File size: 26,100 Bytes
0b32ad6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
"""
Mockingjay, TERA, Audio-ALBERT's model architecture

Authors:
  * Andy T. Liu 2022
"""

import copy
import math

import torch
from torch import nn

from s3prl import Output

__all__ = [
    "TransformerConfig",
    "TransformerLayer",
    "TransformerEncoder",
    "TransformerMockingjay",
]


class TransformerConfig(object):
    """
    Configuration class to store the configuration of a `TransformerModel`.
    """

    def __init__(
        self,
        hidden_size: int = 768,  # Size of the encoder layers and the pooler layer.
        num_hidden_layers: int = 3,  # Number of hidden layers in the Transformer encoder.
        num_attention_heads: int = 12,  # Number of attention heads for each attention layer in the Transformer encoder.
        intermediate_size: int = 3072,  # The size of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
        hidden_act: str = "gelu",  # The non-linear activation function (function or string) in the encoder and pooler. If string, "gelu", "relu" and "swish" are supported.
        hidden_dropout_prob: float = 0.1,  # The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler.
        attention_probs_dropout_prob: float = 0.1,  # The dropout ratio for the attention probabilities.
        initializer_range: float = 0.02,  # The sttdev of the truncated_normal_initializer for initializing all weight matrices.
        layer_norm_eps: float = 1.0e-12,  # The epsilon used by LayerNorm.
        share_layer: bool = False,  # Share layer weights
        pre_layer_norm: bool = False,  # To apply the pre layer normalization technique introduced in: https://arxiv.org/abs/2002.04745
    ):
        self.hidden_size = hidden_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.intermediate_size = intermediate_size
        self.hidden_act = hidden_act
        self.hidden_dropout_prob = hidden_dropout_prob
        self.attention_probs_dropout_prob = attention_probs_dropout_prob
        self.initializer_range = initializer_range
        self.layer_norm_eps = layer_norm_eps
        self.share_layer = share_layer
        self.pre_layer_norm = pre_layer_norm


def prune_linear_layer(layer, index, dim=0):
    """
    Prune a linear layer (a model parameters) to keep only entries in index.
    Return the pruned layer as a new layer with requires_grad=True.
    Used to remove heads.
    """
    index = index.to(layer.weight.device)
    W = layer.weight.index_select(dim, index).clone().detach()
    if layer.bias is not None:
        if dim == 1:
            b = layer.bias.clone().detach()
        else:
            b = layer.bias[index].clone().detach()
    new_size = list(layer.weight.size())
    new_size[dim] = len(index)
    new_layer = nn.Linear(new_size[1], new_size[0], bias=layer.bias is not None).to(
        layer.weight.device
    )
    new_layer.weight.requires_grad = False
    new_layer.weight.copy_(W.contiguous())
    new_layer.weight.requires_grad = True
    if layer.bias is not None:
        new_layer.bias.requires_grad = False
        new_layer.bias.copy_(b.contiguous())
        new_layer.bias.requires_grad = True
    return new_layer


def gelu(x):
    """
    Implementation of the gelu activation function.
    For information: OpenAI GPT's gelu is slightly different (and gives slightly different results):
    0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3))))
    Also see https://arxiv.org/abs/1606.08415
    """
    return x * 0.5 * (1.0 + torch.erf(x / math.sqrt(2.0)))


def swish(x):
    return x * torch.sigmoid(x)


ACT2FN = {"gelu": gelu, "relu": torch.nn.functional.relu, "swish": swish}


class TransformerLayerNorm(nn.Module):
    def __init__(self, hidden_size, eps=1e-12):
        """
        Construct a layernorm module in the TF style (epsilon inside the square root).
        """
        super(TransformerLayerNorm, self).__init__()
        self.weight = nn.Parameter(torch.ones(hidden_size))
        self.bias = nn.Parameter(torch.zeros(hidden_size))
        self.variance_epsilon = eps

    def forward(self, x):
        u = x.mean(-1, keepdim=True)
        s = (x - u).pow(2).mean(-1, keepdim=True)
        x = (x - u) / torch.sqrt(s + self.variance_epsilon)
        return self.weight * x + self.bias


class TransformerInputRepresentations(nn.Module):
    """
    Construct the input representation from spectrogram, and position encodings.
    """

    def __init__(self, config, input_dim):
        super(TransformerInputRepresentations, self).__init__()
        self.hidden_size = config.hidden_size
        self.spec_transform = nn.Linear(input_dim, config.hidden_size)

        # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
        # any TensorFlow checkpoint file
        self.LayerNorm = TransformerLayerNorm(
            config.hidden_size, eps=config.layer_norm_eps
        )
        self.dropout = nn.Dropout(config.hidden_dropout_prob)

    def forward(self, spec, pos_enc):
        spec_transformed = self.spec_transform(spec)

        input_representations = spec_transformed + pos_enc
        input_representations = self.LayerNorm(input_representations)
        input_representations = self.dropout(input_representations)
        return input_representations


class TransformerSelfAttention(nn.Module):
    def __init__(self, config, output_attentions=False, keep_multihead_output=False):
        super(TransformerSelfAttention, self).__init__()
        if config.hidden_size % config.num_attention_heads != 0:
            raise ValueError(
                "The hidden size (%d) is not a multiple of the number of attention "
                "heads (%d)" % (config.hidden_size, config.num_attention_heads)
            )
        self.output_attentions = output_attentions
        self.keep_multihead_output = keep_multihead_output
        self.multihead_output = None

        self.num_attention_heads = config.num_attention_heads
        self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
        self.all_head_size = self.num_attention_heads * self.attention_head_size

        self.query = nn.Linear(config.hidden_size, self.all_head_size)
        self.key = nn.Linear(config.hidden_size, self.all_head_size)
        self.value = nn.Linear(config.hidden_size, self.all_head_size)

        self.dropout = nn.Dropout(config.attention_probs_dropout_prob)

    def transpose_for_scores(self, x):
        new_x_shape = x.size()[:-1] + (
            self.num_attention_heads,
            self.attention_head_size,
        )
        x = x.view(*new_x_shape)
        return x.permute(0, 2, 1, 3)

    def forward(self, hidden_states, attention_mask, head_mask=None):
        mixed_query_layer = self.query(hidden_states)
        mixed_key_layer = self.key(hidden_states)
        mixed_value_layer = self.value(hidden_states)
        # each mixed layer: (batch_size, seqlen, head_num * head_dim)

        query_layer = self.transpose_for_scores(mixed_query_layer)
        key_layer = self.transpose_for_scores(mixed_key_layer)
        value_layer = self.transpose_for_scores(mixed_value_layer)
        # each layer: (batch_size, head_num, seqlen, head_dim)

        # Take the dot product between "query" and "key" to get the raw attention scores.
        attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
        attention_scores = attention_scores / math.sqrt(self.attention_head_size)
        # Apply the attention mask is (precomputed for all layers in TransformerModel forward() function)
        attention_scores = attention_scores + attention_mask
        # attention_scores: (batch_size, head_num, seqlen, seqlen)

        # Normalize the attention scores to probabilities.
        attention_probs = nn.Softmax(dim=-1)(attention_scores)

        # This is actually dropping out entire tokens to attend to, which might
        # seem a bit unusual, but is taken from the original Transformer paper.
        attention_probs = self.dropout(attention_probs)

        # Mask heads if we want to
        if head_mask is not None:
            attention_probs = attention_probs * head_mask

        context_layer = torch.matmul(attention_probs, value_layer)
        # context_layer: (batch_size, head_num, seqlen, head_dim)
        if self.keep_multihead_output:
            self.multihead_output = context_layer
            self.multihead_output.retain_grad()

        context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
        new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
        context_layer = context_layer.view(*new_context_layer_shape)
        if self.output_attentions:
            return attention_probs, context_layer
        return context_layer


class TransformerSelfOutput(nn.Module):
    def __init__(self, config):
        super(TransformerSelfOutput, self).__init__()
        self.pre_layer_norm = config.pre_layer_norm
        self.dense = nn.Linear(config.hidden_size, config.hidden_size)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)
        self.LayerNorm = TransformerLayerNorm(
            config.hidden_size, eps=config.layer_norm_eps
        )

    def forward(self, hidden_states, input_tensor):
        hidden_states = self.dense(hidden_states)
        hidden_states = self.dropout(hidden_states)
        hidden_states = hidden_states + input_tensor
        if not self.pre_layer_norm:
            hidden_states = self.LayerNorm(hidden_states)
        return hidden_states


class TransformerAttention(nn.Module):
    def __init__(self, config, output_attentions=False, keep_multihead_output=False):
        super(TransformerAttention, self).__init__()
        self.output_attentions = output_attentions
        self.pre_layer_norm = config.pre_layer_norm
        self.self = TransformerSelfAttention(
            config,
            output_attentions=output_attentions,
            keep_multihead_output=keep_multihead_output,
        )
        self.output = TransformerSelfOutput(config)
        if self.pre_layer_norm:
            self.LayerNorm = self.output.LayerNorm

    def prune_heads(self, heads):
        if len(heads) == 0:
            return
        mask = torch.ones(self.self.num_attention_heads, self.self.attention_head_size)
        for head in heads:
            mask[head] = 0
        mask = mask.view(-1).contiguous().eq(1)
        index = torch.arange(len(mask))[mask].long()
        # Prune linear layers
        self.self.query = prune_linear_layer(self.self.query, index)
        self.self.key = prune_linear_layer(self.self.key, index)
        self.self.value = prune_linear_layer(self.self.value, index)
        self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
        # Update hyper params
        self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
        self.self.all_head_size = (
            self.self.attention_head_size * self.self.num_attention_heads
        )

    def forward(self, input_tensor, attention_mask, head_mask=None):
        if self.pre_layer_norm:
            # LayerNorm -> SelfAttention -> SelfOutput (residual)
            self_output = self.LayerNorm(input_tensor)
            self_output = self.self(self_output, attention_mask, head_mask)
        else:
            # SelfAttention -> SelfOutput (residual + LayerNorm)
            self_output = self.self(input_tensor, attention_mask, head_mask)
        if self.output_attentions:
            attentions, self_output = self_output
        attention_output = self.output(self_output, input_tensor)
        if self.output_attentions:
            return attentions, attention_output
        return attention_output


class TransformerIntermediate(nn.Module):
    def __init__(self, config):
        super(TransformerIntermediate, self).__init__()
        self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
        if isinstance(config.hidden_act, str):
            self.intermediate_act_fn = ACT2FN[config.hidden_act]
        else:
            self.intermediate_act_fn = config.hidden_act

    def forward(self, hidden_states):
        hidden_states = self.dense(hidden_states)
        hidden_states = self.intermediate_act_fn(hidden_states)
        return hidden_states


class TransformerOutput(nn.Module):
    def __init__(self, config):
        super(TransformerOutput, self).__init__()
        self.pre_layer_norm = config.pre_layer_norm
        self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)
        self.LayerNorm = TransformerLayerNorm(
            config.hidden_size, eps=config.layer_norm_eps
        )  # layer_norm for FFN

    def forward(self, hidden_states, input_tensor):
        hidden_states = self.dense(hidden_states)
        hidden_states = self.dropout(hidden_states)
        hidden_states = hidden_states + input_tensor
        if not self.pre_layer_norm:
            hidden_states = self.LayerNorm(hidden_states)
        return hidden_states


class TransformerLayer(nn.Module):
    def __init__(self, config, output_attentions=False, keep_multihead_output=False):
        super(TransformerLayer, self).__init__()
        self.output_attentions = output_attentions
        self.pre_layer_norm = config.pre_layer_norm
        self.attention = TransformerAttention(
            config,
            output_attentions=output_attentions,
            keep_multihead_output=keep_multihead_output,
        )
        self.intermediate = TransformerIntermediate(config)
        self.output = TransformerOutput(config)
        if self.pre_layer_norm:
            self.LayerNorm = self.output.LayerNorm

    def forward(self, hidden_states, attention_mask, head_mask=None):
        attention_output = self.attention(hidden_states, attention_mask, head_mask)
        if self.output_attentions:
            attentions, attention_output = attention_output
        if self.pre_layer_norm:
            # LayerNorm -> Intermediate -> Output (residual)
            intermediate_output = self.LayerNorm(attention_output)
            intermediate_output = self.intermediate(intermediate_output)
        else:
            # Intermediate -> Output (residual + LayerNorm)
            intermediate_output = self.intermediate(attention_output)
        layer_output = self.output(intermediate_output, attention_output)
        if self.output_attentions:
            return attentions, layer_output
        return layer_output


class TransformerEncoder(nn.Module):
    def __init__(
        self, config, output_attentions=False, keep_multihead_output=False, **kwargs
    ):
        super(TransformerEncoder, self).__init__()
        if type(config) is dict:
            config = TransformerConfig(**config)
        self.output_attentions = output_attentions
        self.pre_layer_norm = config.pre_layer_norm
        layer = TransformerLayer(
            config,
            output_attentions=output_attentions,
            keep_multihead_output=keep_multihead_output,
        )
        if config.share_layer:
            self.layer = nn.ModuleList([layer for _ in range(config.num_hidden_layers)])
        else:
            self.layer = nn.ModuleList(
                [copy.deepcopy(layer) for _ in range(config.num_hidden_layers)]
            )
        if self.pre_layer_norm:
            # If pre-LN Transformer, a final layer_norm would be placed after the last layer,
            # and intermediate layer_norms for all layer embedding outputs
            LayerNorm = TransformerLayerNorm(
                config.hidden_size, eps=config.layer_norm_eps
            )
            self.LayerNorm = nn.ModuleList(
                [copy.deepcopy(LayerNorm) for _ in range(config.num_hidden_layers + 1)]
            )

    def forward(
        self,
        hidden_states,
        attention_mask,
        output_all_encoded_layers=True,
        head_mask=None,
    ):
        all_encoder_layers = []
        all_attentions = []
        for i, layer_module in enumerate(self.layer):
            if output_all_encoded_layers:
                if self.pre_layer_norm:
                    all_encoder_layers.append(self.LayerNorm[i](hidden_states))
                else:
                    all_encoder_layers.append(hidden_states)
            hidden_states = layer_module(hidden_states, attention_mask, head_mask[i])
            if self.output_attentions:
                attentions, hidden_states = hidden_states
                all_attentions.append(attentions)

        if self.pre_layer_norm:
            all_encoder_layers.append(self.LayerNorm[-1](hidden_states))
        else:
            all_encoder_layers.append(hidden_states)

        if self.output_attentions:
            return all_attentions, all_encoder_layers
        return all_encoder_layers


class TransformerInitModel(nn.Module):
    """
    An abstract class to handle weights initialization.
    """

    def __init__(self, config, output_attentions, *inputs, **kwargs):
        super(TransformerInitModel, self).__init__()
        self.config = config
        self.output_attentions = output_attentions

    def init_Transformer_weights(self, module):
        """
        Initialize the weights.
        """
        if isinstance(module, (nn.Linear, nn.Embedding)):
            # Slightly different from the TF version which uses truncated_normal for initialization
            # cf https://github.com/pytorch/pytorch/pull/5617
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
        elif isinstance(module, TransformerLayerNorm):
            module.bias.data.zero_()
            module.weight.data.fill_(1.0)
        if isinstance(module, nn.Linear) and module.bias is not None:
            module.bias.data.zero_()


class TransformerMockingjay(TransformerInitModel):
    """
    The Transformer model.
    Currently supporting upstreams models of Mockingjay, Tera, and Audio Albert.
    """

    def __init__(
        self,
        config,
        input_dim,
        output_attentions=False,
        keep_multihead_output=False,
        with_input_module=True,
    ):
        """
        Args:
            config (TransformerConfig):
                A `TransformerConfig` class instance with the configuration to build a new model,
                can also be a `dict` that initializes the TransformerConfig class
            intput_dim (int):
                The input dimension of model
            output_attentions:
                If True, also output attentions weights computed by the model at each layer.
                Default: False
            keep_multihead_output (bool):
                If True, saves output of the multi-head attention module with its gradient.
                This can be used to compute head importance metrics.
                Default: False
            with_input_module (bool):
                If True, set up the `TransformerModel` with a `TransformerInputRepresentations` class instance.
                Default: True
        """

        super(TransformerMockingjay, self).__init__(config, output_attentions)
        self.with_input_module = with_input_module
        if self.with_input_module:
            self.input_representations = TransformerInputRepresentations(
                config, input_dim
            )
        self.encoder = TransformerEncoder(
            config,
            output_attentions=output_attentions,
            keep_multihead_output=keep_multihead_output,
        )
        self.apply(self.init_Transformer_weights)
        self.input_size = input_dim

    def prune_heads(self, heads_to_prune):
        """
        Prunes heads of the model.
        heads_to_prune (dict):
            dict of {layer_num: list of heads to prune in this layer}
        """
        for layer, heads in heads_to_prune.items():
            self.encoder.layer[layer].attention.prune_heads(heads)

    def get_multihead_outputs(self):
        """
        Gather all multi-head outputs.
        Return:
            list (layers) of multihead module outputs with gradients
        """
        return [layer.attention.self.multihead_output for layer in self.encoder.layer]

    def forward(
        self,
        spec_input,
        pos_enc=None,
        attention_mask=None,
        output_all_encoded_layers=False,
        head_mask=None,
    ):
        """
        Args:
            spec_input (torch.LongTensor):
                A torch.LongTensor of shape [batch_size, sequence_length, feature_dimension]
                with the selected frames processed as masked frames during training,
                generated by the `process_train_MAM_data()` function in `transformer/mam.py`.
            pos_enc (torch.LongTensor):
                A torch.LongTensor of shape [batch_size, sequence_length, hidden_size],
                generated by the `fast_position_encoding()` function in `transformer/mam.py`.
            attention_mask (torch.LongTensor):
                An optional torch.LongTensor of shape [batch_size, sequence_length] with indices
                selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
                input sequence length in the current batch. It's the mask that we typically use for attention when
                a batch has varying length sentences.
            output_all_encoded_layers (bool):
                A boolean which controls the content of the `encoded_layers` output as described below.
                Default: True
            head_mask (torch.Tensor):
                An optional torch.Tensor of shape [num_heads] or [num_layers, num_heads] with indices between 0 and 1.
                It's a mask to be used to nullify some heads of the transformer. 1.0 => head is fully masked, 0.0 => head is not masked.
        Return:
            Output (s3prl.Output):
                An Output module that contains `hidden_states` and/or `output`.

                hidden_states (encoded_layers):
                    controled by the `output_all_encoded_layers` argument of `forward`:
                    - If `output_all_encoded_layers==True`: outputs a list of the full sequences of encoded-hidden-states
                        at the end of each attention block, each encoded-hidden-state is a torch.FloatTensor
                        of size [batch_size, sequence_length, hidden_size], i.e [num_hidden_layers, batch_size, sequence_length, hidden_size]
                    - If `output_all_encoded_layers==False`: outputs only the full sequence of hidden-states corresponding
                        to the last attention block of shape [batch_size, sequence_length, hidden_size].
                output (all_attentions):
                    controled by the `output_attentions` argument of `__init__`:
                    - If `output_attentions==True`, also output attentions weights computed by the model at each layer.
        """
        if attention_mask is None:
            attention_mask = torch.ones_like(spec_input)

        # We create a 3D attention mask from a 2D tensor mask.
        # Sizes are [batch_size, 1, 1, to_seq_length]
        # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
        # this attention mask is more simple than the triangular masking of causal attention
        # used in OpenAI GPT, we just need to prepare the broadcast dimension here.
        extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2)

        # Since attention_mask is 1.0 for positions we want to attend and 0.0 for
        # masked positions, this operation will create a tensor which is 0.0 for
        # positions we want to attend and -10000.0 for masked positions.
        # Since we are adding it to the raw scores before the softmax, this is
        # effectively the same as removing these entirely.
        extended_attention_mask = extended_attention_mask.to(
            dtype=spec_input.dtype
        )  # fp16 compatibility
        extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0

        # Prepare head mask if needed
        # 1.0 in head_mask indicate we keep the head
        # attention_probs has shape bsz x n_heads x N x N
        # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
        # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
        if head_mask is not None:
            if head_mask.dim() == 1:
                head_mask = (
                    head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(-1).unsqueeze(-1)
                )
                head_mask = head_mask.expand_as(
                    self.config.num_hidden_layers, -1, -1, -1, -1
                )
            elif head_mask.dim() == 2:
                head_mask = (
                    head_mask.unsqueeze(1).unsqueeze(-1).unsqueeze(-1)
                )  # We can specify head_mask for each layer
            head_mask = head_mask.to(
                dtype=spec_input.dtype
            )  # switch to fload if need + fp16 compatibility
        else:
            head_mask = [None] * self.config.num_hidden_layers

        if self.with_input_module:
            input_representations = self.input_representations(spec_input, pos_enc)
        else:
            input_representations = spec_input
        encoded_layers = self.encoder(
            input_representations,
            extended_attention_mask,
            output_all_encoded_layers=output_all_encoded_layers,
            head_mask=head_mask,
        )
        if self.output_attentions:
            all_attentions, encoded_layers = encoded_layers
        if not output_all_encoded_layers:
            encoded_layers = encoded_layers[-1]
        if self.output_attentions:
            return Output(output=all_attentions, hidden_states=encoded_layers)
        return Output(hidden_states=encoded_layers)