layers.9.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
334 |
+
"model.layers.9.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
335 |
+
"model.layers.9.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
336 |
+
"model.layers.9.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
337 |
+
"model.layers.9.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
338 |
+
"model.layers.9.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
339 |
+
"model.layers.9.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
340 |
+
"model.layers.9.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
341 |
+
"model.layers.9.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
342 |
+
"model.layers.9.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
343 |
+
"model.layers.9.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
344 |
+
"model.norm.weight": "model-00003-of-00004.safetensors"
|
345 |
+
}
|
346 |
+
}
|
rng_state_0.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:99597ef7442635c9fc7e33f58ab65a1f097883076cda723846953702c5b1bb41
|
3 |
+
size 15920
|
rng_state_1.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e9986a5b4d0c0854c31b0a552b36c8d61c4166799896370911745287d59eb2f1
|
3 |
+
size 15920
|
rng_state_2.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:62d0a03a6899b1d9c6471730a5f27a61c6d5decea4fa364e33de7339d74afa6a
|
3 |
+
size 15920
|
rng_state_3.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e5d2deda76dfce536554e9a353390020e1434a02190925740d534a1f14df2db5
|
3 |
+
size 15920
|
rng_state_4.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8ea03f5389460add8ac4bb962ff352abda89dc8283120a1b75a0b08a8701c3d0
|
3 |
+
size 15920
|
rng_state_5.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d0efd6bdda2dc5f3a2dc45fe493b81426aefc76e034baaf43d92cd400d55abbf
|
3 |
+
size 15920
|
rng_state_6.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:15abd0cbcd121c12ef3480b67be50888f282d5deb1f190c5739144faa876b79e
|
3 |
+
size 15920
|
rng_state_7.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dfbfa4971e4f22128a2a3938f9e09ee46a74b13ba2c990c12f6badfb97ceb345
|
3 |
+
size 15920
|
scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8fb3eaf688658712768ae645e4a2b5f778a59201f17641a26e210365d8c2ef6f
|
3 |
+
size 1064
|
special_tokens_map.json
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<|begin▁of▁sentence|>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "<|end▁of▁sentence|>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "<|end▁of▁sentence|>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
}
|
23 |
+
}
|
tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e20ddafc659ba90242154b55275402edeca0715e5dbb30f56815a4ce081f4893
|
3 |
+
size 11422778
|
tokenizer_config.json
ADDED
@@ -0,0 +1,195 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": true,
|
3 |
+
"add_eos_token": false,
|
4 |
+
"add_prefix_space": null,
|
5 |
+
"added_tokens_decoder": {
|
6 |
+
"151643": {
|
7 |
+
"content": "<|end▁of▁sentence|>",
|
8 |
+
"lstrip": false,
|
9 |
+
"normalized": false,
|
10 |
+
"rstrip": false,
|
11 |
+
"single_word": false,
|
12 |
+
"special": true
|
13 |
+
},
|
14 |
+
"151644": {
|
15 |
+
"content": "<|User|>",
|
16 |
+
"lstrip": false,
|
17 |
+
"normalized": false,
|
18 |
+
"rstrip": false,
|
19 |
+
"single_word": false,
|
20 |
+
"special": false
|
21 |
+
},
|
22 |
+
"151645": {
|
23 |
+
"content": "<|Assistant|>",
|
24 |
+
"lstrip": false,
|
25 |
+
"normalized": false,
|
26 |
+
"rstrip": false,
|
27 |
+
"single_word": false,
|
28 |
+
"special": false
|
29 |
+
},
|
30 |
+
"151646": {
|
31 |
+
"content": "<|begin▁of▁sentence|>",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false,
|
36 |
+
"special": true
|
37 |
+
},
|
38 |
+
"151647": {
|
39 |
+
"content": "<|EOT|>",
|
40 |
+
"lstrip": false,
|
41 |
+
"normalized": false,
|
42 |
+
"rstrip": false,
|
43 |
+
"single_word": false,
|
44 |
+
"special": false
|
45 |
+
},
|
46 |
+
"151648": {
|
47 |
+
"content": "<think>",
|
48 |
+
"lstrip": false,
|
49 |
+
"normalized": false,
|
50 |
+
"rstrip": false,
|
51 |
+
"single_word": false,
|
52 |
+
"special": false
|
53 |
+
},
|
54 |
+
"151649": {
|
55 |
+
"content": "</think>",
|
56 |
+
"lstrip": false,
|
57 |
+
"normalized": false,
|
58 |
+
"rstrip": false,
|
59 |
+
"single_word": false,
|
60 |
+
"special": false
|
61 |
+
},
|
62 |
+
"151650": {
|
63 |
+
"content": "<|quad_start|>",
|
64 |
+
"lstrip": false,
|
65 |
+
"normalized": false,
|
66 |
+
"rstrip": false,
|
67 |
+
"single_word": false,
|
68 |
+
"special": true
|
69 |
+
},
|
70 |
+
"151651": {
|
71 |
+
"content": "<|quad_end|>",
|
72 |
+
"lstrip": false,
|
73 |
+
"normalized": false,
|
74 |
+
"rstrip": false,
|
75 |
+
"single_word": false,
|
76 |
+
"special": true
|
77 |
+
},
|
78 |
+
"151652": {
|
79 |
+
"content": "<|vision_start|>",
|
80 |
+
"lstrip": false,
|
81 |
+
"normalized": false,
|
82 |
+
"rstrip": false,
|
83 |
+
"single_word": false,
|
84 |
+
"special": true
|
85 |
+
},
|
86 |
+
"151653": {
|
87 |
+
"content": "<|vision_end|>",
|
88 |
+
"lstrip": false,
|
89 |
+
"normalized": false,
|
90 |
+
"rstrip": false,
|
91 |
+
"single_word": false,
|
92 |
+
"special": true
|
93 |
+
},
|
94 |
+
"151654": {
|
95 |
+
"content": "<|vision_pad|>",
|
96 |
+
"lstrip": false,
|
97 |
+
"normalized": false,
|
98 |
+
"rstrip": false,
|
99 |
+
"single_word": false,
|
100 |
+
"special": true
|
101 |
+
},
|
102 |
+
"151655": {
|
103 |
+
"content": "<|image_pad|>",
|
104 |
+
"lstrip": false,
|
105 |
+
"normalized": false,
|
106 |
+
"rstrip": false,
|
107 |
+
"single_word": false,
|
108 |
+
"special": true
|
109 |
+
},
|
110 |
+
"151656": {
|
111 |
+
"content": "<|video_pad|>",
|
112 |
+
"lstrip": false,
|
113 |
+
"normalized": false,
|
114 |
+
"rstrip": false,
|
115 |
+
"single_word": false,
|
116 |
+
"special": true
|
117 |
+
},
|
118 |
+
"151657": {
|
119 |
+
"content": "<tool_call>",
|
120 |
+
"lstrip": false,
|
121 |
+
"normalized": false,
|
122 |
+
"rstrip": false,
|
123 |
+
"single_word": false,
|
124 |
+
"special": false
|
125 |
+
},
|
126 |
+
"151658": {
|
127 |
+
"content": "</tool_call>",
|
128 |
+
"lstrip": false,
|
129 |
+
"normalized": false,
|
130 |
+
"rstrip": false,
|
131 |
+
"single_word": false,
|
132 |
+
"special": false
|
133 |
+
},
|
134 |
+
"151659": {
|
135 |
+
"content": "<|fim_prefix|>",
|
136 |
+
"lstrip": false,
|
137 |
+
"normalized": false,
|
138 |
+
"rstrip": false,
|
139 |
+
"single_word": false,
|
140 |
+
"special": false
|
141 |
+
},
|
142 |
+
"151660": {
|
143 |
+
"content": "<|fim_middle|>",
|
144 |
+
"lstrip": false,
|
145 |
+
"normalized": false,
|
146 |
+
"rstrip": false,
|
147 |
+
"single_word": false,
|
148 |
+
"special": false
|
149 |
+
},
|
150 |
+
"151661": {
|
151 |
+
"content": "<|fim_suffix|>",
|
152 |
+
"lstrip": false,
|
153 |
+
"normalized": false,
|
154 |
+
"rstrip": false,
|
155 |
+
"single_word": false,
|
156 |
+
"special": false
|
157 |
+
},
|
158 |
+
"151662": {
|
159 |
+
"content": "<|fim_pad|>",
|
160 |
+
"lstrip": false,
|
161 |
+
"normalized": false,
|
162 |
+
"rstrip": false,
|
163 |
+
"single_word": false,
|
164 |
+
"special": false
|
165 |
+
},
|
166 |
+
"151663": {
|
167 |
+
"content": "<|repo_name|>",
|
168 |
+
"lstrip": false,
|
169 |
+
"normalized": false,
|
170 |
+
"rstrip": false,
|
171 |
+
"single_word": false,
|
172 |
+
"special": false
|
173 |
+
},
|
174 |
+
"151664": {
|
175 |
+
"content": "<|file_sep|>",
|
176 |
+
"lstrip": false,
|
177 |
+
"normalized": false,
|
178 |
+
"rstrip": false,
|
179 |
+
"single_word": false,
|
180 |
+
"special": false
|
181 |
+
}
|
182 |
+
},
|
183 |
+
"bos_token": "<|begin▁of▁sentence|>",
|
184 |
+
"chat_template": "{% if not add_generation_prompt is defined %}{% set add_generation_prompt = false %}{% endif %}{% set ns = namespace(is_first=false, is_tool=false, is_output_first=true, system_prompt='') %}{%- for message in messages %}{%- if message['role'] == 'system' %}{% set ns.system_prompt = message['content'] %}{%- endif %}{%- endfor %}{{bos_token}}{{ns.system_prompt}}{%- for message in messages %}{%- if message['role'] == 'user' %}{%- set ns.is_tool = false -%}{{'<|User|>' + message['content']}}{%- endif %}{%- if message['role'] == 'assistant' and message['content'] is none %}{%- set ns.is_tool = false -%}{%- for tool in message['tool_calls']%}{%- if not ns.is_first %}{{'<|Assistant|><|tool▁calls▁begin|><|tool▁call▁begin��>' + tool['type'] + '<|tool▁sep|>' + tool['function']['name'] + '\\n' + '```json' + '\\n' + tool['function']['arguments'] + '\\n' + '```' + '<|tool▁call▁end|>'}}{%- set ns.is_first = true -%}{%- else %}{{'\\n' + '<|tool▁call▁begin|>' + tool['type'] + '<|tool▁sep|>' + tool['function']['name'] + '\\n' + '```json' + '\\n' + tool['function']['arguments'] + '\\n' + '```' + '<|tool▁call▁end|>'}}{{'<|tool▁calls▁end|><|end▁of▁sentence|>'}}{%- endif %}{%- endfor %}{%- endif %}{%- if message['role'] == 'assistant' and message['content'] is not none %}{%- if ns.is_tool %}{{'<|tool▁outputs▁end|>' + message['content'] + '<|end▁of▁sentence|>'}}{%- set ns.is_tool = false -%}{%- else %}{% set content = message['content'] %}{% if '</think>' in content %}{% set content = content.split('</think>')[-1] %}{% endif %}{{'<|Assistant|>' + content + '<|end▁of▁sentence|>'}}{%- endif %}{%- endif %}{%- if message['role'] == 'tool' %}{%- set ns.is_tool = true -%}{%- if ns.is_output_first %}{{'<|tool▁outputs▁begin|><|tool▁output▁begin|>' + message['content'] + '<|tool▁output▁end|>'}}{%- set ns.is_output_first = false %}{%- else %}{{'\\n<|tool▁output▁begin|>' + message['content'] + '<|tool▁output▁end|>'}}{%- endif %}{%- endif %}{%- endfor -%}{% if ns.is_tool %}{{'<|tool▁outputs▁end|>'}}{% endif %}{% if add_generation_prompt and not ns.is_tool %}{{'<|Assistant|><think>\\n'}}{% endif %}",
|
185 |
+
"clean_up_tokenization_spaces": false,
|
186 |
+
"eos_token": "<|end▁of▁sentence|>",
|
187 |
+
"legacy": true,
|
188 |
+
"model_max_length": 8192,
|
189 |
+
"pad_token": "<|end▁of▁sentence|>",
|
190 |
+
"padding_side": "left",
|
191 |
+
"sp_model_kwargs": {},
|
192 |
+
"tokenizer_class": "LlamaTokenizer",
|
193 |
+
"unk_token": null,
|
194 |
+
"use_default_system_prompt": false
|
195 |
+
}
|
trainer_state.json
ADDED
@@ -0,0 +1,2113 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 1.0,
|
5 |
+
"eval_steps": 8,
|
6 |
+
"global_step": 256,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.00390625,
|
13 |
+
"grad_norm": 3.380525042530954,
|
14 |
+
"learning_rate": 1e-05,
|
15 |
+
"loss": 0.2859,
|
16 |
+
"step": 1
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.0078125,
|
20 |
+
"grad_norm": 2.6901012326349156,
|
21 |
+
"learning_rate": 1e-05,
|
22 |
+
"loss": 0.2117,
|
23 |
+
"step": 2
|
24 |
+
},
|
25 |
+
{
|
26 |
+
"epoch": 0.01171875,
|
27 |
+
"grad_norm": 3.191447237922227,
|
28 |
+
"learning_rate": 1e-05,
|
29 |
+
"loss": 0.2602,
|
30 |
+
"step": 3
|
31 |
+
},
|
32 |
+
{
|
33 |
+
"epoch": 0.015625,
|
34 |
+
"grad_norm": 2.204083519446381,
|
35 |
+
"learning_rate": 1e-05,
|
36 |
+
"loss": 0.1972,
|
37 |
+
"step": 4
|
38 |
+
},
|
39 |
+
{
|
40 |
+
"epoch": 0.01953125,
|
41 |
+
"grad_norm": 2.0481149317155687,
|
42 |
+
"learning_rate": 1e-05,
|
43 |
+
"loss": 0.2338,
|
44 |
+
"step": 5
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"epoch": 0.0234375,
|
48 |
+
"grad_norm": 1.6269814174466988,
|
49 |
+
"learning_rate": 1e-05,
|
50 |
+
"loss": 0.214,
|
51 |
+
"step": 6
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"epoch": 0.02734375,
|
55 |
+
"grad_norm": 1.6908703624878527,
|
56 |
+
"learning_rate": 1e-05,
|
57 |
+
"loss": 0.2088,
|
58 |
+
"step": 7
|
59 |
+
},
|
60 |
+
{
|
61 |
+
"epoch": 0.03125,
|
62 |
+
"grad_norm": 1.2059719622160197,
|
63 |
+
"learning_rate": 1e-05,
|
64 |
+
"loss": 0.1975,
|
65 |
+
"step": 8
|
66 |
+
},
|
67 |
+
{
|
68 |
+
"epoch": 0.03125,
|
69 |
+
"eval_dev_acc": 0.515625,
|
70 |
+
"eval_dev_token": 4849.7578125,
|
71 |
+
"eval_runtime": 168.4394,
|
72 |
+
"eval_samples_per_second": 0.095,
|
73 |
+
"eval_steps_per_second": 0.006,
|
74 |
+
"step": 8
|
75 |
+
},
|
76 |
+
{
|
77 |
+
"epoch": 0.03515625,
|
78 |
+
"grad_norm": 1.6837720712641369,
|
79 |
+
"learning_rate": 1e-05,
|
80 |
+
"loss": 0.1873,
|
81 |
+
"step": 9
|
82 |
+
},
|
83 |
+
{
|
84 |
+
"epoch": 0.0390625,
|
85 |
+
"grad_norm": 1.2504651087103098,
|
86 |
+
"learning_rate": 1e-05,
|
87 |
+
"loss": 0.1959,
|
88 |
+
"step": 10
|
89 |
+
},
|
90 |
+
{
|
91 |
+
"epoch": 0.04296875,
|
92 |
+
"grad_norm": 1.3187603751382884,
|
93 |
+
"learning_rate": 1e-05,
|
94 |
+
"loss": 0.2135,
|
95 |
+
"step": 11
|
96 |
+
},
|
97 |
+
{
|
98 |
+
"epoch": 0.046875,
|
99 |
+
"grad_norm": 1.3545446581007174,
|
100 |
+
"learning_rate": 1e-05,
|
101 |
+
"loss": 0.2428,
|
102 |
+
"step": 12
|
103 |
+
},
|
104 |
+
{
|
105 |
+
"epoch": 0.05078125,
|
106 |
+
"grad_norm": 1.6286051945906104,
|
107 |
+
"learning_rate": 1e-05,
|
108 |
+
"loss": 0.1708,
|
109 |
+
"step": 13
|
110 |
+
},
|
111 |
+
{
|
112 |
+
"epoch": 0.0546875,
|
113 |
+
"grad_norm": 1.6081830921647842,
|
114 |
+
"learning_rate": 1e-05,
|
115 |
+
"loss": 0.1471,
|
116 |
+
"step": 14
|
117 |
+
},
|
118 |
+
{
|
119 |
+
"epoch": 0.05859375,
|
120 |
+
"grad_norm": 1.4305460955933824,
|
121 |
+
"learning_rate": 1e-05,
|
122 |
+
"loss": 0.1837,
|
123 |
+
"step": 15
|
124 |
+
},
|
125 |
+
{
|
126 |
+
"epoch": 0.0625,
|
127 |
+
"grad_norm": 1.3961670104174644,
|
128 |
+
"learning_rate": 1e-05,
|
129 |
+
"loss": 0.1352,
|
130 |
+
"step": 16
|
131 |
+
},
|
132 |
+
{
|
133 |
+
"epoch": 0.0625,
|
134 |
+
"eval_dev_acc": 0.4296875,
|
135 |
+
"eval_dev_token": 5067.265625,
|
136 |
+
"eval_runtime": 167.2848,
|
137 |
+
"eval_samples_per_second": 0.096,
|
138 |
+
"eval_steps_per_second": 0.006,
|
139 |
+
"step": 16
|
140 |
+
},
|
141 |
+
{
|
142 |
+
"epoch": 0.06640625,
|
143 |
+
"grad_norm": 1.5507019702345457,
|
144 |
+
"learning_rate": 1e-05,
|
145 |
+
"loss": 0.1657,
|
146 |
+
"step": 17
|
147 |
+
},
|
148 |
+
{
|
149 |
+
"epoch": 0.0703125,
|
150 |
+
"grad_norm": 1.3395286968352729,
|
151 |
+
"learning_rate": 1e-05,
|
152 |
+
"loss": 0.1824,
|
153 |
+
"step": 18
|
154 |
+
},
|
155 |
+
{
|
156 |
+
"epoch": 0.07421875,
|
157 |
+
"grad_norm": 2.201219146342779,
|
158 |
+
"learning_rate": 1e-05,
|
159 |
+
"loss": 0.1391,
|
160 |
+
"step": 19
|
161 |
+
},
|
162 |
+
{
|
163 |
+
"epoch": 0.078125,
|
164 |
+
"grad_norm": 1.75559779570709,
|
165 |
+
"learning_rate": 1e-05,
|
166 |
+
"loss": 0.1351,
|
167 |
+
"step": 20
|
168 |
+
},
|
169 |
+
{
|
170 |
+
"epoch": 0.08203125,
|
171 |
+
"grad_norm": 2.0359121335172428,
|
172 |
+
"learning_rate": 1e-05,
|
173 |
+
"loss": 0.1748,
|
174 |
+
"step": 21
|
175 |
+
},
|
176 |
+
{
|
177 |
+
"epoch": 0.0859375,
|
178 |
+
"grad_norm": 1.6822343317370052,
|
179 |
+
"learning_rate": 1e-05,
|
180 |
+
"loss": 0.1582,
|
181 |
+
"step": 22
|
182 |
+
},
|
183 |
+
{
|
184 |
+
"epoch": 0.08984375,
|
185 |
+
"grad_norm": 1.9664935447837442,
|
186 |
+
"learning_rate": 1e-05,
|
187 |
+
"loss": 0.1338,
|
188 |
+
"step": 23
|
189 |
+
},
|
190 |
+
{
|
191 |
+
"epoch": 0.09375,
|
192 |
+
"grad_norm": 1.1463903797363937,
|
193 |
+
"learning_rate": 1e-05,
|
194 |
+
"loss": 0.1139,
|
195 |
+
"step": 24
|
196 |
+
},
|
197 |
+
{
|
198 |
+
"epoch": 0.09375,
|
199 |
+
"eval_dev_acc": 0.4296875,
|
200 |
+
"eval_dev_token": 4994.296875,
|
201 |
+
"eval_runtime": 168.4043,
|
202 |
+
"eval_samples_per_second": 0.095,
|
203 |
+
"eval_steps_per_second": 0.006,
|
204 |
+
"step": 24
|
205 |
+
},
|
206 |
+
{
|
207 |
+
"epoch": 0.09765625,
|
208 |
+
"grad_norm": 2.1728621095149627,
|
209 |
+
"learning_rate": 1e-05,
|
210 |
+
"loss": 0.1471,
|
211 |
+
"step": 25
|
212 |
+
},
|
213 |
+
{
|
214 |
+
"epoch": 0.1015625,
|
215 |
+
"grad_norm": 1.6714738223766954,
|
216 |
+
"learning_rate": 1e-05,
|
217 |
+
"loss": 0.1349,
|
218 |
+
"step": 26
|
219 |
+
},
|
220 |
+
{
|
221 |
+
"epoch": 0.10546875,
|
222 |
+
"grad_norm": 1.5574316583381629,
|
223 |
+
"learning_rate": 1e-05,
|
224 |
+
"loss": 0.1356,
|
225 |
+
"step": 27
|
226 |
+
},
|
227 |
+
{
|
228 |
+
"epoch": 0.109375,
|
229 |
+
"grad_norm": 1.4728847084572547,
|
230 |
+
"learning_rate": 1e-05,
|
231 |
+
"loss": 0.1509,
|
232 |
+
"step": 28
|
233 |
+
},
|
234 |
+
{
|
235 |
+
"epoch": 0.11328125,
|
236 |
+
"grad_norm": 1.4769394661942852,
|
237 |
+
"learning_rate": 1e-05,
|
238 |
+
"loss": 0.1294,
|
239 |
+
"step": 29
|
240 |
+
},
|
241 |
+
{
|
242 |
+
"epoch": 0.1171875,
|
243 |
+
"grad_norm": 1.8550097520759188,
|
244 |
+
"learning_rate": 1e-05,
|
245 |
+
"loss": 0.1208,
|
246 |
+
"step": 30
|
247 |
+
},
|
248 |
+
{
|
249 |
+
"epoch": 0.12109375,
|
250 |
+
"grad_norm": 1.75157088447911,
|
251 |
+
"learning_rate": 1e-05,
|
252 |
+
"loss": 0.0993,
|
253 |
+
"step": 31
|
254 |
+
},
|
255 |
+
{
|
256 |
+
"epoch": 0.125,
|
257 |
+
"grad_norm": 1.6233472727407252,
|
258 |
+
"learning_rate": 1e-05,
|
259 |
+
"loss": 0.1412,
|
260 |
+
"step": 32
|
261 |
+
},
|
262 |
+
{
|
263 |
+
"epoch": 0.125,
|
264 |
+
"eval_dev_acc": 0.4609375,
|
265 |
+
"eval_dev_token": 4228.15625,
|
266 |
+
"eval_runtime": 159.0398,
|
267 |
+
"eval_samples_per_second": 0.101,
|
268 |
+
"eval_steps_per_second": 0.006,
|
269 |
+
"step": 32
|
270 |
+
},
|
271 |
+
{
|
272 |
+
"epoch": 0.12890625,
|
273 |
+
"grad_norm": 1.5246001678514782,
|
274 |
+
"learning_rate": 1e-05,
|
275 |
+
"loss": 0.1268,
|
276 |
+
"step": 33
|
277 |
+
},
|
278 |
+
{
|
279 |
+
"epoch": 0.1328125,
|
280 |
+
"grad_norm": 1.020147996755851,
|
281 |
+
"learning_rate": 1e-05,
|
282 |
+
"loss": 0.166,
|
283 |
+
"step": 34
|
284 |
+
},
|
285 |
+
{
|
286 |
+
"epoch": 0.13671875,
|
287 |
+
"grad_norm": 0.9795032964583498,
|
288 |
+
"learning_rate": 1e-05,
|
289 |
+
"loss": 0.1223,
|
290 |
+
"step": 35
|
291 |
+
},
|
292 |
+
{
|
293 |
+
"epoch": 0.140625,
|
294 |
+
"grad_norm": 1.0328587053324862,
|
295 |
+
"learning_rate": 1e-05,
|
296 |
+
"loss": 0.0889,
|
297 |
+
"step": 36
|
298 |
+
},
|
299 |
+
{
|
300 |
+
"epoch": 0.14453125,
|
301 |
+
"grad_norm": 0.8587530858129762,
|
302 |
+
"learning_rate": 1e-05,
|
303 |
+
"loss": 0.1618,
|
304 |
+
"step": 37
|
305 |
+
},
|
306 |
+
{
|
307 |
+
"epoch": 0.1484375,
|
308 |
+
"grad_norm": 1.0451234874371433,
|
309 |
+
"learning_rate": 1e-05,
|
310 |
+
"loss": 0.1973,
|
311 |
+
"step": 38
|
312 |
+
},
|
313 |
+
{
|
314 |
+
"epoch": 0.15234375,
|
315 |
+
"grad_norm": 1.032741287831154,
|
316 |
+
"learning_rate": 1e-05,
|
317 |
+
"loss": 0.1999,
|
318 |
+
"step": 39
|
319 |
+
},
|
320 |
+
{
|
321 |
+
"epoch": 0.15625,
|
322 |
+
"grad_norm": 1.0128010813738295,
|
323 |
+
"learning_rate": 1e-05,
|
324 |
+
"loss": 0.1314,
|
325 |
+
"step": 40
|
326 |
+
},
|
327 |
+
{
|
328 |
+
"epoch": 0.15625,
|
329 |
+
"eval_dev_acc": 0.40625,
|
330 |
+
"eval_dev_token": 5015.7421875,
|
331 |
+
"eval_runtime": 167.9354,
|
332 |
+
"eval_samples_per_second": 0.095,
|
333 |
+
"eval_steps_per_second": 0.006,
|
334 |
+
"step": 40
|
335 |
+
},
|
336 |
+
{
|
337 |
+
"epoch": 0.16015625,
|
338 |
+
"grad_norm": 0.7085331860395175,
|
339 |
+
"learning_rate": 1e-05,
|
340 |
+
"loss": 0.1424,
|
341 |
+
"step": 41
|
342 |
+
},
|
343 |
+
{
|
344 |
+
"epoch": 0.1640625,
|
345 |
+
"grad_norm": 0.8522197113830303,
|
346 |
+
"learning_rate": 1e-05,
|
347 |
+
"loss": 0.1523,
|
348 |
+
"step": 42
|
349 |
+
},
|
350 |
+
{
|
351 |
+
"epoch": 0.16796875,
|
352 |
+
"grad_norm": 0.9700458234990689,
|
353 |
+
"learning_rate": 1e-05,
|
354 |
+
"loss": 0.1655,
|
355 |
+
"step": 43
|
356 |
+
},
|
357 |
+
{
|
358 |
+
"epoch": 0.171875,
|
359 |
+
"grad_norm": 2.0713947251278855,
|
360 |
+
"learning_rate": 1e-05,
|
361 |
+
"loss": 0.2946,
|
362 |
+
"step": 44
|
363 |
+
},
|
364 |
+
{
|
365 |
+
"epoch": 0.17578125,
|
366 |
+
"grad_norm": 1.6441862242379885,
|
367 |
+
"learning_rate": 1e-05,
|
368 |
+
"loss": 0.2547,
|
369 |
+
"step": 45
|
370 |
+
},
|
371 |
+
{
|
372 |
+
"epoch": 0.1796875,
|
373 |
+
"grad_norm": 1.7959964112861366,
|
374 |
+
"learning_rate": 1e-05,
|
375 |
+
"loss": 0.3009,
|
376 |
+
"step": 46
|
377 |
+
},
|
378 |
+
{
|
379 |
+
"epoch": 0.18359375,
|
380 |
+
"grad_norm": 1.3449858551505456,
|
381 |
+
"learning_rate": 1e-05,
|
382 |
+
"loss": 0.2094,
|
383 |
+
"step": 47
|
384 |
+
},
|
385 |
+
{
|
386 |
+
"epoch": 0.1875,
|
387 |
+
"grad_norm": 1.2087309569022056,
|
388 |
+
"learning_rate": 1e-05,
|
389 |
+
"loss": 0.1908,
|
390 |
+
"step": 48
|
391 |
+
},
|
392 |
+
{
|
393 |
+
"epoch": 0.1875,
|
394 |
+
"eval_dev_acc": 0.34375,
|
395 |
+
"eval_dev_token": 4538.84375,
|
396 |
+
"eval_runtime": 161.6976,
|
397 |
+
"eval_samples_per_second": 0.099,
|
398 |
+
"eval_steps_per_second": 0.006,
|
399 |
+
"step": 48
|
400 |
+
},
|
401 |
+
{
|
402 |
+
"epoch": 0.19140625,
|
403 |
+
"grad_norm": 1.1559146316352948,
|
404 |
+
"learning_rate": 1e-05,
|
405 |
+
"loss": 0.3036,
|
406 |
+
"step": 49
|
407 |
+
},
|
408 |
+
{
|
409 |
+
"epoch": 0.1953125,
|
410 |
+
"grad_norm": 1.131769529502962,
|
411 |
+
"learning_rate": 1e-05,
|
412 |
+
"loss": 0.2441,
|
413 |
+
"step": 50
|
414 |
+
},
|
415 |
+
{
|
416 |
+
"epoch": 0.19921875,
|
417 |
+
"grad_norm": 1.4116452844735226,
|
418 |
+
"learning_rate": 1e-05,
|
419 |
+
"loss": 0.2028,
|
420 |
+
"step": 51
|
421 |
+
},
|
422 |
+
{
|
423 |
+
"epoch": 0.203125,
|
424 |
+
"grad_norm": 0.7550364491986332,
|
425 |
+
"learning_rate": 1e-05,
|
426 |
+
"loss": 0.215,
|
427 |
+
"step": 52
|
428 |
+
},
|
429 |
+
{
|
430 |
+
"epoch": 0.20703125,
|
431 |
+
"grad_norm": 1.3915284765850489,
|
432 |
+
"learning_rate": 1e-05,
|
433 |
+
"loss": 0.2878,
|
434 |
+
"step": 53
|
435 |
+
},
|
436 |
+
{
|
437 |
+
"epoch": 0.2109375,
|
438 |
+
"grad_norm": 1.6351241901381652,
|
439 |
+
"learning_rate": 1e-05,
|
440 |
+
"loss": 0.2446,
|
441 |
+
"step": 54
|
442 |
+
},
|
443 |
+
{
|
444 |
+
"epoch": 0.21484375,
|
445 |
+
"grad_norm": 1.6083218458029132,
|
446 |
+
"learning_rate": 1e-05,
|
447 |
+
"loss": 0.2088,
|
448 |
+
"step": 55
|
449 |
+
},
|
450 |
+
{
|
451 |
+
"epoch": 0.21875,
|
452 |
+
"grad_norm": 0.7434150303822764,
|
453 |
+
"learning_rate": 1e-05,
|
454 |
+
"loss": 0.2262,
|
455 |
+
"step": 56
|
456 |
+
},
|
457 |
+
{
|
458 |
+
"epoch": 0.21875,
|
459 |
+
"eval_dev_acc": 0.30708661675453186,
|
460 |
+
"eval_dev_token": 5670.251953125,
|
461 |
+
"eval_runtime": 174.7692,
|
462 |
+
"eval_samples_per_second": 0.092,
|
463 |
+
"eval_steps_per_second": 0.006,
|
464 |
+
"step": 56
|
465 |
+
},
|
466 |
+
{
|
467 |
+
"epoch": 0.22265625,
|
468 |
+
"grad_norm": 1.0769799759099778,
|
469 |
+
"learning_rate": 1e-05,
|
470 |
+
"loss": 0.208,
|
471 |
+
"step": 57
|
472 |
+
},
|
473 |
+
{
|
474 |
+
"epoch": 0.2265625,
|
475 |
+
"grad_norm": 0.9298141621627772,
|
476 |
+
"learning_rate": 1e-05,
|
477 |
+
"loss": 0.1687,
|
478 |
+
"step": 58
|
479 |
+
},
|
480 |
+
{
|
481 |
+
"epoch": 0.23046875,
|
482 |
+
"grad_norm": 1.285492123129724,
|
483 |
+
"learning_rate": 1e-05,
|
484 |
+
"loss": 0.2427,
|
485 |
+
"step": 59
|
486 |
+
},
|
487 |
+
{
|
488 |
+
"epoch": 0.234375,
|
489 |
+
"grad_norm": 0.8346778861730894,
|
490 |
+
"learning_rate": 1e-05,
|
491 |
+
"loss": 0.219,
|
492 |
+
"step": 60
|
493 |
+
},
|
494 |
+
{
|
495 |
+
"epoch": 0.23828125,
|
496 |
+
"grad_norm": 0.9873196942775492,
|
497 |
+
"learning_rate": 1e-05,
|
498 |
+
"loss": 0.242,
|
499 |
+
"step": 61
|
500 |
+
},
|
501 |
+
{
|
502 |
+
"epoch": 0.2421875,
|
503 |
+
"grad_norm": 0.9596507860915271,
|
504 |
+
"learning_rate": 1e-05,
|
505 |
+
"loss": 0.2148,
|
506 |
+
"step": 62
|
507 |
+
},
|
508 |
+
{
|
509 |
+
"epoch": 0.24609375,
|
510 |
+
"grad_norm": 1.0988562593647762,
|
511 |
+
"learning_rate": 1e-05,
|
512 |
+
"loss": 0.2396,
|
513 |
+
"step": 63
|
514 |
+
},
|
515 |
+
{
|
516 |
+
"epoch": 0.25,
|
517 |
+
"grad_norm": 0.9707635131928222,
|
518 |
+
"learning_rate": 1e-05,
|
519 |
+
"loss": 0.238,
|
520 |
+
"step": 64
|
521 |
+
},
|
522 |
+
{
|
523 |
+
"epoch": 0.25,
|
524 |
+
"eval_dev_acc": 0.5390625,
|
525 |
+
"eval_dev_token": 4394.921875,
|
526 |
+
"eval_runtime": 161.3481,
|
527 |
+
"eval_samples_per_second": 0.099,
|
528 |
+
"eval_steps_per_second": 0.006,
|
529 |
+
"step": 64
|
530 |
+
},
|
531 |
+
{
|
532 |
+
"epoch": 0.25390625,
|
533 |
+
"grad_norm": 0.8083595053544823,
|
534 |
+
"learning_rate": 1e-05,
|
535 |
+
"loss": 0.293,
|
536 |
+
"step": 65
|
537 |
+
},
|
538 |
+
{
|
539 |
+
"epoch": 0.2578125,
|
540 |
+
"grad_norm": 0.6893947679382126,
|
541 |
+
"learning_rate": 1e-05,
|
542 |
+
"loss": 0.2866,
|
543 |
+
"step": 66
|
544 |
+
},
|
545 |
+
{
|
546 |
+
"epoch": 0.26171875,
|
547 |
+
"grad_norm": 1.0271679359276198,
|
548 |
+
"learning_rate": 1e-05,
|
549 |
+
"loss": 0.2276,
|
550 |
+
"step": 67
|
551 |
+
},
|
552 |
+
{
|
553 |
+
"epoch": 0.265625,
|
554 |
+
"grad_norm": 1.1776528602190077,
|
555 |
+
"learning_rate": 1e-05,
|
556 |
+
"loss": 0.1887,
|
557 |
+
"step": 68
|
558 |
+
},
|
559 |
+
{
|
560 |
+
"epoch": 0.26953125,
|
561 |
+
"grad_norm": 1.163717423684938,
|
562 |
+
"learning_rate": 1e-05,
|
563 |
+
"loss": 0.2147,
|
564 |
+
"step": 69
|
565 |
+
},
|
566 |
+
{
|
567 |
+
"epoch": 0.2734375,
|
568 |
+
"grad_norm": 0.8134427746893115,
|
569 |
+
"learning_rate": 1e-05,
|
570 |
+
"loss": 0.2342,
|
571 |
+
"step": 70
|
572 |
+
},
|
573 |
+
{
|
574 |
+
"epoch": 0.27734375,
|
575 |
+
"grad_norm": 1.4269332848478926,
|
576 |
+
"learning_rate": 1e-05,
|
577 |
+
"loss": 0.1919,
|
578 |
+
"step": 71
|
579 |
+
},
|
580 |
+
{
|
581 |
+
"epoch": 0.28125,
|
582 |
+
"grad_norm": 0.8200789264174901,
|
583 |
+
"learning_rate": 1e-05,
|
584 |
+
"loss": 0.2175,
|
585 |
+
"step": 72
|
586 |
+
},
|
587 |
+
{
|
588 |
+
"epoch": 0.28125,
|
589 |
+
"eval_dev_acc": 0.53125,
|
590 |
+
"eval_dev_token": 4859.7421875,
|
591 |
+
"eval_runtime": 166.6197,
|
592 |
+
"eval_samples_per_second": 0.096,
|
593 |
+
"eval_steps_per_second": 0.006,
|
594 |
+
"step": 72
|
595 |
+
},
|
596 |
+
{
|
597 |
+
"epoch": 0.28515625,
|
598 |
+
"grad_norm": 1.007316679088458,
|
599 |
+
"learning_rate": 1e-05,
|
600 |
+
"loss": 0.3108,
|
601 |
+
"step": 73
|
602 |
+
},
|
603 |
+
{
|
604 |
+
"epoch": 0.2890625,
|
605 |
+
"grad_norm": 0.6637709768510952,
|
606 |
+
"learning_rate": 1e-05,
|
607 |
+
"loss": 0.1794,
|
608 |
+
"step": 74
|
609 |
+
},
|
610 |
+
{
|
611 |
+
"epoch": 0.29296875,
|
612 |
+
"grad_norm": 1.0144512803754202,
|
613 |
+
"learning_rate": 1e-05,
|
614 |
+
"loss": 0.1905,
|
615 |
+
"step": 75
|
616 |
+
},
|
617 |
+
{
|
618 |
+
"epoch": 0.296875,
|
619 |
+
"grad_norm": 1.2499777112248354,
|
620 |
+
"learning_rate": 1e-05,
|
621 |
+
"loss": 0.2014,
|
622 |
+
"step": 76
|
623 |
+
},
|
624 |
+
{
|
625 |
+
"epoch": 0.30078125,
|
626 |
+
"grad_norm": 1.0642239482819718,
|
627 |
+
"learning_rate": 1e-05,
|
628 |
+
"loss": 0.1648,
|
629 |
+
"step": 77
|
630 |
+
},
|
631 |
+
{
|
632 |
+
"epoch": 0.3046875,
|
633 |
+
"grad_norm": 0.8739614674360524,
|
634 |
+
"learning_rate": 1e-05,
|
635 |
+
"loss": 0.1537,
|
636 |
+
"step": 78
|
637 |
+
},
|
638 |
+
{
|
639 |
+
"epoch": 0.30859375,
|
640 |
+
"grad_norm": 0.5320613340314281,
|
641 |
+
"learning_rate": 1e-05,
|
642 |
+
"loss": 0.2128,
|
643 |
+
"step": 79
|
644 |
+
},
|
645 |
+
{
|
646 |
+
"epoch": 0.3125,
|
647 |
+
"grad_norm": 1.2802208673828028,
|
648 |
+
"learning_rate": 1e-05,
|
649 |
+
"loss": 0.1939,
|
650 |
+
"step": 80
|
651 |
+
},
|
652 |
+
{
|
653 |
+
"epoch": 0.3125,
|
654 |
+
"eval_dev_acc": 0.4609375,
|
655 |
+
"eval_dev_token": 5065.421875,
|
656 |
+
"eval_runtime": 168.4523,
|
657 |
+
"eval_samples_per_second": 0.095,
|
658 |
+
"eval_steps_per_second": 0.006,
|
659 |
+
"step": 80
|
660 |
+
},
|
661 |
+
{
|
662 |
+
"epoch": 0.31640625,
|
663 |
+
"grad_norm": 1.1564057868614226,
|
664 |
+
"learning_rate": 1e-05,
|
665 |
+
"loss": 0.2215,
|
666 |
+
"step": 81
|
667 |
+
},
|
668 |
+
{
|
669 |
+
"epoch": 0.3203125,
|
670 |
+
"grad_norm": 0.7104999594850884,
|
671 |
+
"learning_rate": 1e-05,
|
672 |
+
"loss": 0.1224,
|
673 |
+
"step": 82
|
674 |
+
},
|
675 |
+
{
|
676 |
+
"epoch": 0.32421875,
|
677 |
+
"grad_norm": 0.6466657594813067,
|
678 |
+
"learning_rate": 1e-05,
|
679 |
+
"loss": 0.145,
|
680 |
+
"step": 83
|
681 |
+
},
|
682 |
+
{
|
683 |
+
"epoch": 0.328125,
|
684 |
+
"grad_norm": 1.3499118701284736,
|
685 |
+
"learning_rate": 1e-05,
|
686 |
+
"loss": 0.1963,
|
687 |
+
"step": 84
|
688 |
+
},
|
689 |
+
{
|
690 |
+
"epoch": 0.33203125,
|
691 |
+
"grad_norm": 0.6363338361760021,
|
692 |
+
"learning_rate": 1e-05,
|
693 |
+
"loss": 0.1781,
|
694 |
+
"step": 85
|
695 |
+
},
|
696 |
+
{
|
697 |
+
"epoch": 0.3359375,
|
698 |
+
"grad_norm": 0.8807906150832371,
|
699 |
+
"learning_rate": 1e-05,
|
700 |
+
"loss": 0.1426,
|
701 |
+
"step": 86
|
702 |
+
},
|
703 |
+
{
|
704 |
+
"epoch": 0.33984375,
|
705 |
+
"grad_norm": 0.7466707582875238,
|
706 |
+
"learning_rate": 1e-05,
|
707 |
+
"loss": 0.1629,
|
708 |
+
"step": 87
|
709 |
+
},
|
710 |
+
{
|
711 |
+
"epoch": 0.34375,
|
712 |
+
"grad_norm": 0.7773292125565866,
|
713 |
+
"learning_rate": 1e-05,
|
714 |
+
"loss": 0.181,
|
715 |
+
"step": 88
|
716 |
+
},
|
717 |
+
{
|
718 |
+
"epoch": 0.34375,
|
719 |
+
"eval_dev_acc": 0.4609375,
|
720 |
+
"eval_dev_token": 5092.8984375,
|
721 |
+
"eval_runtime": 168.9275,
|
722 |
+
"eval_samples_per_second": 0.095,
|
723 |
+
"eval_steps_per_second": 0.006,
|
724 |
+
"step": 88
|
725 |
+
},
|
726 |
+
{
|
727 |
+
"epoch": 0.34765625,
|
728 |
+
"grad_norm": 0.9798290139606278,
|
729 |
+
"learning_rate": 1e-05,
|
730 |
+
"loss": 0.1725,
|
731 |
+
"step": 89
|
732 |
+
},
|
733 |
+
{
|
734 |
+
"epoch": 0.3515625,
|
735 |
+
"grad_norm": 1.2761428002675261,
|
736 |
+
"learning_rate": 1e-05,
|
737 |
+
"loss": 0.175,
|
738 |
+
"step": 90
|
739 |
+
},
|
740 |
+
{
|
741 |
+
"epoch": 0.35546875,
|
742 |
+
"grad_norm": 0.5042091805859357,
|
743 |
+
"learning_rate": 1e-05,
|
744 |
+
"loss": 0.218,
|
745 |
+
"step": 91
|
746 |
+
},
|
747 |
+
{
|
748 |
+
"epoch": 0.359375,
|
749 |
+
"grad_norm": 1.017358230975041,
|
750 |
+
"learning_rate": 1e-05,
|
751 |
+
"loss": 0.2502,
|
752 |
+
"step": 92
|
753 |
+
},
|
754 |
+
{
|
755 |
+
"epoch": 0.36328125,
|
756 |
+
"grad_norm": 0.7366049175316091,
|
757 |
+
"learning_rate": 1e-05,
|
758 |
+
"loss": 0.1656,
|
759 |
+
"step": 93
|
760 |
+
},
|
761 |
+
{
|
762 |
+
"epoch": 0.3671875,
|
763 |
+
"grad_norm": 0.9422427666318486,
|
764 |
+
"learning_rate": 1e-05,
|
765 |
+
"loss": 0.1455,
|
766 |
+
"step": 94
|
767 |
+
},
|
768 |
+
{
|
769 |
+
"epoch": 0.37109375,
|
770 |
+
"grad_norm": 0.7689775552730859,
|
771 |
+
"learning_rate": 1e-05,
|
772 |
+
"loss": 0.1485,
|
773 |
+
"step": 95
|
774 |
+
},
|
775 |
+
{
|
776 |
+
"epoch": 0.375,
|
777 |
+
"grad_norm": 0.9090457524355386,
|
778 |
+
"learning_rate": 1e-05,
|
779 |
+
"loss": 0.1411,
|
780 |
+
"step": 96
|
781 |
+
},
|
782 |
+
{
|
783 |
+
"epoch": 0.375,
|
784 |
+
"eval_dev_acc": 0.453125,
|
785 |
+
"eval_dev_token": 4948.8359375,
|
786 |
+
"eval_runtime": 165.5377,
|
787 |
+
"eval_samples_per_second": 0.097,
|
788 |
+
"eval_steps_per_second": 0.006,
|
789 |
+
"step": 96
|
790 |
+
},
|
791 |
+
{
|
792 |
+
"epoch": 0.37890625,
|
793 |
+
"grad_norm": 0.7235724828873173,
|
794 |
+
"learning_rate": 1e-05,
|
795 |
+
"loss": 0.2193,
|
796 |
+
"step": 97
|
797 |
+
},
|
798 |
+
{
|
799 |
+
"epoch": 0.3828125,
|
800 |
+
"grad_norm": 0.7200445685294068,
|
801 |
+
"learning_rate": 1e-05,
|
802 |
+
"loss": 0.1985,
|
803 |
+
"step": 98
|
804 |
+
},
|
805 |
+
{
|
806 |
+
"epoch": 0.38671875,
|
807 |
+
"grad_norm": 0.6060156821220763,
|
808 |
+
"learning_rate": 1e-05,
|
809 |
+
"loss": 0.2096,
|
810 |
+
"step": 99
|
811 |
+
},
|
812 |
+
{
|
813 |
+
"epoch": 0.390625,
|
814 |
+
"grad_norm": 0.7114968462244617,
|
815 |
+
"learning_rate": 1e-05,
|
816 |
+
"loss": 0.1928,
|
817 |
+
"step": 100
|
818 |
+
},
|
819 |
+
{
|
820 |
+
"epoch": 0.39453125,
|
821 |
+
"grad_norm": 0.6397518359548336,
|
822 |
+
"learning_rate": 1e-05,
|
823 |
+
"loss": 0.2165,
|
824 |
+
"step": 101
|
825 |
+
},
|
826 |
+
{
|
827 |
+
"epoch": 0.3984375,
|
828 |
+
"grad_norm": 0.7027126137819094,
|
829 |
+
"learning_rate": 1e-05,
|
830 |
+
"loss": 0.2263,
|
831 |
+
"step": 102
|
832 |
+
},
|
833 |
+
{
|
834 |
+
"epoch": 0.40234375,
|
835 |
+
"grad_norm": 0.8648981933002193,
|
836 |
+
"learning_rate": 1e-05,
|
837 |
+
"loss": 0.2874,
|
838 |
+
"step": 103
|
839 |
+
},
|
840 |
+
{
|
841 |
+
"epoch": 0.40625,
|
842 |
+
"grad_norm": 0.9742992968412495,
|
843 |
+
"learning_rate": 1e-05,
|
844 |
+
"loss": 0.1755,
|
845 |
+
"step": 104
|
846 |
+
},
|
847 |
+
{
|
848 |
+
"epoch": 0.40625,
|
849 |
+
"eval_dev_acc": 0.3515625,
|
850 |
+
"eval_dev_token": 5303.1796875,
|
851 |
+
"eval_runtime": 173.9477,
|
852 |
+
"eval_samples_per_second": 0.092,
|
853 |
+
"eval_steps_per_second": 0.006,
|
854 |
+
"step": 104
|
855 |
+
},
|
856 |
+
{
|
857 |
+
"epoch": 0.41015625,
|
858 |
+
"grad_norm": 0.6358933759276069,
|
859 |
+
"learning_rate": 1e-05,
|
860 |
+
"loss": 0.1907,
|
861 |
+
"step": 105
|
862 |
+
},
|
863 |
+
{
|
864 |
+
"epoch": 0.4140625,
|
865 |
+
"grad_norm": 0.7859972506268991,
|
866 |
+
"learning_rate": 1e-05,
|
867 |
+
"loss": 0.1731,
|
868 |
+
"step": 106
|
869 |
+
},
|
870 |
+
{
|
871 |
+
"epoch": 0.41796875,
|
872 |
+
"grad_norm": 0.6429885607052577,
|
873 |
+
"learning_rate": 1e-05,
|
874 |
+
"loss": 0.187,
|
875 |
+
"step": 107
|
876 |
+
},
|
877 |
+
{
|
878 |
+
"epoch": 0.421875,
|
879 |
+
"grad_norm": 0.6314004528855494,
|
880 |
+
"learning_rate": 1e-05,
|
881 |
+
"loss": 0.2185,
|
882 |
+
"step": 108
|
883 |
+
},
|
884 |
+
{
|
885 |
+
"epoch": 0.42578125,
|
886 |
+
"grad_norm": 0.8243656111706104,
|
887 |
+
"learning_rate": 1e-05,
|
888 |
+
"loss": 0.1384,
|
889 |
+
"step": 109
|
890 |
+
},
|
891 |
+
{
|
892 |
+
"epoch": 0.4296875,
|
893 |
+
"grad_norm": 0.7310074535827911,
|
894 |
+
"learning_rate": 1e-05,
|
895 |
+
"loss": 0.1724,
|
896 |
+
"step": 110
|
897 |
+
},
|
898 |
+
{
|
899 |
+
"epoch": 0.43359375,
|
900 |
+
"grad_norm": 1.8710293554497974,
|
901 |
+
"learning_rate": 1e-05,
|
902 |
+
"loss": 0.273,
|
903 |
+
"step": 111
|
904 |
+
},
|
905 |
+
{
|
906 |
+
"epoch": 0.4375,
|
907 |
+
"grad_norm": 1.3308164398688347,
|
908 |
+
"learning_rate": 1e-05,
|
909 |
+
"loss": 0.2852,
|
910 |
+
"step": 112
|
911 |
+
},
|
912 |
+
{
|
913 |
+
"epoch": 0.4375,
|
914 |
+
"eval_dev_acc": 0.296875,
|
915 |
+
"eval_dev_token": 5770.9375,
|
916 |
+
"eval_runtime": 175.5918,
|
917 |
+
"eval_samples_per_second": 0.091,
|
918 |
+
"eval_steps_per_second": 0.006,
|
919 |
+
"step": 112
|
920 |
+
},
|
921 |
+
{
|
922 |
+
"epoch": 0.44140625,
|
923 |
+
"grad_norm": 0.4499041384963393,
|
924 |
+
"learning_rate": 1e-05,
|
925 |
+
"loss": 0.1845,
|
926 |
+
"step": 113
|
927 |
+
},
|
928 |
+
{
|
929 |
+
"epoch": 0.4453125,
|
930 |
+
"grad_norm": 0.5818915994231291,
|
931 |
+
"learning_rate": 1e-05,
|
932 |
+
"loss": 0.2709,
|
933 |
+
"step": 114
|
934 |
+
},
|
935 |
+
{
|
936 |
+
"epoch": 0.44921875,
|
937 |
+
"grad_norm": 0.6130904000526848,
|
938 |
+
"learning_rate": 1e-05,
|
939 |
+
"loss": 0.231,
|
940 |
+
"step": 115
|
941 |
+
},
|
942 |
+
{
|
943 |
+
"epoch": 0.453125,
|
944 |
+
"grad_norm": 0.7266034880537791,
|
945 |
+
"learning_rate": 1e-05,
|
946 |
+
"loss": 0.1555,
|
947 |
+
"step": 116
|
948 |
+
},
|
949 |
+
{
|
950 |
+
"epoch": 0.45703125,
|
951 |
+
"grad_norm": 0.425032745279421,
|
952 |
+
"learning_rate": 1e-05,
|
953 |
+
"loss": 0.1733,
|
954 |
+
"step": 117
|
955 |
+
},
|
956 |
+
{
|
957 |
+
"epoch": 0.4609375,
|
958 |
+
"grad_norm": 0.41408811254876093,
|
959 |
+
"learning_rate": 1e-05,
|
960 |
+
"loss": 0.1793,
|
961 |
+
"step": 118
|
962 |
+
},
|
963 |
+
{
|
964 |
+
"epoch": 0.46484375,
|
965 |
+
"grad_norm": 0.8433491024471641,
|
966 |
+
"learning_rate": 1e-05,
|
967 |
+
"loss": 0.2335,
|
968 |
+
"step": 119
|
969 |
+
},
|
970 |
+
{
|
971 |
+
"epoch": 0.46875,
|
972 |
+
"grad_norm": 0.5585183306922875,
|
973 |
+
"learning_rate": 1e-05,
|
974 |
+
"loss": 0.2515,
|
975 |
+
"step": 120
|
976 |
+
},
|
977 |
+
{
|
978 |
+
"epoch": 0.46875,
|
979 |
+
"eval_dev_acc": 0.4724409580230713,
|
980 |
+
"eval_dev_token": 4777.55126953125,
|
981 |
+
"eval_runtime": 165.1485,
|
982 |
+
"eval_samples_per_second": 0.097,
|
983 |
+
"eval_steps_per_second": 0.006,
|
984 |
+
"step": 120
|
985 |
+
},
|
986 |
+
{
|
987 |
+
"epoch": 0.47265625,
|
988 |
+
"grad_norm": 0.9520218462259554,
|
989 |
+
"learning_rate": 1e-05,
|
990 |
+
"loss": 0.2613,
|
991 |
+
"step": 121
|
992 |
+
},
|
993 |
+
{
|
994 |
+
"epoch": 0.4765625,
|
995 |
+
"grad_norm": 0.4858585527334522,
|
996 |
+
"learning_rate": 1e-05,
|
997 |
+
"loss": 0.2379,
|
998 |
+
"step": 122
|
999 |
+
},
|
1000 |
+
{
|
1001 |
+
"epoch": 0.48046875,
|
1002 |
+
"grad_norm": 0.5772160567620949,
|
1003 |
+
"learning_rate": 1e-05,
|
1004 |
+
"loss": 0.241,
|
1005 |
+
"step": 123
|
1006 |
+
},
|
1007 |
+
{
|
1008 |
+
"epoch": 0.484375,
|
1009 |
+
"grad_norm": 0.731954162407159,
|
1010 |
+
"learning_rate": 1e-05,
|
1011 |
+
"loss": 0.2482,
|
1012 |
+
"step": 124
|
1013 |
+
},
|
1014 |
+
{
|
1015 |
+
"epoch": 0.48828125,
|
1016 |
+
"grad_norm": 0.49226621710163243,
|
1017 |
+
"learning_rate": 1e-05,
|
1018 |
+
"loss": 0.2333,
|
1019 |
+
"step": 125
|
1020 |
+
},
|
1021 |
+
{
|
1022 |
+
"epoch": 0.4921875,
|
1023 |
+
"grad_norm": 0.43779404197089106,
|
1024 |
+
"learning_rate": 1e-05,
|
1025 |
+
"loss": 0.185,
|
1026 |
+
"step": 126
|
1027 |
+
},
|
1028 |
+
{
|
1029 |
+
"epoch": 0.49609375,
|
1030 |
+
"grad_norm": 0.6856986141306837,
|
1031 |
+
"learning_rate": 1e-05,
|
1032 |
+
"loss": 0.1943,
|
1033 |
+
"step": 127
|
1034 |
+
},
|
1035 |
+
{
|
1036 |
+
"epoch": 0.5,
|
1037 |
+
"grad_norm": 0.6558122415773976,
|
1038 |
+
"learning_rate": 1e-05,
|
1039 |
+
"loss": 0.2185,
|
1040 |
+
"step": 128
|
1041 |
+
},
|
1042 |
+
{
|
1043 |
+
"epoch": 0.5,
|
1044 |
+
"eval_dev_acc": 0.4765625,
|
1045 |
+
"eval_dev_token": 4368.859375,
|
1046 |
+
"eval_runtime": 161.9718,
|
1047 |
+
"eval_samples_per_second": 0.099,
|
1048 |
+
"eval_steps_per_second": 0.006,
|
1049 |
+
"step": 128
|
1050 |
+
},
|
1051 |
+
{
|
1052 |
+
"epoch": 0.50390625,
|
1053 |
+
"grad_norm": 0.4099906022533745,
|
1054 |
+
"learning_rate": 1e-05,
|
1055 |
+
"loss": 0.2113,
|
1056 |
+
"step": 129
|
1057 |
+
},
|
1058 |
+
{
|
1059 |
+
"epoch": 0.5078125,
|
1060 |
+
"grad_norm": 0.49752415105495956,
|
1061 |
+
"learning_rate": 1e-05,
|
1062 |
+
"loss": 0.2217,
|
1063 |
+
"step": 130
|
1064 |
+
},
|
1065 |
+
{
|
1066 |
+
"epoch": 0.51171875,
|
1067 |
+
"grad_norm": 0.8912790018467623,
|
1068 |
+
"learning_rate": 1e-05,
|
1069 |
+
"loss": 0.3422,
|
1070 |
+
"step": 131
|
1071 |
+
},
|
1072 |
+
{
|
1073 |
+
"epoch": 0.515625,
|
1074 |
+
"grad_norm": 0.6764829647253893,
|
1075 |
+
"learning_rate": 1e-05,
|
1076 |
+
"loss": 0.2055,
|
1077 |
+
"step": 132
|
1078 |
+
},
|
1079 |
+
{
|
1080 |
+
"epoch": 0.51953125,
|
1081 |
+
"grad_norm": 0.8399641090693946,
|
1082 |
+
"learning_rate": 1e-05,
|
1083 |
+
"loss": 0.2087,
|
1084 |
+
"step": 133
|
1085 |
+
},
|
1086 |
+
{
|
1087 |
+
"epoch": 0.5234375,
|
1088 |
+
"grad_norm": 0.4594160953603203,
|
1089 |
+
"learning_rate": 1e-05,
|
1090 |
+
"loss": 0.2093,
|
1091 |
+
"step": 134
|
1092 |
+
},
|
1093 |
+
{
|
1094 |
+
"epoch": 0.52734375,
|
1095 |
+
"grad_norm": 0.7432138703184232,
|
1096 |
+
"learning_rate": 1e-05,
|
1097 |
+
"loss": 0.1969,
|
1098 |
+
"step": 135
|
1099 |
+
},
|
1100 |
+
{
|
1101 |
+
"epoch": 0.53125,
|
1102 |
+
"grad_norm": 0.4584467325236011,
|
1103 |
+
"learning_rate": 1e-05,
|
1104 |
+
"loss": 0.1806,
|
1105 |
+
"step": 136
|
1106 |
+
},
|
1107 |
+
{
|
1108 |
+
"epoch": 0.53125,
|
1109 |
+
"eval_dev_acc": 0.4765625,
|
1110 |
+
"eval_dev_token": 4603.53125,
|
1111 |
+
"eval_runtime": 164.3452,
|
1112 |
+
"eval_samples_per_second": 0.097,
|
1113 |
+
"eval_steps_per_second": 0.006,
|
1114 |
+
"step": 136
|
1115 |
+
},
|
1116 |
+
{
|
1117 |
+
"epoch": 0.53515625,
|
1118 |
+
"grad_norm": 0.6458588312529675,
|
1119 |
+
"learning_rate": 1e-05,
|
1120 |
+
"loss": 0.2087,
|
1121 |
+
"step": 137
|
1122 |
+
},
|
1123 |
+
{
|
1124 |
+
"epoch": 0.5390625,
|
1125 |
+
"grad_norm": 0.7370624067340756,
|
1126 |
+
"learning_rate": 1e-05,
|
1127 |
+
"loss": 0.1854,
|
1128 |
+
"step": 138
|
1129 |
+
},
|
1130 |
+
{
|
1131 |
+
"epoch": 0.54296875,
|
1132 |
+
"grad_norm": 0.7141604462138248,
|
1133 |
+
"learning_rate": 1e-05,
|
1134 |
+
"loss": 0.2535,
|
1135 |
+
"step": 139
|
1136 |
+
},
|
1137 |
+
{
|
1138 |
+
"epoch": 0.546875,
|
1139 |
+
"grad_norm": 0.8212814690178184,
|
1140 |
+
"learning_rate": 1e-05,
|
1141 |
+
"loss": 0.1668,
|
1142 |
+
"step": 140
|
1143 |
+
},
|
1144 |
+
{
|
1145 |
+
"epoch": 0.55078125,
|
1146 |
+
"grad_norm": 0.5799692948316157,
|
1147 |
+
"learning_rate": 1e-05,
|
1148 |
+
"loss": 0.2375,
|
1149 |
+
"step": 141
|
1150 |
+
},
|
1151 |
+
{
|
1152 |
+
"epoch": 0.5546875,
|
1153 |
+
"grad_norm": 0.5333639624775814,
|
1154 |
+
"learning_rate": 1e-05,
|
1155 |
+
"loss": 0.1737,
|
1156 |
+
"step": 142
|
1157 |
+
},
|
1158 |
+
{
|
1159 |
+
"epoch": 0.55859375,
|
1160 |
+
"grad_norm": 0.4076841439195106,
|
1161 |
+
"learning_rate": 1e-05,
|
1162 |
+
"loss": 0.1627,
|
1163 |
+
"step": 143
|
1164 |
+
},
|
1165 |
+
{
|
1166 |
+
"epoch": 0.5625,
|
1167 |
+
"grad_norm": 0.4118175478201596,
|
1168 |
+
"learning_rate": 1e-05,
|
1169 |
+
"loss": 0.1576,
|
1170 |
+
"step": 144
|
1171 |
+
},
|
1172 |
+
{
|
1173 |
+
"epoch": 0.5625,
|
1174 |
+
"eval_dev_acc": 0.5234375,
|
1175 |
+
"eval_dev_token": 5125.0703125,
|
1176 |
+
"eval_runtime": 168.804,
|
1177 |
+
"eval_samples_per_second": 0.095,
|
1178 |
+
"eval_steps_per_second": 0.006,
|
1179 |
+
"step": 144
|
1180 |
+
},
|
1181 |
+
{
|
1182 |
+
"epoch": 0.56640625,
|
1183 |
+
"grad_norm": 0.5988381099011506,
|
1184 |
+
"learning_rate": 1e-05,
|
1185 |
+
"loss": 0.1656,
|
1186 |
+
"step": 145
|
1187 |
+
},
|
1188 |
+
{
|
1189 |
+
"epoch": 0.5703125,
|
1190 |
+
"grad_norm": 0.9328153493065982,
|
1191 |
+
"learning_rate": 1e-05,
|
1192 |
+
"loss": 0.1788,
|
1193 |
+
"step": 146
|
1194 |
+
},
|
1195 |
+
{
|
1196 |
+
"epoch": 0.57421875,
|
1197 |
+
"grad_norm": 0.8013592126955402,
|
1198 |
+
"learning_rate": 1e-05,
|
1199 |
+
"loss": 0.2009,
|
1200 |
+
"step": 147
|
1201 |
+
},
|
1202 |
+
{
|
1203 |
+
"epoch": 0.578125,
|
1204 |
+
"grad_norm": 0.4868159061171701,
|
1205 |
+
"learning_rate": 1e-05,
|
1206 |
+
"loss": 0.217,
|
1207 |
+
"step": 148
|
1208 |
+
},
|
1209 |
+
{
|
1210 |
+
"epoch": 0.58203125,
|
1211 |
+
"grad_norm": 0.6758953539585006,
|
1212 |
+
"learning_rate": 1e-05,
|
1213 |
+
"loss": 0.2344,
|
1214 |
+
"step": 149
|
1215 |
+
},
|
1216 |
+
{
|
1217 |
+
"epoch": 0.5859375,
|
1218 |
+
"grad_norm": 0.8609458752061137,
|
1219 |
+
"learning_rate": 1e-05,
|
1220 |
+
"loss": 0.1939,
|
1221 |
+
"step": 150
|
1222 |
+
},
|
1223 |
+
{
|
1224 |
+
"epoch": 0.58984375,
|
1225 |
+
"grad_norm": 0.45913847739444186,
|
1226 |
+
"learning_rate": 1e-05,
|
1227 |
+
"loss": 0.1691,
|
1228 |
+
"step": 151
|
1229 |
+
},
|
1230 |
+
{
|
1231 |
+
"epoch": 0.59375,
|
1232 |
+
"grad_norm": 0.8064977044716175,
|
1233 |
+
"learning_rate": 1e-05,
|
1234 |
+
"loss": 0.1949,
|
1235 |
+
"step": 152
|
1236 |
+
},
|
1237 |
+
{
|
1238 |
+
"epoch": 0.59375,
|
1239 |
+
"eval_dev_acc": 0.40625,
|
1240 |
+
"eval_dev_token": 4508.484375,
|
1241 |
+
"eval_runtime": 160.3398,
|
1242 |
+
"eval_samples_per_second": 0.1,
|
1243 |
+
"eval_steps_per_second": 0.006,
|
1244 |
+
"step": 152
|
1245 |
+
},
|
1246 |
+
{
|
1247 |
+
"epoch": 0.59765625,
|
1248 |
+
"grad_norm": 0.9904042315049291,
|
1249 |
+
"learning_rate": 1e-05,
|
1250 |
+
"loss": 0.2253,
|
1251 |
+
"step": 153
|
1252 |
+
},
|
1253 |
+
{
|
1254 |
+
"epoch": 0.6015625,
|
1255 |
+
"grad_norm": 0.5524318414569037,
|
1256 |
+
"learning_rate": 1e-05,
|
1257 |
+
"loss": 0.2535,
|
1258 |
+
"step": 154
|
1259 |
+
},
|
1260 |
+
{
|
1261 |
+
"epoch": 0.60546875,
|
1262 |
+
"grad_norm": 0.418186463867415,
|
1263 |
+
"learning_rate": 1e-05,
|
1264 |
+
"loss": 0.1884,
|
1265 |
+
"step": 155
|
1266 |
+
},
|
1267 |
+
{
|
1268 |
+
"epoch": 0.609375,
|
1269 |
+
"grad_norm": 0.6311027708045368,
|
1270 |
+
"learning_rate": 1e-05,
|
1271 |
+
"loss": 0.2408,
|
1272 |
+
"step": 156
|
1273 |
+
},
|
1274 |
+
{
|
1275 |
+
"epoch": 0.61328125,
|
1276 |
+
"grad_norm": 0.4550696199781805,
|
1277 |
+
"learning_rate": 1e-05,
|
1278 |
+
"loss": 0.173,
|
1279 |
+
"step": 157
|
1280 |
+
},
|
1281 |
+
{
|
1282 |
+
"epoch": 0.6171875,
|
1283 |
+
"grad_norm": 0.4596598696608727,
|
1284 |
+
"learning_rate": 1e-05,
|
1285 |
+
"loss": 0.1592,
|
1286 |
+
"step": 158
|
1287 |
+
},
|
1288 |
+
{
|
1289 |
+
"epoch": 0.62109375,
|
1290 |
+
"grad_norm": 0.5573937890044522,
|
1291 |
+
"learning_rate": 1e-05,
|
1292 |
+
"loss": 0.1748,
|
1293 |
+
"step": 159
|
1294 |
+
},
|
1295 |
+
{
|
1296 |
+
"epoch": 0.625,
|
1297 |
+
"grad_norm": 1.0862165315332113,
|
1298 |
+
"learning_rate": 1e-05,
|
1299 |
+
"loss": 0.2369,
|
1300 |
+
"step": 160
|
1301 |
+
},
|
1302 |
+
{
|
1303 |
+
"epoch": 0.625,
|
1304 |
+
"eval_dev_acc": 0.4296875,
|
1305 |
+
"eval_dev_token": 4869.8828125,
|
1306 |
+
"eval_runtime": 167.2914,
|
1307 |
+
"eval_samples_per_second": 0.096,
|
1308 |
+
"eval_steps_per_second": 0.006,
|
1309 |
+
"step": 160
|
1310 |
+
},
|
1311 |
+
{
|
1312 |
+
"epoch": 0.62890625,
|
1313 |
+
"grad_norm": 0.46051384064237827,
|
1314 |
+
"learning_rate": 1e-05,
|
1315 |
+
"loss": 0.2086,
|
1316 |
+
"step": 161
|
1317 |
+
},
|
1318 |
+
{
|
1319 |
+
"epoch": 0.6328125,
|
1320 |
+
"grad_norm": 0.7125397532570018,
|
1321 |
+
"learning_rate": 1e-05,
|
1322 |
+
"loss": 0.2212,
|
1323 |
+
"step": 162
|
1324 |
+
},
|
1325 |
+
{
|
1326 |
+
"epoch": 0.63671875,
|
1327 |
+
"grad_norm": 0.564820498711706,
|
1328 |
+
"learning_rate": 1e-05,
|
1329 |
+
"loss": 0.3019,
|
1330 |
+
"step": 163
|
1331 |
+
},
|
1332 |
+
{
|
1333 |
+
"epoch": 0.640625,
|
1334 |
+
"grad_norm": 0.5218656690400247,
|
1335 |
+
"learning_rate": 1e-05,
|
1336 |
+
"loss": 0.1324,
|
1337 |
+
"step": 164
|
1338 |
+
},
|
1339 |
+
{
|
1340 |
+
"epoch": 0.64453125,
|
1341 |
+
"grad_norm": 0.4994022980399308,
|
1342 |
+
"learning_rate": 1e-05,
|
1343 |
+
"loss": 0.1438,
|
1344 |
+
"step": 165
|
1345 |
+
},
|
1346 |
+
{
|
1347 |
+
"epoch": 0.6484375,
|
1348 |
+
"grad_norm": 0.7016809849517179,
|
1349 |
+
"learning_rate": 1e-05,
|
1350 |
+
"loss": 0.2791,
|
1351 |
+
"step": 166
|
1352 |
+
},
|
1353 |
+
{
|
1354 |
+
"epoch": 0.65234375,
|
1355 |
+
"grad_norm": 0.597463304680723,
|
1356 |
+
"learning_rate": 1e-05,
|
1357 |
+
"loss": 0.1749,
|
1358 |
+
"step": 167
|
1359 |
+
},
|
1360 |
+
{
|
1361 |
+
"epoch": 0.65625,
|
1362 |
+
"grad_norm": 0.5536855781273838,
|
1363 |
+
"learning_rate": 1e-05,
|
1364 |
+
"loss": 0.2391,
|
1365 |
+
"step": 168
|
1366 |
+
},
|
1367 |
+
{
|
1368 |
+
"epoch": 0.65625,
|
1369 |
+
"eval_dev_acc": 0.3203125,
|
1370 |
+
"eval_dev_token": 5451.3671875,
|
1371 |
+
"eval_runtime": 172.7574,
|
1372 |
+
"eval_samples_per_second": 0.093,
|
1373 |
+
"eval_steps_per_second": 0.006,
|
1374 |
+
"step": 168
|
1375 |
+
},
|
1376 |
+
{
|
1377 |
+
"epoch": 0.66015625,
|
1378 |
+
"grad_norm": 0.9103508979108635,
|
1379 |
+
"learning_rate": 1e-05,
|
1380 |
+
"loss": 0.2613,
|
1381 |
+
"step": 169
|
1382 |
+
},
|
1383 |
+
{
|
1384 |
+
"epoch": 0.6640625,
|
1385 |
+
"grad_norm": 0.4928845564740678,
|
1386 |
+
"learning_rate": 1e-05,
|
1387 |
+
"loss": 0.215,
|
1388 |
+
"step": 170
|
1389 |
+
},
|
1390 |
+
{
|
1391 |
+
"epoch": 0.66796875,
|
1392 |
+
"grad_norm": 0.8690405638773996,
|
1393 |
+
"learning_rate": 1e-05,
|
1394 |
+
"loss": 0.2355,
|
1395 |
+
"step": 171
|
1396 |
+
},
|
1397 |
+
{
|
1398 |
+
"epoch": 0.671875,
|
1399 |
+
"grad_norm": 0.5511255682147113,
|
1400 |
+
"learning_rate": 1e-05,
|
1401 |
+
"loss": 0.2406,
|
1402 |
+
"step": 172
|
1403 |
+
},
|
1404 |
+
{
|
1405 |
+
"epoch": 0.67578125,
|
1406 |
+
"grad_norm": 0.44346107905460214,
|
1407 |
+
"learning_rate": 1e-05,
|
1408 |
+
"loss": 0.1867,
|
1409 |
+
"step": 173
|
1410 |
+
},
|
1411 |
+
{
|
1412 |
+
"epoch": 0.6796875,
|
1413 |
+
"grad_norm": 0.4019557678019079,
|
1414 |
+
"learning_rate": 1e-05,
|
1415 |
+
"loss": 0.1488,
|
1416 |
+
"step": 174
|
1417 |
+
},
|
1418 |
+
{
|
1419 |
+
"epoch": 0.68359375,
|
1420 |
+
"grad_norm": 0.4139658009208469,
|
1421 |
+
"learning_rate": 1e-05,
|
1422 |
+
"loss": 0.1666,
|
1423 |
+
"step": 175
|
1424 |
+
},
|
1425 |
+
{
|
1426 |
+
"epoch": 0.6875,
|
1427 |
+
"grad_norm": 0.45363011716779816,
|
1428 |
+
"learning_rate": 1e-05,
|
1429 |
+
"loss": 0.2006,
|
1430 |
+
"step": 176
|
1431 |
+
},
|
1432 |
+
{
|
1433 |
+
"epoch": 0.6875,
|
1434 |
+
"eval_dev_acc": 0.3385826647281647,
|
1435 |
+
"eval_dev_token": 4971.81884765625,
|
1436 |
+
"eval_runtime": 166.9967,
|
1437 |
+
"eval_samples_per_second": 0.096,
|
1438 |
+
"eval_steps_per_second": 0.006,
|
1439 |
+
"step": 176
|
1440 |
+
},
|
1441 |
+
{
|
1442 |
+
"epoch": 0.69140625,
|
1443 |
+
"grad_norm": 0.46674698673244774,
|
1444 |
+
"learning_rate": 1e-05,
|
1445 |
+
"loss": 0.1788,
|
1446 |
+
"step": 177
|
1447 |
+
},
|
1448 |
+
{
|
1449 |
+
"epoch": 0.6953125,
|
1450 |
+
"grad_norm": 0.5396579551057291,
|
1451 |
+
"learning_rate": 1e-05,
|
1452 |
+
"loss": 0.1857,
|
1453 |
+
"step": 178
|
1454 |
+
},
|
1455 |
+
{
|
1456 |
+
"epoch": 0.69921875,
|
1457 |
+
"grad_norm": 0.42472472699800484,
|
1458 |
+
"learning_rate": 1e-05,
|
1459 |
+
"loss": 0.1707,
|
1460 |
+
"step": 179
|
1461 |
+
},
|
1462 |
+
{
|
1463 |
+
"epoch": 0.703125,
|
1464 |
+
"grad_norm": 0.4208916108378261,
|
1465 |
+
"learning_rate": 1e-05,
|
1466 |
+
"loss": 0.1736,
|
1467 |
+
"step": 180
|
1468 |
+
},
|
1469 |
+
{
|
1470 |
+
"epoch": 0.70703125,
|
1471 |
+
"grad_norm": 0.5161632347165661,
|
1472 |
+
"learning_rate": 1e-05,
|
1473 |
+
"loss": 0.2074,
|
1474 |
+
"step": 181
|
1475 |
+
},
|
1476 |
+
{
|
1477 |
+
"epoch": 0.7109375,
|
1478 |
+
"grad_norm": 0.4851147968745633,
|
1479 |
+
"learning_rate": 1e-05,
|
1480 |
+
"loss": 0.2183,
|
1481 |
+
"step": 182
|
1482 |
+
},
|
1483 |
+
{
|
1484 |
+
"epoch": 0.71484375,
|
1485 |
+
"grad_norm": 0.5286494967968609,
|
1486 |
+
"learning_rate": 1e-05,
|
1487 |
+
"loss": 0.1877,
|
1488 |
+
"step": 183
|
1489 |
+
},
|
1490 |
+
{
|
1491 |
+
"epoch": 0.71875,
|
1492 |
+
"grad_norm": 0.5399316089624949,
|
1493 |
+
"learning_rate": 1e-05,
|
1494 |
+
"loss": 0.209,
|
1495 |
+
"step": 184
|
1496 |
+
},
|
1497 |
+
{
|
1498 |
+
"epoch": 0.71875,
|
1499 |
+
"eval_dev_acc": 0.3984375,
|
1500 |
+
"eval_dev_token": 4787.84375,
|
1501 |
+
"eval_runtime": 166.2574,
|
1502 |
+
"eval_samples_per_second": 0.096,
|
1503 |
+
"eval_steps_per_second": 0.006,
|
1504 |
+
"step": 184
|
1505 |
+
},
|
1506 |
+
{
|
1507 |
+
"epoch": 0.72265625,
|
1508 |
+
"grad_norm": 0.7188938790166789,
|
1509 |
+
"learning_rate": 1e-05,
|
1510 |
+
"loss": 0.2065,
|
1511 |
+
"step": 185
|
1512 |
+
},
|
1513 |
+
{
|
1514 |
+
"epoch": 0.7265625,
|
1515 |
+
"grad_norm": 0.5843767003652576,
|
1516 |
+
"learning_rate": 1e-05,
|
1517 |
+
"loss": 0.2356,
|
1518 |
+
"step": 186
|
1519 |
+
},
|
1520 |
+
{
|
1521 |
+
"epoch": 0.73046875,
|
1522 |
+
"grad_norm": 0.4904003204685076,
|
1523 |
+
"learning_rate": 1e-05,
|
1524 |
+
"loss": 0.201,
|
1525 |
+
"step": 187
|
1526 |
+
},
|
1527 |
+
{
|
1528 |
+
"epoch": 0.734375,
|
1529 |
+
"grad_norm": 0.485266158116283,
|
1530 |
+
"learning_rate": 1e-05,
|
1531 |
+
"loss": 0.1869,
|
1532 |
+
"step": 188
|
1533 |
+
},
|
1534 |
+
{
|
1535 |
+
"epoch": 0.73828125,
|
1536 |
+
"grad_norm": 0.5242977395658632,
|
1537 |
+
"learning_rate": 1e-05,
|
1538 |
+
"loss": 0.2122,
|
1539 |
+
"step": 189
|
1540 |
+
},
|
1541 |
+
{
|
1542 |
+
"epoch": 0.7421875,
|
1543 |
+
"grad_norm": 0.5417537780138298,
|
1544 |
+
"learning_rate": 1e-05,
|
1545 |
+
"loss": 0.2799,
|
1546 |
+
"step": 190
|
1547 |
+
},
|
1548 |
+
{
|
1549 |
+
"epoch": 0.74609375,
|
1550 |
+
"grad_norm": 0.48949419193338123,
|
1551 |
+
"learning_rate": 1e-05,
|
1552 |
+
"loss": 0.212,
|
1553 |
+
"step": 191
|
1554 |
+
},
|
1555 |
+
{
|
1556 |
+
"epoch": 0.75,
|
1557 |
+
"grad_norm": 0.48118963817889204,
|
1558 |
+
"learning_rate": 1e-05,
|
1559 |
+
"loss": 0.2195,
|
1560 |
+
"step": 192
|
1561 |
+
},
|
1562 |
+
{
|
1563 |
+
"epoch": 0.75,
|
1564 |
+
"eval_dev_acc": 0.453125,
|
1565 |
+
"eval_dev_token": 5056.7421875,
|
1566 |
+
"eval_runtime": 168.273,
|
1567 |
+
"eval_samples_per_second": 0.095,
|
1568 |
+
"eval_steps_per_second": 0.006,
|
1569 |
+
"step": 192
|
1570 |
+
},
|
1571 |
+
{
|
1572 |
+
"epoch": 0.75390625,
|
1573 |
+
"grad_norm": 0.6844465372064547,
|
1574 |
+
"learning_rate": 1e-05,
|
1575 |
+
"loss": 0.1645,
|
1576 |
+
"step": 193
|
1577 |
+
},
|
1578 |
+
{
|
1579 |
+
"epoch": 0.7578125,
|
1580 |
+
"grad_norm": 0.49653100043792153,
|
1581 |
+
"learning_rate": 1e-05,
|
1582 |
+
"loss": 0.2023,
|
1583 |
+
"step": 194
|
1584 |
+
},
|
1585 |
+
{
|
1586 |
+
"epoch": 0.76171875,
|
1587 |
+
"grad_norm": 0.5539027026151374,
|
1588 |
+
"learning_rate": 1e-05,
|
1589 |
+
"loss": 0.2348,
|
1590 |
+
"step": 195
|
1591 |
+
},
|
1592 |
+
{
|
1593 |
+
"epoch": 0.765625,
|
1594 |
+
"grad_norm": 0.5003270709383194,
|
1595 |
+
"learning_rate": 1e-05,
|
1596 |
+
"loss": 0.2545,
|
1597 |
+
"step": 196
|
1598 |
+
},
|
1599 |
+
{
|
1600 |
+
"epoch": 0.76953125,
|
1601 |
+
"grad_norm": 0.5666703162116131,
|
1602 |
+
"learning_rate": 1e-05,
|
1603 |
+
"loss": 0.2739,
|
1604 |
+
"step": 197
|
1605 |
+
},
|
1606 |
+
{
|
1607 |
+
"epoch": 0.7734375,
|
1608 |
+
"grad_norm": 0.5281121627729704,
|
1609 |
+
"learning_rate": 1e-05,
|
1610 |
+
"loss": 0.1927,
|
1611 |
+
"step": 198
|
1612 |
+
},
|
1613 |
+
{
|
1614 |
+
"epoch": 0.77734375,
|
1615 |
+
"grad_norm": 0.4691586351966124,
|
1616 |
+
"learning_rate": 1e-05,
|
1617 |
+
"loss": 0.2101,
|
1618 |
+
"step": 199
|
1619 |
+
},
|
1620 |
+
{
|
1621 |
+
"epoch": 0.78125,
|
1622 |
+
"grad_norm": 0.43348894899907703,
|
1623 |
+
"learning_rate": 1e-05,
|
1624 |
+
"loss": 0.1636,
|
1625 |
+
"step": 200
|
1626 |
+
},
|
1627 |
+
{
|
1628 |
+
"epoch": 0.78125,
|
1629 |
+
"eval_dev_acc": 0.4296875,
|
1630 |
+
"eval_dev_token": 5082.265625,
|
1631 |
+
"eval_runtime": 169.7777,
|
1632 |
+
"eval_samples_per_second": 0.094,
|
1633 |
+
"eval_steps_per_second": 0.006,
|
1634 |
+
"step": 200
|
1635 |
+
},
|
1636 |
+
{
|
1637 |
+
"epoch": 0.78515625,
|
1638 |
+
"grad_norm": 0.4995118305726593,
|
1639 |
+
"learning_rate": 1e-05,
|
1640 |
+
"loss": 0.2149,
|
1641 |
+
"step": 201
|
1642 |
+
},
|
1643 |
+
{
|
1644 |
+
"epoch": 0.7890625,
|
1645 |
+
"grad_norm": 0.3958721084761467,
|
1646 |
+
"learning_rate": 1e-05,
|
1647 |
+
"loss": 0.1732,
|
1648 |
+
"step": 202
|
1649 |
+
},
|
1650 |
+
{
|
1651 |
+
"epoch": 0.79296875,
|
1652 |
+
"grad_norm": 0.4883258744044862,
|
1653 |
+
"learning_rate": 1e-05,
|
1654 |
+
"loss": 0.219,
|
1655 |
+
"step": 203
|
1656 |
+
},
|
1657 |
+
{
|
1658 |
+
"epoch": 0.796875,
|
1659 |
+
"grad_norm": 0.45472746506302575,
|
1660 |
+
"learning_rate": 1e-05,
|
1661 |
+
"loss": 0.2187,
|
1662 |
+
"step": 204
|
1663 |
+
},
|
1664 |
+
{
|
1665 |
+
"epoch": 0.80078125,
|
1666 |
+
"grad_norm": 0.45006095039367805,
|
1667 |
+
"learning_rate": 1e-05,
|
1668 |
+
"loss": 0.1924,
|
1669 |
+
"step": 205
|
1670 |
+
},
|
1671 |
+
{
|
1672 |
+
"epoch": 0.8046875,
|
1673 |
+
"grad_norm": 0.4127537232406072,
|
1674 |
+
"learning_rate": 1e-05,
|
1675 |
+
"loss": 0.1736,
|
1676 |
+
"step": 206
|
1677 |
+
},
|
1678 |
+
{
|
1679 |
+
"epoch": 0.80859375,
|
1680 |
+
"grad_norm": 0.4669392415601201,
|
1681 |
+
"learning_rate": 1e-05,
|
1682 |
+
"loss": 0.1847,
|
1683 |
+
"step": 207
|
1684 |
+
},
|
1685 |
+
{
|
1686 |
+
"epoch": 0.8125,
|
1687 |
+
"grad_norm": 0.41469363114093816,
|
1688 |
+
"learning_rate": 1e-05,
|
1689 |
+
"loss": 0.1556,
|
1690 |
+
"step": 208
|
1691 |
+
},
|
1692 |
+
{
|
1693 |
+
"epoch": 0.8125,
|
1694 |
+
"eval_dev_acc": 0.4609375,
|
1695 |
+
"eval_dev_token": 4918.28125,
|
1696 |
+
"eval_runtime": 166.5675,
|
1697 |
+
"eval_samples_per_second": 0.096,
|
1698 |
+
"eval_steps_per_second": 0.006,
|
1699 |
+
"step": 208
|
1700 |
+
},
|
1701 |
+
{
|
1702 |
+
"epoch": 0.81640625,
|
1703 |
+
"grad_norm": 0.4433576280938302,
|
1704 |
+
"learning_rate": 1e-05,
|
1705 |
+
"loss": 0.1934,
|
1706 |
+
"step": 209
|
1707 |
+
},
|
1708 |
+
{
|
1709 |
+
"epoch": 0.8203125,
|
1710 |
+
"grad_norm": 0.4355305023653351,
|
1711 |
+
"learning_rate": 1e-05,
|
1712 |
+
"loss": 0.1742,
|
1713 |
+
"step": 210
|
1714 |
+
},
|
1715 |
+
{
|
1716 |
+
"epoch": 0.82421875,
|
1717 |
+
"grad_norm": 0.44938618579632195,
|
1718 |
+
"learning_rate": 1e-05,
|
1719 |
+
"loss": 0.1902,
|
1720 |
+
"step": 211
|
1721 |
+
},
|
1722 |
+
{
|
1723 |
+
"epoch": 0.828125,
|
1724 |
+
"grad_norm": 0.5351771463999816,
|
1725 |
+
"learning_rate": 1e-05,
|
1726 |
+
"loss": 0.2148,
|
1727 |
+
"step": 212
|
1728 |
+
},
|
1729 |
+
{
|
1730 |
+
"epoch": 0.83203125,
|
1731 |
+
"grad_norm": 0.5839350362138708,
|
1732 |
+
"learning_rate": 1e-05,
|
1733 |
+
"loss": 0.275,
|
1734 |
+
"step": 213
|
1735 |
+
},
|
1736 |
+
{
|
1737 |
+
"epoch": 0.8359375,
|
1738 |
+
"grad_norm": 0.6964110745693202,
|
1739 |
+
"learning_rate": 1e-05,
|
1740 |
+
"loss": 0.2179,
|
1741 |
+
"step": 214
|
1742 |
+
},
|
1743 |
+
{
|
1744 |
+
"epoch": 0.83984375,
|
1745 |
+
"grad_norm": 0.4337830660702992,
|
1746 |
+
"learning_rate": 1e-05,
|
1747 |
+
"loss": 0.2152,
|
1748 |
+
"step": 215
|
1749 |
+
},
|
1750 |
+
{
|
1751 |
+
"epoch": 0.84375,
|
1752 |
+
"grad_norm": 0.46223312750006246,
|
1753 |
+
"learning_rate": 1e-05,
|
1754 |
+
"loss": 0.2405,
|
1755 |
+
"step": 216
|
1756 |
+
},
|
1757 |
+
{
|
1758 |
+
"epoch": 0.84375,
|
1759 |
+
"eval_dev_acc": 0.3828125,
|
1760 |
+
"eval_dev_token": 5435.3046875,
|
1761 |
+
"eval_runtime": 173.8173,
|
1762 |
+
"eval_samples_per_second": 0.092,
|
1763 |
+
"eval_steps_per_second": 0.006,
|
1764 |
+
"step": 216
|
1765 |
+
},
|
1766 |
+
{
|
1767 |
+
"epoch": 0.84765625,
|
1768 |
+
"grad_norm": 0.5541820526606585,
|
1769 |
+
"learning_rate": 1e-05,
|
1770 |
+
"loss": 0.2751,
|
1771 |
+
"step": 217
|
1772 |
+
},
|
1773 |
+
{
|
1774 |
+
"epoch": 0.8515625,
|
1775 |
+
"grad_norm": 0.4662570041545537,
|
1776 |
+
"learning_rate": 1e-05,
|
1777 |
+
"loss": 0.2142,
|
1778 |
+
"step": 218
|
1779 |
+
},
|
1780 |
+
{
|
1781 |
+
"epoch": 0.85546875,
|
1782 |
+
"grad_norm": 0.7737037625157579,
|
1783 |
+
"learning_rate": 1e-05,
|
1784 |
+
"loss": 0.2397,
|
1785 |
+
"step": 219
|
1786 |
+
},
|
1787 |
+
{
|
1788 |
+
"epoch": 0.859375,
|
1789 |
+
"grad_norm": 0.5572195616624243,
|
1790 |
+
"learning_rate": 1e-05,
|
1791 |
+
"loss": 0.2421,
|
1792 |
+
"step": 220
|
1793 |
+
},
|
1794 |
+
{
|
1795 |
+
"epoch": 0.86328125,
|
1796 |
+
"grad_norm": 0.5088509372691609,
|
1797 |
+
"learning_rate": 1e-05,
|
1798 |
+
"loss": 0.1875,
|
1799 |
+
"step": 221
|
1800 |
+
},
|
1801 |
+
{
|
1802 |
+
"epoch": 0.8671875,
|
1803 |
+
"grad_norm": 0.508699458613964,
|
1804 |
+
"learning_rate": 1e-05,
|
1805 |
+
"loss": 0.1927,
|
1806 |
+
"step": 222
|
1807 |
+
},
|
1808 |
+
{
|
1809 |
+
"epoch": 0.87109375,
|
1810 |
+
"grad_norm": 0.5150091482241945,
|
1811 |
+
"learning_rate": 1e-05,
|
1812 |
+
"loss": 0.2536,
|
1813 |
+
"step": 223
|
1814 |
+
},
|
1815 |
+
{
|
1816 |
+
"epoch": 0.875,
|
1817 |
+
"grad_norm": 0.5203627078659161,
|
1818 |
+
"learning_rate": 1e-05,
|
1819 |
+
"loss": 0.2571,
|
1820 |
+
"step": 224
|
1821 |
+
},
|
1822 |
+
{
|
1823 |
+
"epoch": 0.875,
|
1824 |
+
"eval_dev_acc": 0.3515625,
|
1825 |
+
"eval_dev_token": 5227.0859375,
|
1826 |
+
"eval_runtime": 170.2355,
|
1827 |
+
"eval_samples_per_second": 0.094,
|
1828 |
+
"eval_steps_per_second": 0.006,
|
1829 |
+
"step": 224
|
1830 |
+
},
|
1831 |
+
{
|
1832 |
+
"epoch": 0.87890625,
|
1833 |
+
"grad_norm": 0.5279392216696818,
|
1834 |
+
"learning_rate": 1e-05,
|
1835 |
+
"loss": 0.2278,
|
1836 |
+
"step": 225
|
1837 |
+
},
|
1838 |
+
{
|
1839 |
+
"epoch": 0.8828125,
|
1840 |
+
"grad_norm": 0.45017131620724865,
|
1841 |
+
"learning_rate": 1e-05,
|
1842 |
+
"loss": 0.2132,
|
1843 |
+
"step": 226
|
1844 |
+
},
|
1845 |
+
{
|
1846 |
+
"epoch": 0.88671875,
|
1847 |
+
"grad_norm": 0.48915211275869575,
|
1848 |
+
"learning_rate": 1e-05,
|
1849 |
+
"loss": 0.2627,
|
1850 |
+
"step": 227
|
1851 |
+
},
|
1852 |
+
{
|
1853 |
+
"epoch": 0.890625,
|
1854 |
+
"grad_norm": 0.4606618945421734,
|
1855 |
+
"learning_rate": 1e-05,
|
1856 |
+
"loss": 0.1528,
|
1857 |
+
"step": 228
|
1858 |
+
},
|
1859 |
+
{
|
1860 |
+
"epoch": 0.89453125,
|
1861 |
+
"grad_norm": 0.5072593200666395,
|
1862 |
+
"learning_rate": 1e-05,
|
1863 |
+
"loss": 0.2148,
|
1864 |
+
"step": 229
|
1865 |
+
},
|
1866 |
+
{
|
1867 |
+
"epoch": 0.8984375,
|
1868 |
+
"grad_norm": 0.5513069869439534,
|
1869 |
+
"learning_rate": 1e-05,
|
1870 |
+
"loss": 0.2319,
|
1871 |
+
"step": 230
|
1872 |
+
},
|
1873 |
+
{
|
1874 |
+
"epoch": 0.90234375,
|
1875 |
+
"grad_norm": 0.4917083878550277,
|
1876 |
+
"learning_rate": 1e-05,
|
1877 |
+
"loss": 0.1989,
|
1878 |
+
"step": 231
|
1879 |
+
},
|
1880 |
+
{
|
1881 |
+
"epoch": 0.90625,
|
1882 |
+
"grad_norm": 0.4027028580105545,
|
1883 |
+
"learning_rate": 1e-05,
|
1884 |
+
"loss": 0.1398,
|
1885 |
+
"step": 232
|
1886 |
+
},
|
1887 |
+
{
|
1888 |
+
"epoch": 0.90625,
|
1889 |
+
"eval_dev_acc": 0.3779527544975281,
|
1890 |
+
"eval_dev_token": 5651.6455078125,
|
1891 |
+
"eval_runtime": 175.5543,
|
1892 |
+
"eval_samples_per_second": 0.091,
|
1893 |
+
"eval_steps_per_second": 0.006,
|
1894 |
+
"step": 232
|
1895 |
+
},
|
1896 |
+
{
|
1897 |
+
"epoch": 0.91015625,
|
1898 |
+
"grad_norm": 0.4098440727615931,
|
1899 |
+
"learning_rate": 1e-05,
|
1900 |
+
"loss": 0.1481,
|
1901 |
+
"step": 233
|
1902 |
+
},
|
1903 |
+
{
|
1904 |
+
"epoch": 0.9140625,
|
1905 |
+
"grad_norm": 0.4379253949500134,
|
1906 |
+
"learning_rate": 1e-05,
|
1907 |
+
"loss": 0.172,
|
1908 |
+
"step": 234
|
1909 |
+
},
|
1910 |
+
{
|
1911 |
+
"epoch": 0.91796875,
|
1912 |
+
"grad_norm": 0.6161974608496972,
|
1913 |
+
"learning_rate": 1e-05,
|
1914 |
+
"loss": 0.2234,
|
1915 |
+
"step": 235
|
1916 |
+
},
|
1917 |
+
{
|
1918 |
+
"epoch": 0.921875,
|
1919 |
+
"grad_norm": 0.6431694552333217,
|
1920 |
+
"learning_rate": 1e-05,
|
1921 |
+
"loss": 0.2928,
|
1922 |
+
"step": 236
|
1923 |
+
},
|
1924 |
+
{
|
1925 |
+
"epoch": 0.92578125,
|
1926 |
+
"grad_norm": 0.7524837454023333,
|
1927 |
+
"learning_rate": 1e-05,
|
1928 |
+
"loss": 0.3518,
|
1929 |
+
"step": 237
|
1930 |
+
},
|
1931 |
+
{
|
1932 |
+
"epoch": 0.9296875,
|
1933 |
+
"grad_norm": 0.5137794157548315,
|
1934 |
+
"learning_rate": 1e-05,
|
1935 |
+
"loss": 0.2371,
|
1936 |
+
"step": 238
|
1937 |
+
},
|
1938 |
+
{
|
1939 |
+
"epoch": 0.93359375,
|
1940 |
+
"grad_norm": 0.42726761741926383,
|
1941 |
+
"learning_rate": 1e-05,
|
1942 |
+
"loss": 0.1349,
|
1943 |
+
"step": 239
|
1944 |
+
},
|
1945 |
+
{
|
1946 |
+
"epoch": 0.9375,
|
1947 |
+
"grad_norm": 0.50721507122848,
|
1948 |
+
"learning_rate": 1e-05,
|
1949 |
+
"loss": 0.147,
|
1950 |
+
"step": 240
|
1951 |
+
},
|
1952 |
+
{
|
1953 |
+
"epoch": 0.9375,
|
1954 |
+
"eval_dev_acc": 0.4375,
|
1955 |
+
"eval_dev_token": 5554.34375,
|
1956 |
+
"eval_runtime": 173.4206,
|
1957 |
+
"eval_samples_per_second": 0.092,
|
1958 |
+
"eval_steps_per_second": 0.006,
|
1959 |
+
"step": 240
|
1960 |
+
},
|
1961 |
+
{
|
1962 |
+
"epoch": 0.94140625,
|
1963 |
+
"grad_norm": 0.5085504060972834,
|
1964 |
+
"learning_rate": 1e-05,
|
1965 |
+
"loss": 0.2115,
|
1966 |
+
"step": 241
|
1967 |
+
},
|
1968 |
+
{
|
1969 |
+
"epoch": 0.9453125,
|
1970 |
+
"grad_norm": 0.5245333395138617,
|
1971 |
+
"learning_rate": 1e-05,
|
1972 |
+
"loss": 0.2203,
|
1973 |
+
"step": 242
|
1974 |
+
},
|
1975 |
+
{
|
1976 |
+
"epoch": 0.94921875,
|
1977 |
+
"grad_norm": 0.5149241747645703,
|
1978 |
+
"learning_rate": 1e-05,
|
1979 |
+
"loss": 0.1935,
|
1980 |
+
"step": 243
|
1981 |
+
},
|
1982 |
+
{
|
1983 |
+
"epoch": 0.953125,
|
1984 |
+
"grad_norm": 0.45199967311107936,
|
1985 |
+
"learning_rate": 1e-05,
|
1986 |
+
"loss": 0.1875,
|
1987 |
+
"step": 244
|
1988 |
+
},
|
1989 |
+
{
|
1990 |
+
"epoch": 0.95703125,
|
1991 |
+
"grad_norm": 0.6017279864923942,
|
1992 |
+
"learning_rate": 1e-05,
|
1993 |
+
"loss": 0.1964,
|
1994 |
+
"step": 245
|
1995 |
+
},
|
1996 |
+
{
|
1997 |
+
"epoch": 0.9609375,
|
1998 |
+
"grad_norm": 0.541548647166723,
|
1999 |
+
"learning_rate": 1e-05,
|
2000 |
+
"loss": 0.2029,
|
2001 |
+
"step": 246
|
2002 |
+
},
|
2003 |
+
{
|
2004 |
+
"epoch": 0.96484375,
|
2005 |
+
"grad_norm": 0.7095706252744872,
|
2006 |
+
"learning_rate": 1e-05,
|
2007 |
+
"loss": 0.1824,
|
2008 |
+
"step": 247
|
2009 |
+
},
|
2010 |
+
{
|
2011 |
+
"epoch": 0.96875,
|
2012 |
+
"grad_norm": 0.6630534512223186,
|
2013 |
+
"learning_rate": 1e-05,
|
2014 |
+
"loss": 0.2346,
|
2015 |
+
"step": 248
|
2016 |
+
},
|
2017 |
+
{
|
2018 |
+
"epoch": 0.96875,
|
2019 |
+
"eval_dev_acc": 0.5234375,
|
2020 |
+
"eval_dev_token": 5464.203125,
|
2021 |
+
"eval_runtime": 173.0858,
|
2022 |
+
"eval_samples_per_second": 0.092,
|
2023 |
+
"eval_steps_per_second": 0.006,
|
2024 |
+
"step": 248
|
2025 |
+
},
|
2026 |
+
{
|
2027 |
+
"epoch": 0.97265625,
|
2028 |
+
"grad_norm": 0.7470938668923351,
|
2029 |
+
"learning_rate": 1e-05,
|
2030 |
+
"loss": 0.3028,
|
2031 |
+
"step": 249
|
2032 |
+
},
|
2033 |
+
{
|
2034 |
+
"epoch": 0.9765625,
|
2035 |
+
"grad_norm": 0.534162369114681,
|
2036 |
+
"learning_rate": 1e-05,
|
2037 |
+
"loss": 0.243,
|
2038 |
+
"step": 250
|
2039 |
+
},
|
2040 |
+
{
|
2041 |
+
"epoch": 0.98046875,
|
2042 |
+
"grad_norm": 0.5240149993617814,
|
2043 |
+
"learning_rate": 1e-05,
|
2044 |
+
"loss": 0.2475,
|
2045 |
+
"step": 251
|
2046 |
+
},
|
2047 |
+
{
|
2048 |
+
"epoch": 0.984375,
|
2049 |
+
"grad_norm": 0.48058164633897993,
|
2050 |
+
"learning_rate": 1e-05,
|
2051 |
+
"loss": 0.2234,
|
2052 |
+
"step": 252
|
2053 |
+
},
|
2054 |
+
{
|
2055 |
+
"epoch": 0.98828125,
|
2056 |
+
"grad_norm": 0.5427424821749397,
|
2057 |
+
"learning_rate": 1e-05,
|
2058 |
+
"loss": 0.2338,
|
2059 |
+
"step": 253
|
2060 |
+
},
|
2061 |
+
{
|
2062 |
+
"epoch": 0.9921875,
|
2063 |
+
"grad_norm": 0.5309304323745797,
|
2064 |
+
"learning_rate": 1e-05,
|
2065 |
+
"loss": 0.2751,
|
2066 |
+
"step": 254
|
2067 |
+
},
|
2068 |
+
{
|
2069 |
+
"epoch": 0.99609375,
|
2070 |
+
"grad_norm": 0.4961154954055658,
|
2071 |
+
"learning_rate": 1e-05,
|
2072 |
+
"loss": 0.2329,
|
2073 |
+
"step": 255
|
2074 |
+
},
|
2075 |
+
{
|
2076 |
+
"epoch": 1.0,
|
2077 |
+
"grad_norm": 0.519835488758917,
|
2078 |
+
"learning_rate": 1e-05,
|
2079 |
+
"loss": 0.2182,
|
2080 |
+
"step": 256
|
2081 |
+
},
|
2082 |
+
{
|
2083 |
+
"epoch": 1.0,
|
2084 |
+
"eval_dev_acc": 0.4453125,
|
2085 |
+
"eval_dev_token": 5674.0546875,
|
2086 |
+
"eval_runtime": 175.8662,
|
2087 |
+
"eval_samples_per_second": 0.091,
|
2088 |
+
"eval_steps_per_second": 0.006,
|
2089 |
+
"step": 256
|
2090 |
+
}
|
2091 |
+
],
|
2092 |
+
"logging_steps": 1.0,
|
2093 |
+
"max_steps": 256,
|
2094 |
+
"num_input_tokens_seen": 0,
|
2095 |
+
"num_train_epochs": 9223372036854775807,
|
2096 |
+
"save_steps": 64,
|
2097 |
+
"stateful_callbacks": {
|
2098 |
+
"TrainerControl": {
|
2099 |
+
"args": {
|
2100 |
+
"should_epoch_stop": false,
|
2101 |
+
"should_evaluate": false,
|
2102 |
+
"should_log": false,
|
2103 |
+
"should_save": true,
|
2104 |
+
"should_training_stop": true
|
2105 |
+
},
|
2106 |
+
"attributes": {}
|
2107 |
+
}
|
2108 |
+
},
|
2109 |
+
"total_flos": 31380919492608.0,
|
2110 |
+
"train_batch_size": 8,
|
2111 |
+
"trial_name": null,
|
2112 |
+
"trial_params": null
|
2113 |
+
}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:293697045c82976ebdb828b71e8c654446c5ec0cc96c6a95e6cd39036cbaa551
|
3 |
+
size 8376
|
zero_to_fp32.py
ADDED
@@ -0,0 +1,674 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# Copyright (c) Microsoft Corporation.
|
4 |
+
# SPDX-License-Identifier: Apache-2.0
|
5 |
+
|
6 |
+
# DeepSpeed Team
|
7 |
+
|
8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
11 |
+
# application.
|
12 |
+
#
|
13 |
+
# example:
|
14 |
+
# python zero_to_fp32.py . output_dir/
|
15 |
+
# or
|
16 |
+
# python zero_to_fp32.py . output_dir/ --safe_serialization
|
17 |
+
|
18 |
+
import argparse
|
19 |
+
import torch
|
20 |
+
import glob
|
21 |
+
import math
|
22 |
+
import os
|
23 |
+
import re
|
24 |
+
import json
|
25 |
+
from tqdm import tqdm
|
26 |
+
from collections import OrderedDict
|
27 |
+
from dataclasses import dataclass
|
28 |
+
|
29 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
30 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
31 |
+
from deepspeed.utils import logger
|
32 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
33 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
34 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
35 |
+
|
36 |
+
|
37 |
+
@dataclass
|
38 |
+
class zero_model_state:
|
39 |
+
buffers: dict()
|
40 |
+
param_shapes: dict()
|
41 |
+
shared_params: list
|
42 |
+
ds_version: int
|
43 |
+
frozen_param_shapes: dict()
|
44 |
+
frozen_param_fragments: dict()
|
45 |
+
|
46 |
+
|
47 |
+
debug = 0
|
48 |
+
|
49 |
+
# load to cpu
|
50 |
+
device = torch.device('cpu')
|
51 |
+
|
52 |
+
|
53 |
+
def atoi(text):
|
54 |
+
return int(text) if text.isdigit() else text
|
55 |
+
|
56 |
+
|
57 |
+
def natural_keys(text):
|
58 |
+
'''
|
59 |
+
alist.sort(key=natural_keys) sorts in human order
|
60 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
61 |
+
(See Toothy's implementation in the comments)
|
62 |
+
'''
|
63 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
64 |
+
|
65 |
+
|
66 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
67 |
+
if not os.path.isdir(checkpoint_dir):
|
68 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
69 |
+
|
70 |
+
# there should be only one file
|
71 |
+
if zero_stage <= 2:
|
72 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
73 |
+
elif zero_stage == 3:
|
74 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
75 |
+
|
76 |
+
if not os.path.exists(file):
|
77 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
78 |
+
|
79 |
+
return file
|
80 |
+
|
81 |
+
|
82 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
83 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
84 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
85 |
+
|
86 |
+
if len(ckpt_files) == 0:
|
87 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
88 |
+
|
89 |
+
return ckpt_files
|
90 |
+
|
91 |
+
|
92 |
+
def get_optim_files(checkpoint_dir):
|
93 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
94 |
+
|
95 |
+
|
96 |
+
def get_model_state_files(checkpoint_dir):
|
97 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
98 |
+
|
99 |
+
|
100 |
+
def parse_model_states(files):
|
101 |
+
zero_model_states = []
|
102 |
+
for file in files:
|
103 |
+
state_dict = torch.load(file, map_location=device)
|
104 |
+
|
105 |
+
if BUFFER_NAMES not in state_dict:
|
106 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
107 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
108 |
+
if debug:
|
109 |
+
print("Found buffers:", buffer_names)
|
110 |
+
|
111 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
112 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
113 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
114 |
+
|
115 |
+
# collect parameters that are included in param_shapes
|
116 |
+
param_names = []
|
117 |
+
for s in param_shapes:
|
118 |
+
for name in s.keys():
|
119 |
+
param_names.append(name)
|
120 |
+
|
121 |
+
# update with frozen parameters
|
122 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
123 |
+
if frozen_param_shapes is not None:
|
124 |
+
if debug:
|
125 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
126 |
+
param_names += list(frozen_param_shapes.keys())
|
127 |
+
|
128 |
+
# handle shared params
|
129 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
130 |
+
|
131 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
132 |
+
|
133 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
134 |
+
|
135 |
+
z_model_state = zero_model_state(buffers=buffers,
|
136 |
+
param_shapes=param_shapes,
|
137 |
+
shared_params=shared_params,
|
138 |
+
ds_version=ds_version,
|
139 |
+
frozen_param_shapes=frozen_param_shapes,
|
140 |
+
frozen_param_fragments=frozen_param_fragments)
|
141 |
+
zero_model_states.append(z_model_state)
|
142 |
+
|
143 |
+
return zero_model_states
|
144 |
+
|
145 |
+
|
146 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
147 |
+
total_files = len(files)
|
148 |
+
state_dicts = []
|
149 |
+
for f in files:
|
150 |
+
state_dict = torch.load(f, map_location=device)
|
151 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
152 |
+
# and also handle the case where it was already removed by another helper script
|
153 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
154 |
+
state_dicts.append(state_dict)
|
155 |
+
|
156 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
157 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
158 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
159 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
160 |
+
|
161 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
162 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
163 |
+
# use the max of the partition_count to get the dp world_size.
|
164 |
+
|
165 |
+
if type(world_size) is list:
|
166 |
+
world_size = max(world_size)
|
167 |
+
|
168 |
+
if world_size != total_files:
|
169 |
+
raise ValueError(
|
170 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
171 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
172 |
+
)
|
173 |
+
|
174 |
+
# the groups are named differently in each stage
|
175 |
+
if zero_stage <= 2:
|
176 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
177 |
+
elif zero_stage == 3:
|
178 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
179 |
+
else:
|
180 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
181 |
+
|
182 |
+
if zero_stage <= 2:
|
183 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
184 |
+
elif zero_stage == 3:
|
185 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
186 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
187 |
+
#
|
188 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
189 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
190 |
+
|
191 |
+
fp32_flat_groups = [
|
192 |
+
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
|
193 |
+
]
|
194 |
+
|
195 |
+
return zero_stage, world_size, fp32_flat_groups
|
196 |
+
|
197 |
+
|
198 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
|
199 |
+
"""
|
200 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
201 |
+
|
202 |
+
Args:
|
203 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
204 |
+
|
205 |
+
"""
|
206 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
207 |
+
|
208 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
209 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
210 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
211 |
+
|
212 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
213 |
+
|
214 |
+
zero_model_states = parse_model_states(model_files)
|
215 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
216 |
+
|
217 |
+
if zero_stage <= 2:
|
218 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
219 |
+
exclude_frozen_parameters)
|
220 |
+
elif zero_stage == 3:
|
221 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
222 |
+
exclude_frozen_parameters)
|
223 |
+
|
224 |
+
|
225 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
226 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
227 |
+
return
|
228 |
+
|
229 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
230 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
231 |
+
|
232 |
+
if debug:
|
233 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
234 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
235 |
+
|
236 |
+
wanted_params = len(frozen_param_shapes)
|
237 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
238 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
239 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
240 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
241 |
+
|
242 |
+
total_params = 0
|
243 |
+
total_numel = 0
|
244 |
+
for name, shape in frozen_param_shapes.items():
|
245 |
+
total_params += 1
|
246 |
+
unpartitioned_numel = shape.numel()
|
247 |
+
total_numel += unpartitioned_numel
|
248 |
+
|
249 |
+
state_dict[name] = frozen_param_fragments[name]
|
250 |
+
|
251 |
+
if debug:
|
252 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
253 |
+
|
254 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
255 |
+
|
256 |
+
|
257 |
+
def _has_callable(obj, fn):
|
258 |
+
attr = getattr(obj, fn, None)
|
259 |
+
return callable(attr)
|
260 |
+
|
261 |
+
|
262 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
263 |
+
param_shapes = zero_model_states[0].param_shapes
|
264 |
+
|
265 |
+
# Reconstruction protocol:
|
266 |
+
#
|
267 |
+
# XXX: document this
|
268 |
+
|
269 |
+
if debug:
|
270 |
+
for i in range(world_size):
|
271 |
+
for j in range(len(fp32_flat_groups[0])):
|
272 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
273 |
+
|
274 |
+
# XXX: memory usage doubles here (zero2)
|
275 |
+
num_param_groups = len(fp32_flat_groups[0])
|
276 |
+
merged_single_partition_of_fp32_groups = []
|
277 |
+
for i in range(num_param_groups):
|
278 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
279 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
280 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
281 |
+
avail_numel = sum(
|
282 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
283 |
+
|
284 |
+
if debug:
|
285 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
286 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
287 |
+
# not asserting if there is a mismatch due to possible padding
|
288 |
+
print(f"Have {avail_numel} numels to process.")
|
289 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
290 |
+
|
291 |
+
# params
|
292 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
293 |
+
# out-of-core computing solution
|
294 |
+
total_numel = 0
|
295 |
+
total_params = 0
|
296 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
297 |
+
offset = 0
|
298 |
+
avail_numel = full_single_fp32_vector.numel()
|
299 |
+
for name, shape in shapes.items():
|
300 |
+
|
301 |
+
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
302 |
+
total_numel += unpartitioned_numel
|
303 |
+
total_params += 1
|
304 |
+
|
305 |
+
if debug:
|
306 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
307 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
308 |
+
offset += unpartitioned_numel
|
309 |
+
|
310 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
311 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
312 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
313 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
314 |
+
align_to = 2 * world_size
|
315 |
+
|
316 |
+
def zero2_align(x):
|
317 |
+
return align_to * math.ceil(x / align_to)
|
318 |
+
|
319 |
+
if debug:
|
320 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
321 |
+
|
322 |
+
offset = zero2_align(offset)
|
323 |
+
avail_numel = zero2_align(avail_numel)
|
324 |
+
|
325 |
+
if debug:
|
326 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
327 |
+
|
328 |
+
# Sanity check
|
329 |
+
if offset != avail_numel:
|
330 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
331 |
+
|
332 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
333 |
+
|
334 |
+
|
335 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
336 |
+
exclude_frozen_parameters):
|
337 |
+
state_dict = OrderedDict()
|
338 |
+
|
339 |
+
# buffers
|
340 |
+
buffers = zero_model_states[0].buffers
|
341 |
+
state_dict.update(buffers)
|
342 |
+
if debug:
|
343 |
+
print(f"added {len(buffers)} buffers")
|
344 |
+
|
345 |
+
if not exclude_frozen_parameters:
|
346 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
347 |
+
|
348 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
349 |
+
|
350 |
+
# recover shared parameters
|
351 |
+
for pair in zero_model_states[0].shared_params:
|
352 |
+
if pair[1] in state_dict:
|
353 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
354 |
+
|
355 |
+
return state_dict
|
356 |
+
|
357 |
+
|
358 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
359 |
+
remainder = unpartitioned_numel % world_size
|
360 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
361 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
362 |
+
return partitioned_numel, padding_numel
|
363 |
+
|
364 |
+
|
365 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
366 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
367 |
+
return
|
368 |
+
|
369 |
+
if debug:
|
370 |
+
for i in range(world_size):
|
371 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
372 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
373 |
+
|
374 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
375 |
+
wanted_params = len(frozen_param_shapes)
|
376 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
377 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
378 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
379 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
380 |
+
|
381 |
+
total_params = 0
|
382 |
+
total_numel = 0
|
383 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
384 |
+
total_params += 1
|
385 |
+
unpartitioned_numel = shape.numel()
|
386 |
+
total_numel += unpartitioned_numel
|
387 |
+
|
388 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
389 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
390 |
+
|
391 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
392 |
+
|
393 |
+
if debug:
|
394 |
+
print(
|
395 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
396 |
+
)
|
397 |
+
|
398 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
399 |
+
|
400 |
+
|
401 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
402 |
+
param_shapes = zero_model_states[0].param_shapes
|
403 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
404 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
405 |
+
# param, re-consolidating each param, while dealing with padding if any
|
406 |
+
|
407 |
+
# merge list of dicts, preserving order
|
408 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
409 |
+
|
410 |
+
if debug:
|
411 |
+
for i in range(world_size):
|
412 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
413 |
+
|
414 |
+
wanted_params = len(param_shapes)
|
415 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
416 |
+
# not asserting if there is a mismatch due to possible padding
|
417 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
418 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
419 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
420 |
+
|
421 |
+
# params
|
422 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
423 |
+
# out-of-core computing solution
|
424 |
+
offset = 0
|
425 |
+
total_numel = 0
|
426 |
+
total_params = 0
|
427 |
+
for name, shape in tqdm(param_shapes.items(), desc='Gathering Sharded Weights'):
|
428 |
+
unpartitioned_numel = shape.numel()
|
429 |
+
total_numel += unpartitioned_numel
|
430 |
+
total_params += 1
|
431 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
432 |
+
|
433 |
+
if debug:
|
434 |
+
print(
|
435 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
436 |
+
)
|
437 |
+
|
438 |
+
# XXX: memory usage doubles here
|
439 |
+
state_dict[name] = torch.cat(
|
440 |
+
tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
|
441 |
+
0).narrow(0, 0, unpartitioned_numel).view(shape)
|
442 |
+
offset += partitioned_numel
|
443 |
+
|
444 |
+
offset *= world_size
|
445 |
+
|
446 |
+
# Sanity check
|
447 |
+
if offset != avail_numel:
|
448 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
449 |
+
|
450 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
451 |
+
|
452 |
+
|
453 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
454 |
+
exclude_frozen_parameters):
|
455 |
+
state_dict = OrderedDict()
|
456 |
+
|
457 |
+
# buffers
|
458 |
+
buffers = zero_model_states[0].buffers
|
459 |
+
state_dict.update(buffers)
|
460 |
+
if debug:
|
461 |
+
print(f"added {len(buffers)} buffers")
|
462 |
+
|
463 |
+
if not exclude_frozen_parameters:
|
464 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
465 |
+
|
466 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
467 |
+
|
468 |
+
# recover shared parameters
|
469 |
+
for pair in zero_model_states[0].shared_params:
|
470 |
+
if pair[1] in state_dict:
|
471 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
472 |
+
|
473 |
+
return state_dict
|
474 |
+
|
475 |
+
|
476 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
|
477 |
+
"""
|
478 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
479 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
480 |
+
via a model hub.
|
481 |
+
|
482 |
+
Args:
|
483 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
484 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
485 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
486 |
+
|
487 |
+
Returns:
|
488 |
+
- pytorch ``state_dict``
|
489 |
+
|
490 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
491 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
492 |
+
the checkpoint.
|
493 |
+
|
494 |
+
A typical usage might be ::
|
495 |
+
|
496 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
497 |
+
# do the training and checkpoint saving
|
498 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
499 |
+
model = model.cpu() # move to cpu
|
500 |
+
model.load_state_dict(state_dict)
|
501 |
+
# submit to model hub or save the model to share with others
|
502 |
+
|
503 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
504 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
505 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
506 |
+
|
507 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
508 |
+
|
509 |
+
"""
|
510 |
+
if tag is None:
|
511 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
512 |
+
if os.path.isfile(latest_path):
|
513 |
+
with open(latest_path, 'r') as fd:
|
514 |
+
tag = fd.read().strip()
|
515 |
+
else:
|
516 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
517 |
+
|
518 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
519 |
+
|
520 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
521 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
522 |
+
|
523 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
|
524 |
+
|
525 |
+
|
526 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
|
527 |
+
output_dir,
|
528 |
+
max_shard_size="5GB",
|
529 |
+
safe_serialization=False,
|
530 |
+
tag=None,
|
531 |
+
exclude_frozen_parameters=False):
|
532 |
+
"""
|
533 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
534 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
535 |
+
|
536 |
+
Args:
|
537 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
538 |
+
- ``output_dir``: directory to the pytorch fp32 state_dict output files
|
539 |
+
- ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
|
540 |
+
- ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
|
541 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
542 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
543 |
+
"""
|
544 |
+
# Dependency pre-check
|
545 |
+
if safe_serialization:
|
546 |
+
try:
|
547 |
+
from safetensors.torch import save_file
|
548 |
+
except ImportError:
|
549 |
+
print('If you want to use `safe_serialization`, please `pip install safetensors`')
|
550 |
+
raise
|
551 |
+
if max_shard_size is not None:
|
552 |
+
try:
|
553 |
+
from huggingface_hub import split_torch_state_dict_into_shards
|
554 |
+
except ImportError:
|
555 |
+
print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
|
556 |
+
raise
|
557 |
+
|
558 |
+
# Convert zero checkpoint to state_dict
|
559 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
|
560 |
+
|
561 |
+
# Shard the model if it is too big.
|
562 |
+
weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
|
563 |
+
if max_shard_size is not None:
|
564 |
+
filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
|
565 |
+
state_dict_split = split_torch_state_dict_into_shards(state_dict,
|
566 |
+
filename_pattern=filename_pattern,
|
567 |
+
max_shard_size=max_shard_size)
|
568 |
+
else:
|
569 |
+
from collections import namedtuple
|
570 |
+
StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
|
571 |
+
state_dict_split = StateDictSplit(is_sharded=False,
|
572 |
+
filename_to_tensors={weights_name: list(state_dict.keys())})
|
573 |
+
|
574 |
+
# Save the model
|
575 |
+
filename_to_tensors = state_dict_split.filename_to_tensors.items()
|
576 |
+
for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
|
577 |
+
shard = {tensor: state_dict[tensor].contiguous() for tensor in tensors}
|
578 |
+
output_path = os.path.join(output_dir, shard_file)
|
579 |
+
if safe_serialization:
|
580 |
+
save_file(shard, output_path, metadata={"format": "pt"})
|
581 |
+
else:
|
582 |
+
torch.save(shard, output_path)
|
583 |
+
|
584 |
+
# Save index if sharded
|
585 |
+
if state_dict_split.is_sharded:
|
586 |
+
index = {
|
587 |
+
"metadata": state_dict_split.metadata,
|
588 |
+
"weight_map": state_dict_split.tensor_to_filename,
|
589 |
+
}
|
590 |
+
save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
|
591 |
+
save_index_file = os.path.join(output_dir, save_index_file)
|
592 |
+
with open(save_index_file, "w", encoding="utf-8") as f:
|
593 |
+
content = json.dumps(index, indent=2, sort_keys=True) + "\n"
|
594 |
+
f.write(content)
|
595 |
+
|
596 |
+
|
597 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
598 |
+
"""
|
599 |
+
1. Put the provided model to cpu
|
600 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
601 |
+
3. Load it into the provided model
|
602 |
+
|
603 |
+
Args:
|
604 |
+
- ``model``: the model object to update
|
605 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
606 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
607 |
+
|
608 |
+
Returns:
|
609 |
+
- ``model`: modified model
|
610 |
+
|
611 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
612 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
613 |
+
conveniently placed for you in the checkpoint folder.
|
614 |
+
|
615 |
+
A typical usage might be ::
|
616 |
+
|
617 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
618 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
619 |
+
# submit to model hub or save the model to share with others
|
620 |
+
|
621 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
622 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
623 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
624 |
+
|
625 |
+
"""
|
626 |
+
logger.info(f"Extracting fp32 weights")
|
627 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
628 |
+
|
629 |
+
logger.info(f"Overwriting model with fp32 weights")
|
630 |
+
model = model.cpu()
|
631 |
+
model.load_state_dict(state_dict, strict=False)
|
632 |
+
|
633 |
+
return model
|
634 |
+
|
635 |
+
|
636 |
+
if __name__ == "__main__":
|
637 |
+
parser = argparse.ArgumentParser()
|
638 |
+
parser.add_argument("checkpoint_dir",
|
639 |
+
type=str,
|
640 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
641 |
+
parser.add_argument("output_dir",
|
642 |
+
type=str,
|
643 |
+
help="directory to the pytorch fp32 state_dict output files"
|
644 |
+
"(e.g. path/checkpoint-12-output/)")
|
645 |
+
parser.add_argument(
|
646 |
+
"--max_shard_size",
|
647 |
+
type=str,
|
648 |
+
default="5GB",
|
649 |
+
help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
|
650 |
+
"lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
|
651 |
+
"We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
|
652 |
+
"without CPU OOM issues.")
|
653 |
+
parser.add_argument(
|
654 |
+
"--safe_serialization",
|
655 |
+
default=False,
|
656 |
+
action='store_true',
|
657 |
+
help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
|
658 |
+
parser.add_argument("-t",
|
659 |
+
"--tag",
|
660 |
+
type=str,
|
661 |
+
default=None,
|
662 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
663 |
+
parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
|
664 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
665 |
+
args = parser.parse_args()
|
666 |
+
|
667 |
+
debug = args.debug
|
668 |
+
|
669 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
|
670 |
+
args.output_dir,
|
671 |
+
max_shard_size=args.max_shard_size,
|
672 |
+
safe_serialization=args.safe_serialization,
|
673 |
+
tag=args.tag,
|
674 |
+
exclude_frozen_parameters=args.exclude_frozen_parameters)
|