File size: 8,494 Bytes
0b32ad6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
import copy

import torch
import torch.nn as nn

from s3prl import Output
from s3prl.nn.vq_apc import VqApcLayer


class MaskConvBlock(nn.Module):
    """
    Masked Convolution Blocks as described in NPC paper
    """

    def __init__(self, input_size, hidden_size, kernel_size, mask_size):
        super(MaskConvBlock, self).__init__()
        assert kernel_size - mask_size > 0, "Mask > kernel somewhere in the model"
        # CNN for computing feature (ToDo: other activation?)
        self.act = nn.Tanh()
        self.pad_size = (kernel_size - 1) // 2
        self.conv = nn.Conv1d(
            in_channels=input_size,
            out_channels=hidden_size,
            kernel_size=kernel_size,
            padding=self.pad_size,
        )
        # Fixed mask for NPC
        mask_head = (kernel_size - mask_size) // 2
        mask_tail = mask_head + mask_size
        conv_mask = torch.ones_like(self.conv.weight)
        conv_mask[:, :, mask_head:mask_tail] = 0
        self.register_buffer("conv_mask", conv_mask)

    def forward(self, feat):
        feat = nn.functional.conv1d(
            feat,
            self.conv_mask * self.conv.weight,
            bias=self.conv.bias,
            padding=self.pad_size,
        )
        feat = feat.permute(0, 2, 1)  # BxCxT -> BxTxC
        feat = self.act(feat)
        return feat


class ConvBlock(nn.Module):
    """
    Convolution Blocks as described in NPC paper
    """

    def __init__(
        self, input_size, hidden_size, residual, dropout, batch_norm, activate
    ):
        super(ConvBlock, self).__init__()
        self.residual = residual
        if activate == "relu":
            self.act = nn.ReLU()
        elif activate == "tanh":
            self.act = nn.Tanh()
        else:
            raise NotImplementedError
        self.conv = nn.Conv1d(
            input_size, hidden_size, kernel_size=3, stride=1, padding=1
        )
        self.linear = nn.Conv1d(
            hidden_size, hidden_size, kernel_size=1, stride=1, padding=0
        )
        self.batch_norm = batch_norm
        if batch_norm:
            self.bn1 = nn.BatchNorm1d(hidden_size)
            self.bn2 = nn.BatchNorm1d(hidden_size)
        self.dropout = nn.Dropout(dropout)

    def forward(self, feat):
        res = feat
        out = self.conv(feat)
        if self.batch_norm:
            out = self.bn1(out)
        out = self.act(out)
        out = self.linear(out)
        if self.batch_norm:
            out = self.bn2(out)
        out = self.dropout(out)
        if self.residual:
            out = out + res
        return self.act(out)


class CnnNpc(nn.Module):
    """
    The NPC model with stacked ConvBlocks & Masked ConvBlocks
    """

    def __init__(
        self,
        input_size,
        hidden_size,
        n_blocks,
        dropout,
        residual,
        kernel_size,
        mask_size,
        vq=None,
        batch_norm=True,
        activate="relu",
        disable_cross_layer=False,
        dim_bottleneck=None,
    ):
        super(CnnNpc, self).__init__()

        # Setup
        assert kernel_size % 2 == 1, "Kernel size can only be odd numbers"
        assert mask_size % 2 == 1, "Mask size can only be odd numbers"
        assert n_blocks >= 1, "At least 1 block needed"
        self.code_dim = hidden_size
        self.n_blocks = n_blocks
        self.input_mask_size = mask_size
        self.kernel_size = kernel_size
        self.disable_cross_layer = disable_cross_layer
        self.apply_vq = vq is not None
        self.apply_ae = dim_bottleneck is not None
        if self.apply_ae:
            assert not self.apply_vq
            self.dim_bottleneck = dim_bottleneck

        # Build blocks
        self.blocks, self.masked_convs = [], []
        cur_mask_size = mask_size
        for i in range(n_blocks):
            h_dim = input_size if i == 0 else hidden_size
            res = False if i == 0 else residual
            # ConvBlock
            self.blocks.append(
                ConvBlock(h_dim, hidden_size, res, dropout, batch_norm, activate)
            )
            # Masked ConvBlock on each or last layer
            cur_mask_size = cur_mask_size + 2
            if self.disable_cross_layer and (i != (n_blocks - 1)):
                self.masked_convs.append(None)
            else:
                self.masked_convs.append(
                    MaskConvBlock(hidden_size, hidden_size, kernel_size, cur_mask_size)
                )
        self.blocks = nn.ModuleList(self.blocks)
        self.masked_convs = nn.ModuleList(self.masked_convs)

        # Creates N-group VQ
        if self.apply_vq:
            self.vq_layers = []
            vq_config = copy.deepcopy(vq)
            codebook_size = vq_config.pop("codebook_size")
            self.vq_code_dims = vq_config.pop("code_dim")
            assert len(self.vq_code_dims) == len(codebook_size)
            assert sum(self.vq_code_dims) == hidden_size
            for cs, cd in zip(codebook_size, self.vq_code_dims):
                self.vq_layers.append(
                    VqApcLayer(
                        input_size=cd, code_dim=cd, codebook_size=cs, **vq_config
                    )
                )
            self.vq_layers = nn.ModuleList(self.vq_layers)

        # Back to spectrogram
        if self.apply_ae:
            self.ae_bottleneck = nn.Linear(hidden_size, self.dim_bottleneck, bias=False)
            self.postnet = nn.Linear(self.dim_bottleneck, input_size)
        else:
            self.postnet = nn.Linear(hidden_size, input_size)

    def create_msg(self):
        msg_list = []
        msg_list.append(
            "Model spec.| Method = NPC\t| # of Blocks = {}\t".format(self.n_blocks)
        )
        msg_list.append(
            "           | Desired input mask size = {}".format(self.input_mask_size)
        )
        msg_list.append(
            "           | Receptive field size = {}".format(
                self.kernel_size + 2 * self.n_blocks
            )
        )
        return msg_list

    def report_ppx(self):
        """
        Returns perplexity of VQ distribution
        """
        if self.apply_vq:
            # ToDo: support more than 2 groups
            rt = [vq_layer.report_ppx() for vq_layer in self.vq_layers] + [None]
            return rt[0], rt[1]
        else:
            return None, None

    def report_usg(self):
        """
        Returns usage of VQ codebook
        """
        if self.apply_vq:
            # ToDo: support more than 2 groups
            rt = [vq_layer.report_usg() for vq_layer in self.vq_layers] + [None]
            return rt[0], rt[1]
        else:
            return None, None

    def get_unmasked_feat(self, sp_seq, n_layer):
        """
        Returns unmasked features from n-th layer ConvBlock
        """
        unmasked_feat = sp_seq.permute(0, 2, 1)  # BxTxC -> BxCxT
        for i in range(self.n_blocks):
            unmasked_feat = self.blocks[i](unmasked_feat)
            if i == n_layer:
                unmasked_feat = unmasked_feat.permute(0, 2, 1)
                break
        return unmasked_feat

    def forward(self, sp_seq, testing=False):
        # BxTxC -> BxCxT (reversed in Masked ConvBlock)
        unmasked_feat = sp_seq.permute(0, 2, 1)
        # Forward through each layer
        for i in range(self.n_blocks):
            unmasked_feat = self.blocks[i](unmasked_feat)
            if self.disable_cross_layer:
                # Last layer masked feature only
                if i == (self.n_blocks - 1):
                    feat = self.masked_convs[i](unmasked_feat)
            else:
                # Masked feature aggregation
                masked_feat = self.masked_convs[i](unmasked_feat)
                if i == 0:
                    feat = masked_feat
                else:
                    feat = feat + masked_feat
        # Apply bottleneck and predict spectrogram
        if self.apply_vq:
            q_feat = []
            offet = 0
            for vq_layer, cd in zip(self.vq_layers, self.vq_code_dims):
                q_f = vq_layer(feat[:, :, offet : offet + cd], testing).output
                q_feat.append(q_f)
                offet += cd
            q_feat = torch.cat(q_feat, dim=-1)
            pred = self.postnet(q_feat)
        elif self.apply_ae:
            feat = self.ae_bottleneck(feat)
            pred = self.postnet(feat)
        else:
            pred = self.postnet(feat)
        return Output(hidden_states=feat, prediction=pred)