lmzjms's picture
Upload 1162 files
0b32ad6 verified
raw
history blame
1.7 kB
"""
Metrics for diarization
Authors:
* Jiatong Shi 2021
"""
from itertools import permutations
import numpy as np
import torch
__all__ = [
"calc_diarization_error",
]
def calc_diarization_error(pred, label, length):
(batch_size, max_len, num_output) = label.size()
# mask the padding part
mask = np.zeros((batch_size, max_len, num_output))
for i in range(batch_size):
mask[i, : length[i], :] = 1
# pred and label have the shape (batch_size, max_len, num_output)
label_np = label.data.cpu().numpy().astype(int)
pred_np = (pred.data.cpu().numpy() > 0).astype(int)
label_np = label_np * mask
pred_np = pred_np * mask
length = length.data.cpu().numpy()
# compute speech activity detection error
n_ref = np.sum(label_np, axis=2)
n_sys = np.sum(pred_np, axis=2)
speech_scored = float(np.sum(n_ref > 0))
speech_miss = float(np.sum(np.logical_and(n_ref > 0, n_sys == 0)))
speech_falarm = float(np.sum(np.logical_and(n_ref == 0, n_sys > 0)))
# compute speaker diarization error
speaker_scored = float(np.sum(n_ref))
speaker_miss = float(np.sum(np.maximum(n_ref - n_sys, 0)))
speaker_falarm = float(np.sum(np.maximum(n_sys - n_ref, 0)))
n_map = np.sum(np.logical_and(label_np == 1, pred_np == 1), axis=2)
speaker_error = float(np.sum(np.minimum(n_ref, n_sys) - n_map))
correct = float(1.0 * np.sum((label_np == pred_np) * mask) / num_output)
num_frames = np.sum(length)
return (
correct,
num_frames,
speech_scored,
speech_miss,
speech_falarm,
speaker_scored,
speaker_miss,
speaker_falarm,
speaker_error,
)