File size: 26,100 Bytes
0b32ad6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 |
"""
Mockingjay, TERA, Audio-ALBERT's model architecture
Authors:
* Andy T. Liu 2022
"""
import copy
import math
import torch
from torch import nn
from s3prl import Output
__all__ = [
"TransformerConfig",
"TransformerLayer",
"TransformerEncoder",
"TransformerMockingjay",
]
class TransformerConfig(object):
"""
Configuration class to store the configuration of a `TransformerModel`.
"""
def __init__(
self,
hidden_size: int = 768, # Size of the encoder layers and the pooler layer.
num_hidden_layers: int = 3, # Number of hidden layers in the Transformer encoder.
num_attention_heads: int = 12, # Number of attention heads for each attention layer in the Transformer encoder.
intermediate_size: int = 3072, # The size of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
hidden_act: str = "gelu", # The non-linear activation function (function or string) in the encoder and pooler. If string, "gelu", "relu" and "swish" are supported.
hidden_dropout_prob: float = 0.1, # The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler.
attention_probs_dropout_prob: float = 0.1, # The dropout ratio for the attention probabilities.
initializer_range: float = 0.02, # The sttdev of the truncated_normal_initializer for initializing all weight matrices.
layer_norm_eps: float = 1.0e-12, # The epsilon used by LayerNorm.
share_layer: bool = False, # Share layer weights
pre_layer_norm: bool = False, # To apply the pre layer normalization technique introduced in: https://arxiv.org/abs/2002.04745
):
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.initializer_range = initializer_range
self.layer_norm_eps = layer_norm_eps
self.share_layer = share_layer
self.pre_layer_norm = pre_layer_norm
def prune_linear_layer(layer, index, dim=0):
"""
Prune a linear layer (a model parameters) to keep only entries in index.
Return the pruned layer as a new layer with requires_grad=True.
Used to remove heads.
"""
index = index.to(layer.weight.device)
W = layer.weight.index_select(dim, index).clone().detach()
if layer.bias is not None:
if dim == 1:
b = layer.bias.clone().detach()
else:
b = layer.bias[index].clone().detach()
new_size = list(layer.weight.size())
new_size[dim] = len(index)
new_layer = nn.Linear(new_size[1], new_size[0], bias=layer.bias is not None).to(
layer.weight.device
)
new_layer.weight.requires_grad = False
new_layer.weight.copy_(W.contiguous())
new_layer.weight.requires_grad = True
if layer.bias is not None:
new_layer.bias.requires_grad = False
new_layer.bias.copy_(b.contiguous())
new_layer.bias.requires_grad = True
return new_layer
def gelu(x):
"""
Implementation of the gelu activation function.
For information: OpenAI GPT's gelu is slightly different (and gives slightly different results):
0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3))))
Also see https://arxiv.org/abs/1606.08415
"""
return x * 0.5 * (1.0 + torch.erf(x / math.sqrt(2.0)))
def swish(x):
return x * torch.sigmoid(x)
ACT2FN = {"gelu": gelu, "relu": torch.nn.functional.relu, "swish": swish}
class TransformerLayerNorm(nn.Module):
def __init__(self, hidden_size, eps=1e-12):
"""
Construct a layernorm module in the TF style (epsilon inside the square root).
"""
super(TransformerLayerNorm, self).__init__()
self.weight = nn.Parameter(torch.ones(hidden_size))
self.bias = nn.Parameter(torch.zeros(hidden_size))
self.variance_epsilon = eps
def forward(self, x):
u = x.mean(-1, keepdim=True)
s = (x - u).pow(2).mean(-1, keepdim=True)
x = (x - u) / torch.sqrt(s + self.variance_epsilon)
return self.weight * x + self.bias
class TransformerInputRepresentations(nn.Module):
"""
Construct the input representation from spectrogram, and position encodings.
"""
def __init__(self, config, input_dim):
super(TransformerInputRepresentations, self).__init__()
self.hidden_size = config.hidden_size
self.spec_transform = nn.Linear(input_dim, config.hidden_size)
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
# any TensorFlow checkpoint file
self.LayerNorm = TransformerLayerNorm(
config.hidden_size, eps=config.layer_norm_eps
)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, spec, pos_enc):
spec_transformed = self.spec_transform(spec)
input_representations = spec_transformed + pos_enc
input_representations = self.LayerNorm(input_representations)
input_representations = self.dropout(input_representations)
return input_representations
class TransformerSelfAttention(nn.Module):
def __init__(self, config, output_attentions=False, keep_multihead_output=False):
super(TransformerSelfAttention, self).__init__()
if config.hidden_size % config.num_attention_heads != 0:
raise ValueError(
"The hidden size (%d) is not a multiple of the number of attention "
"heads (%d)" % (config.hidden_size, config.num_attention_heads)
)
self.output_attentions = output_attentions
self.keep_multihead_output = keep_multihead_output
self.multihead_output = None
self.num_attention_heads = config.num_attention_heads
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
self.all_head_size = self.num_attention_heads * self.attention_head_size
self.query = nn.Linear(config.hidden_size, self.all_head_size)
self.key = nn.Linear(config.hidden_size, self.all_head_size)
self.value = nn.Linear(config.hidden_size, self.all_head_size)
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
def transpose_for_scores(self, x):
new_x_shape = x.size()[:-1] + (
self.num_attention_heads,
self.attention_head_size,
)
x = x.view(*new_x_shape)
return x.permute(0, 2, 1, 3)
def forward(self, hidden_states, attention_mask, head_mask=None):
mixed_query_layer = self.query(hidden_states)
mixed_key_layer = self.key(hidden_states)
mixed_value_layer = self.value(hidden_states)
# each mixed layer: (batch_size, seqlen, head_num * head_dim)
query_layer = self.transpose_for_scores(mixed_query_layer)
key_layer = self.transpose_for_scores(mixed_key_layer)
value_layer = self.transpose_for_scores(mixed_value_layer)
# each layer: (batch_size, head_num, seqlen, head_dim)
# Take the dot product between "query" and "key" to get the raw attention scores.
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
# Apply the attention mask is (precomputed for all layers in TransformerModel forward() function)
attention_scores = attention_scores + attention_mask
# attention_scores: (batch_size, head_num, seqlen, seqlen)
# Normalize the attention scores to probabilities.
attention_probs = nn.Softmax(dim=-1)(attention_scores)
# This is actually dropping out entire tokens to attend to, which might
# seem a bit unusual, but is taken from the original Transformer paper.
attention_probs = self.dropout(attention_probs)
# Mask heads if we want to
if head_mask is not None:
attention_probs = attention_probs * head_mask
context_layer = torch.matmul(attention_probs, value_layer)
# context_layer: (batch_size, head_num, seqlen, head_dim)
if self.keep_multihead_output:
self.multihead_output = context_layer
self.multihead_output.retain_grad()
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
context_layer = context_layer.view(*new_context_layer_shape)
if self.output_attentions:
return attention_probs, context_layer
return context_layer
class TransformerSelfOutput(nn.Module):
def __init__(self, config):
super(TransformerSelfOutput, self).__init__()
self.pre_layer_norm = config.pre_layer_norm
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.LayerNorm = TransformerLayerNorm(
config.hidden_size, eps=config.layer_norm_eps
)
def forward(self, hidden_states, input_tensor):
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = hidden_states + input_tensor
if not self.pre_layer_norm:
hidden_states = self.LayerNorm(hidden_states)
return hidden_states
class TransformerAttention(nn.Module):
def __init__(self, config, output_attentions=False, keep_multihead_output=False):
super(TransformerAttention, self).__init__()
self.output_attentions = output_attentions
self.pre_layer_norm = config.pre_layer_norm
self.self = TransformerSelfAttention(
config,
output_attentions=output_attentions,
keep_multihead_output=keep_multihead_output,
)
self.output = TransformerSelfOutput(config)
if self.pre_layer_norm:
self.LayerNorm = self.output.LayerNorm
def prune_heads(self, heads):
if len(heads) == 0:
return
mask = torch.ones(self.self.num_attention_heads, self.self.attention_head_size)
for head in heads:
mask[head] = 0
mask = mask.view(-1).contiguous().eq(1)
index = torch.arange(len(mask))[mask].long()
# Prune linear layers
self.self.query = prune_linear_layer(self.self.query, index)
self.self.key = prune_linear_layer(self.self.key, index)
self.self.value = prune_linear_layer(self.self.value, index)
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
# Update hyper params
self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
self.self.all_head_size = (
self.self.attention_head_size * self.self.num_attention_heads
)
def forward(self, input_tensor, attention_mask, head_mask=None):
if self.pre_layer_norm:
# LayerNorm -> SelfAttention -> SelfOutput (residual)
self_output = self.LayerNorm(input_tensor)
self_output = self.self(self_output, attention_mask, head_mask)
else:
# SelfAttention -> SelfOutput (residual + LayerNorm)
self_output = self.self(input_tensor, attention_mask, head_mask)
if self.output_attentions:
attentions, self_output = self_output
attention_output = self.output(self_output, input_tensor)
if self.output_attentions:
return attentions, attention_output
return attention_output
class TransformerIntermediate(nn.Module):
def __init__(self, config):
super(TransformerIntermediate, self).__init__()
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
if isinstance(config.hidden_act, str):
self.intermediate_act_fn = ACT2FN[config.hidden_act]
else:
self.intermediate_act_fn = config.hidden_act
def forward(self, hidden_states):
hidden_states = self.dense(hidden_states)
hidden_states = self.intermediate_act_fn(hidden_states)
return hidden_states
class TransformerOutput(nn.Module):
def __init__(self, config):
super(TransformerOutput, self).__init__()
self.pre_layer_norm = config.pre_layer_norm
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.LayerNorm = TransformerLayerNorm(
config.hidden_size, eps=config.layer_norm_eps
) # layer_norm for FFN
def forward(self, hidden_states, input_tensor):
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = hidden_states + input_tensor
if not self.pre_layer_norm:
hidden_states = self.LayerNorm(hidden_states)
return hidden_states
class TransformerLayer(nn.Module):
def __init__(self, config, output_attentions=False, keep_multihead_output=False):
super(TransformerLayer, self).__init__()
self.output_attentions = output_attentions
self.pre_layer_norm = config.pre_layer_norm
self.attention = TransformerAttention(
config,
output_attentions=output_attentions,
keep_multihead_output=keep_multihead_output,
)
self.intermediate = TransformerIntermediate(config)
self.output = TransformerOutput(config)
if self.pre_layer_norm:
self.LayerNorm = self.output.LayerNorm
def forward(self, hidden_states, attention_mask, head_mask=None):
attention_output = self.attention(hidden_states, attention_mask, head_mask)
if self.output_attentions:
attentions, attention_output = attention_output
if self.pre_layer_norm:
# LayerNorm -> Intermediate -> Output (residual)
intermediate_output = self.LayerNorm(attention_output)
intermediate_output = self.intermediate(intermediate_output)
else:
# Intermediate -> Output (residual + LayerNorm)
intermediate_output = self.intermediate(attention_output)
layer_output = self.output(intermediate_output, attention_output)
if self.output_attentions:
return attentions, layer_output
return layer_output
class TransformerEncoder(nn.Module):
def __init__(
self, config, output_attentions=False, keep_multihead_output=False, **kwargs
):
super(TransformerEncoder, self).__init__()
if type(config) is dict:
config = TransformerConfig(**config)
self.output_attentions = output_attentions
self.pre_layer_norm = config.pre_layer_norm
layer = TransformerLayer(
config,
output_attentions=output_attentions,
keep_multihead_output=keep_multihead_output,
)
if config.share_layer:
self.layer = nn.ModuleList([layer for _ in range(config.num_hidden_layers)])
else:
self.layer = nn.ModuleList(
[copy.deepcopy(layer) for _ in range(config.num_hidden_layers)]
)
if self.pre_layer_norm:
# If pre-LN Transformer, a final layer_norm would be placed after the last layer,
# and intermediate layer_norms for all layer embedding outputs
LayerNorm = TransformerLayerNorm(
config.hidden_size, eps=config.layer_norm_eps
)
self.LayerNorm = nn.ModuleList(
[copy.deepcopy(LayerNorm) for _ in range(config.num_hidden_layers + 1)]
)
def forward(
self,
hidden_states,
attention_mask,
output_all_encoded_layers=True,
head_mask=None,
):
all_encoder_layers = []
all_attentions = []
for i, layer_module in enumerate(self.layer):
if output_all_encoded_layers:
if self.pre_layer_norm:
all_encoder_layers.append(self.LayerNorm[i](hidden_states))
else:
all_encoder_layers.append(hidden_states)
hidden_states = layer_module(hidden_states, attention_mask, head_mask[i])
if self.output_attentions:
attentions, hidden_states = hidden_states
all_attentions.append(attentions)
if self.pre_layer_norm:
all_encoder_layers.append(self.LayerNorm[-1](hidden_states))
else:
all_encoder_layers.append(hidden_states)
if self.output_attentions:
return all_attentions, all_encoder_layers
return all_encoder_layers
class TransformerInitModel(nn.Module):
"""
An abstract class to handle weights initialization.
"""
def __init__(self, config, output_attentions, *inputs, **kwargs):
super(TransformerInitModel, self).__init__()
self.config = config
self.output_attentions = output_attentions
def init_Transformer_weights(self, module):
"""
Initialize the weights.
"""
if isinstance(module, (nn.Linear, nn.Embedding)):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
elif isinstance(module, TransformerLayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
if isinstance(module, nn.Linear) and module.bias is not None:
module.bias.data.zero_()
class TransformerMockingjay(TransformerInitModel):
"""
The Transformer model.
Currently supporting upstreams models of Mockingjay, Tera, and Audio Albert.
"""
def __init__(
self,
config,
input_dim,
output_attentions=False,
keep_multihead_output=False,
with_input_module=True,
):
"""
Args:
config (TransformerConfig):
A `TransformerConfig` class instance with the configuration to build a new model,
can also be a `dict` that initializes the TransformerConfig class
intput_dim (int):
The input dimension of model
output_attentions:
If True, also output attentions weights computed by the model at each layer.
Default: False
keep_multihead_output (bool):
If True, saves output of the multi-head attention module with its gradient.
This can be used to compute head importance metrics.
Default: False
with_input_module (bool):
If True, set up the `TransformerModel` with a `TransformerInputRepresentations` class instance.
Default: True
"""
super(TransformerMockingjay, self).__init__(config, output_attentions)
self.with_input_module = with_input_module
if self.with_input_module:
self.input_representations = TransformerInputRepresentations(
config, input_dim
)
self.encoder = TransformerEncoder(
config,
output_attentions=output_attentions,
keep_multihead_output=keep_multihead_output,
)
self.apply(self.init_Transformer_weights)
self.input_size = input_dim
def prune_heads(self, heads_to_prune):
"""
Prunes heads of the model.
heads_to_prune (dict):
dict of {layer_num: list of heads to prune in this layer}
"""
for layer, heads in heads_to_prune.items():
self.encoder.layer[layer].attention.prune_heads(heads)
def get_multihead_outputs(self):
"""
Gather all multi-head outputs.
Return:
list (layers) of multihead module outputs with gradients
"""
return [layer.attention.self.multihead_output for layer in self.encoder.layer]
def forward(
self,
spec_input,
pos_enc=None,
attention_mask=None,
output_all_encoded_layers=False,
head_mask=None,
):
"""
Args:
spec_input (torch.LongTensor):
A torch.LongTensor of shape [batch_size, sequence_length, feature_dimension]
with the selected frames processed as masked frames during training,
generated by the `process_train_MAM_data()` function in `transformer/mam.py`.
pos_enc (torch.LongTensor):
A torch.LongTensor of shape [batch_size, sequence_length, hidden_size],
generated by the `fast_position_encoding()` function in `transformer/mam.py`.
attention_mask (torch.LongTensor):
An optional torch.LongTensor of shape [batch_size, sequence_length] with indices
selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
input sequence length in the current batch. It's the mask that we typically use for attention when
a batch has varying length sentences.
output_all_encoded_layers (bool):
A boolean which controls the content of the `encoded_layers` output as described below.
Default: True
head_mask (torch.Tensor):
An optional torch.Tensor of shape [num_heads] or [num_layers, num_heads] with indices between 0 and 1.
It's a mask to be used to nullify some heads of the transformer. 1.0 => head is fully masked, 0.0 => head is not masked.
Return:
Output (s3prl.Output):
An Output module that contains `hidden_states` and/or `output`.
hidden_states (encoded_layers):
controled by the `output_all_encoded_layers` argument of `forward`:
- If `output_all_encoded_layers==True`: outputs a list of the full sequences of encoded-hidden-states
at the end of each attention block, each encoded-hidden-state is a torch.FloatTensor
of size [batch_size, sequence_length, hidden_size], i.e [num_hidden_layers, batch_size, sequence_length, hidden_size]
- If `output_all_encoded_layers==False`: outputs only the full sequence of hidden-states corresponding
to the last attention block of shape [batch_size, sequence_length, hidden_size].
output (all_attentions):
controled by the `output_attentions` argument of `__init__`:
- If `output_attentions==True`, also output attentions weights computed by the model at each layer.
"""
if attention_mask is None:
attention_mask = torch.ones_like(spec_input)
# We create a 3D attention mask from a 2D tensor mask.
# Sizes are [batch_size, 1, 1, to_seq_length]
# So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
# this attention mask is more simple than the triangular masking of causal attention
# used in OpenAI GPT, we just need to prepare the broadcast dimension here.
extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2)
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
# masked positions, this operation will create a tensor which is 0.0 for
# positions we want to attend and -10000.0 for masked positions.
# Since we are adding it to the raw scores before the softmax, this is
# effectively the same as removing these entirely.
extended_attention_mask = extended_attention_mask.to(
dtype=spec_input.dtype
) # fp16 compatibility
extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
if head_mask is not None:
if head_mask.dim() == 1:
head_mask = (
head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(-1).unsqueeze(-1)
)
head_mask = head_mask.expand_as(
self.config.num_hidden_layers, -1, -1, -1, -1
)
elif head_mask.dim() == 2:
head_mask = (
head_mask.unsqueeze(1).unsqueeze(-1).unsqueeze(-1)
) # We can specify head_mask for each layer
head_mask = head_mask.to(
dtype=spec_input.dtype
) # switch to fload if need + fp16 compatibility
else:
head_mask = [None] * self.config.num_hidden_layers
if self.with_input_module:
input_representations = self.input_representations(spec_input, pos_enc)
else:
input_representations = spec_input
encoded_layers = self.encoder(
input_representations,
extended_attention_mask,
output_all_encoded_layers=output_all_encoded_layers,
head_mask=head_mask,
)
if self.output_attentions:
all_attentions, encoded_layers = encoded_layers
if not output_all_encoded_layers:
encoded_layers = encoded_layers[-1]
if self.output_attentions:
return Output(output=all_attentions, hidden_states=encoded_layers)
return Output(hidden_states=encoded_layers)
|