Update README.md
Browse files
README.md
CHANGED
|
@@ -10,13 +10,16 @@ tags:
|
|
| 10 |
- tool_use
|
| 11 |
---
|
| 12 |
|
| 13 |
-
#
|
|
|
|
|
|
|
|
|
|
| 14 |
|
| 15 |
> 📄 **Full methodology, dataset details, and evaluation results coming in the upcoming paper**
|
| 16 |
|
| 17 |
## Overview 🚀
|
| 18 |
|
| 19 |
-
|
| 20 |
|
| 21 |
These models can interact with external tools, APIs, and databases, making them appropriate for building AI agents and [Model Context Protocol (MCP)](https://arxiv.org/abs/2503.23278) applications.
|
| 22 |
|
|
@@ -33,9 +36,9 @@ Available in three sizes with full models, LoRA adapters, and quantized GGUF var
|
|
| 33 |
|
| 34 |
| Model Size | Full Model | LoRA Adapter | GGUF (Quantized) |
|
| 35 |
|------------|------------|--------------|------------------|
|
| 36 |
-
| **2.6B** | [
|
| 37 |
-
| **9B** | [
|
| 38 |
-
| **27B** | [
|
| 39 |
|
| 40 |
*GGUF variants include: q4_k_m, q5_k_m, q6_k, q8_0, q4_0 quantizations*
|
| 41 |
|
|
@@ -88,7 +91,7 @@ import json
|
|
| 88 |
from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig
|
| 89 |
|
| 90 |
# Load model
|
| 91 |
-
model_name = "s-emanuilov/
|
| 92 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 93 |
model = AutoModelForCausalLM.from_pretrained(
|
| 94 |
model_name,
|
|
|
|
| 10 |
- tool_use
|
| 11 |
---
|
| 12 |
|
| 13 |
+
# Tucan-2.6B-v1.0-LoRA
|
| 14 |
+
|
| 15 |
+
## Bulgarian Language Models for Function Calling 🇧🇬
|
| 16 |
+
|
| 17 |
|
| 18 |
> 📄 **Full methodology, dataset details, and evaluation results coming in the upcoming paper**
|
| 19 |
|
| 20 |
## Overview 🚀
|
| 21 |
|
| 22 |
+
TUCAN (Tool-Using Capable Assistant Navigator) is a series of open-source Bulgarian language models fine-tuned specifically for function calling and tool use.
|
| 23 |
|
| 24 |
These models can interact with external tools, APIs, and databases, making them appropriate for building AI agents and [Model Context Protocol (MCP)](https://arxiv.org/abs/2503.23278) applications.
|
| 25 |
|
|
|
|
| 36 |
|
| 37 |
| Model Size | Full Model | LoRA Adapter | GGUF (Quantized) |
|
| 38 |
|------------|------------|--------------|------------------|
|
| 39 |
+
| **2.6B** | [Tucan--2.6B-v1.0](https://huggingface.co/s-emanuilov/Tucan--2.6B-v1.0)| [LoRA](https://huggingface.co/s-emanuilov/Tucan--2.6B-v1.0-LoRA) 📍| [GGUF](https://huggingface.co/s-emanuilov/Tucan--2.6B-v1.0-GGUF) |
|
| 40 |
+
| **9B** | [Tucan--9B-v1.0](https://huggingface.co/s-emanuilov/Tucan--9B-v1.0) | [LoRA](https://huggingface.co/s-emanuilov/Tucan--9B-v1.0-LoRA) | [GGUF](https://huggingface.co/s-emanuilov/Tucan--9B-v1.0-GGUF) |
|
| 41 |
+
| **27B** | [Tucan--27B-v1.0](https://huggingface.co/s-emanuilov/Tucan--27B-v1.0) | [LoRA](https://huggingface.co/s-emanuilov/Tucan--27B-v1.0-LoRA) | [GGUF](https://huggingface.co/s-emanuilov/Tucan--27B-v1.0-GGUF) |
|
| 42 |
|
| 43 |
*GGUF variants include: q4_k_m, q5_k_m, q6_k, q8_0, q4_0 quantizations*
|
| 44 |
|
|
|
|
| 91 |
from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig
|
| 92 |
|
| 93 |
# Load model
|
| 94 |
+
model_name = "s-emanuilov/Tucan--2.6B-v1.0"
|
| 95 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 96 |
model = AutoModelForCausalLM.from_pretrained(
|
| 97 |
model_name,
|