lmzjms's picture
Upload 1162 files
0b32ad6 verified
raw
history blame
13.5 kB
from random import shuffle
import os
from glob import glob
import shutil
import re
import tqdm
from multiprocessing import Pool
from normalise import normalise
months = {'jan.': 'January', 'feb.': 'February', 'mar.': 'March', 'apr.': 'April', 'may': 'May', 'jun.': 'June', 'jul.': 'July', 'aug.': 'August', 'sep.': 'September', 'oct.': 'October', 'nov.': 'November', 'dec.': 'December', 'jan': 'January', 'feb': 'February', 'mar': 'March', 'apr': 'April', 'jun': 'June', 'jul': 'July', 'aug': 'August', 'sep': 'September', 'oct': 'October', 'nov': 'November', 'dec': 'December'}
replace_words = {'&': 'and', '¡':'', 'r&b':'R and B', 'funtime':'fun time', 'español':'espanol', "'s":'s', 'palylist':'playlist'}
replace_vocab = {'ú':'u', 'ñ':'n', 'Ō':'O', 'â':'a'}
reservations = {'chyi':'chyi', 'Pre-Party':'pre party', 'Chu':'Chu', 'B&B':'B and B', '0944':'nine four four', 'Box':'Box', 'ain’t':'am not', 'Zon':'Zon', 'Yui':'Yui', 'neto':'neto', 'skepta':'skepta', '¡Fiesta':'Fiesta', 'Vue':'Vue', 'iheart':'iheart', 'disco':'disco'}
same = "klose la mejor música para tus fiestas dubstep dangles drejer listas".split(' ')
for word in same:
reservations[word] = word
def word_normalise(words):
ret = []
for word in words:
if word.lower() in months:
word = months[word.lower()]
if word.lower() in replace_words:
word = replace_words[word.lower()]
for regex in replace_vocab:
word = re.sub(regex, '', word)
#word = re.sub(r'(\S)([\.\,\!\?])', r'\1 \2', word)
word = re.sub(r'[\.\,\!\?;\/]', '', word)
ret.append(word)
return ret
def sent_normalise(text, slots_split=None):
norm_slots, norm_texts = [], []
text_split = text.split(' ')
if slots_split is None:
slots_split = ['O']*len(text_split)
for idx in range(len(text_split)):
if text_split[idx] in '.,!?;/]':
continue
if text_split[idx] in reservations:
for word in reservations[text_split[idx]].split(' '):
norm_texts.append(word)
norm_slots.append(slots_split[idx])
continue
norm_text = normalise(word_normalise([text_split[idx]]), variety="AmE", verbose=False)
for phrase in norm_text:
if phrase == '':
continue
for word in re.split(r' |\-', phrase):
word = re.sub(r'[\.\,\!\?;\/]', '', word)
if word == '':
continue
norm_texts.append(word)
norm_slots.append(slots_split[idx])
return norm_slots, norm_texts
def process_raw_snips_file(file, out_f):
with open(file) as f:
content = f.readlines()
content = [x.strip() for x in content]
with open(out_f, 'w') as f:
for cnt, line in enumerate(content):
text = line.split(' <=> ')[0]
intent = line.split(' <=> ')[1]
#[r.split(':')[0] if len(r.split(':')) == 2 else ' ' for r in x.split()]
text_split = [x.replace('::', ':').split(':')[0] if len(x.replace('::', ':').split(':')) == 2 else ' ' for x in text.split()]
text_entities = ' '.join(text_split)
slots_split = [x.replace('::', ':').split(':')[1] for x in text.split()]
slots_entities = ' '.join(slots_split)
assert len(text_split) == len(slots_split), (text_split, slots_split)
f.write('%d | BOS %s EOS | O %s | %s\n' % (cnt, text_entities, slots_entities, intent))
def remove_IBO_from_snipt_vocab_slot(in_f, out_f):
with open(in_f) as f:
content = f.readlines()
content = [x.strip() for x in content]
# get rid of BIO tag from the slots
for idx, line in enumerate(content):
if line != 'O':
content[idx] = line[len('B-'):]
content = set(content) # remove repeating slots
with open(out_f, 'w') as f:
for line in content:
f.write('%s\n' % line)
def process_daniel_snips_file(content):
content = [x.strip() for x in content]
utt_ids = [x.split('\t', 1)[0] for x in content]
valid_uttids = [x for x in utt_ids if x.split('-')[1] == 'valid']
test_uttids = [x for x in utt_ids if x.split('-')[1] == 'test']
train_uttids = [x for x in utt_ids if x.split('-')[1] == 'train']
utt2text, utt2slots, utt2intent = {}, {}, {}
assert len(utt_ids) == len(set(utt_ids))
# create utt2text, utt2slots, utt2intent
for line in content:
uttid, text, slots, intent = line.split('\t')
if len(text.split()) != len(slots.split()): # detect 'empty' in text
assert len(text.split(' ')) == 2
empty_idx = text.split().index(text.split(' ')[0].split()[-1]) + 1
slots_list = slots.split()
del slots_list[empty_idx]
cleaned_slots = ' '.join(slots_list)
assert len(text.split()) == len(slots_list)
cleaned_text = ' '.join(text.split())
#print(cleaned_text, cleaned_slots)
else:
(cleaned_text, cleaned_slots) = (text, slots)
# get rid of the 'intent/' from all slot values
cleaned_slots = ' '.join([x.split('/')[1] if x != 'O' else x for x in cleaned_slots.split()])
# strip the whitespaces before punctuations
#cleaned_text = re.sub(r'\s([?.!,"](?:\s|$))', r'\1', cleaned_text)
utt2text[uttid] = cleaned_text
utt2slots[uttid] = cleaned_slots
utt2intent[uttid] = intent
test_utt2text, test_utt2slots, test_utt2intent = {}, {}, {}
valid_utt2text, valid_utt2slots, valid_utt2intent = {}, {}, {}
train_utt2text, train_utt2slots, train_utt2intent = {}, {}, {}
for utt in valid_uttids:
valid_utt2text[utt] = utt2text[utt]
valid_utt2slots[utt] = utt2slots[utt]
valid_utt2intent[utt] = utt2intent[utt]
for utt in test_uttids:
test_utt2text[utt] = utt2text[utt]
test_utt2slots[utt] = utt2slots[utt]
test_utt2intent[utt] = utt2intent[utt]
for utt in train_uttids:
train_utt2text[utt] = utt2text[utt]
train_utt2slots[utt] = utt2slots[utt]
train_utt2intent[utt] = utt2intent[utt]
assert len(set(valid_utt2intent.values())) == len(set(test_utt2intent.values())) == len(set(train_utt2intent.values())) == 7
assert len(valid_utt2intent.keys()) == len(test_utt2intent.keys()) == 700
assert len(train_utt2intent.keys()) == 13084
def __return_set_of_slots(utt2slots):
all_slots = []
for slot in utt2slots.values():
all_slots.extend(slot.split())
unique_slots = set(all_slots)
return unique_slots
assert len(__return_set_of_slots(valid_utt2slots)) == len(__return_set_of_slots(test_utt2slots)) == \
len(__return_set_of_slots(train_utt2slots)) == 40
return (train_utt2text, train_utt2slots, train_utt2intent), \
(valid_utt2text, valid_utt2slots, valid_utt2intent), \
(test_utt2text, test_utt2slots, test_utt2intent)
def map_and_link_snips_audio(snips_audio_dir, link_dir):
# traverse through snips_audio_dir
result = [y for x in os.walk(snips_audio_dir) for y in glob(os.path.join(x[0], '*.mp3'))]
for path in result:
person = path.split('/')[8].split('_')[1]
filename = path.split('/')[-1]
if filename[:5] != 'snips':
continue
uttid = filename.split('.')[0]
new_uttid = person + '-' + filename
partition = uttid.split('-')[1]
destination = os.path.join(link_dir, partition, new_uttid)
shutil.copyfile(path, destination)
def create_multispk_for_snips(output_dir):
speakers = "Aditi Amy Brian Emma Geraint Ivy Joanna Joey Justin Kendra Kimberly Matthew Nicole Raveena Russell Salli".split(' ')
dataset_info = [{'split':'test', 'num_utts':700}, {'split':'valid', 'num_utts':700}, {'split':'train', 'num_utts':13084}]
test_out_f = open(os.path.join(output_dir, 'all.iob.snips.txt'), 'w')
for data in dataset_info:
num_utts = data['num_utts']
split = data['split']
with open(os.path.join(output_dir, 'single-matched-snips.%s.w-intent'%split)) as f:
content = f.readlines()
utt2line = {x.strip().split()[0]:x.strip() for x in content}
for spk in speakers:
for num in range(num_utts):
uttid = "%s-snips-%s-%d"%(spk, split, num) #mp3.split('/')[-1].split('.')[0]
line = utt2line["snips-%s-%d"%(split, num)] #'-'.join(uttid.split('-')[1:])]
text = line.split('\t')[1].upper()
slots = line.split('\t')[2]
intent = line.split('\t')[3]
test_out_f.write('%s BOS %s EOS\tO %s %s\n' % (uttid, text, slots, intent))
test_out_f.close()
def apply_text_norm_and_modify_slots(all_tsv, output_dir):
train_dirs, valid_dirs, test_dirs = process_daniel_snips_file(all_tsv)
# test
test_file = open(os.path.join(output_dir, 'single-matched-snips.test.w-intent'), 'w')
vocab_slot = {}
for uttid in tqdm.tqdm(test_dirs[0].keys(), desc='Text Normalising on testing set'):
text = test_dirs[0][uttid]
slots = test_dirs[1][uttid]
intent = test_dirs[2][uttid]
slots_split = slots.split()
for s in slots_split:
vocab_slot.setdefault(s, 0)
vocab_slot[s] += 1
norm_slots, norm_texts = sent_normalise(text, slots_split)
assert len(norm_texts) == len(norm_slots), (norm_texts, norm_slots)
# write to file
test_file.write('%s\t%s\t%s\t%s\n' % (uttid, ' '.join(norm_texts).upper(), ' '.join(norm_slots), intent))
test_file.close()
# valid
valid_file = open(os.path.join(output_dir, 'single-matched-snips.valid.w-intent'), 'w')
for uttid in tqdm.tqdm(valid_dirs[0].keys(), desc='Text Normalising on validation set'):
text = valid_dirs[0][uttid]
slots = valid_dirs[1][uttid]
intent = valid_dirs[2][uttid]
slots_split = slots.split()
for s in slots_split:
vocab_slot.setdefault(s, 0)
vocab_slot[s] += 1
norm_slots, norm_texts = sent_normalise(text, slots_split)
assert len(norm_texts) == len(norm_slots), (norm_texts, norm_slots)
# write to file
valid_file.write('%s\t%s\t%s\t%s\n' % (uttid, ' '.join(norm_texts).upper(), ' '.join(norm_slots), intent))
valid_file.close()
# train
train_file = open(os.path.join(output_dir, 'single-matched-snips.train.w-intent'), 'w')
for uttid in tqdm.tqdm(train_dirs[0].keys(), desc='Text Normalising on training set'):
text = train_dirs[0][uttid]
slots = train_dirs[1][uttid]
intent = train_dirs[2][uttid]
slots_split = slots.split()
for s in slots_split:
vocab_slot.setdefault(s, 0)
vocab_slot[s] += 1
norm_slots, norm_texts = sent_normalise(text, slots_split)
assert len(norm_texts) == len(norm_slots), (norm_texts, norm_slots)
# write to file
train_file.write('%s\t%s\t%s\t%s\n' % (uttid, ' '.join(norm_texts).upper(), ' '.join(norm_slots), intent))
train_file.close()
vocab_file = open(os.path.join(output_dir, 'slots.txt'), 'w')
vocab_file.write('\n'.join(sorted(list(vocab_slot.keys()), key=lambda x:vocab_slot[x], reverse=True)))
def sox_func(inputs):
files, root, out_root, speaker = inputs
for name in tqdm.tqdm(files, desc='Process for speaker: '+speaker):
if name.endswith(".mp3"):
split = name.split('-')[1]
out_dir = os.path.join(out_root, split)
os.makedirs(out_dir, exist_ok=True)
orig_file = os.path.join(root, name)
new_file = os.path.join(out_dir, speaker+'-'+name.split('/')[-1].split('.')[0] + '.wav')
bashCommand = "sox " + orig_file + " -t wav -c 1 -r 16000 -b 16 -e signed-integer " + new_file
r = os.popen(bashCommand).read()
def sox_mp3_to_wav(in_root, out_root):
os.makedirs(out_root, exist_ok=True)
pool = Pool(16)
inputs = []
for root, dirs, files in os.walk(in_root):
print('[Processing] enter directory %s'%root)
if not len(files):
continue
speaker = root.split('/')[-2].split('_')[1]
print('[Processing] process %d audio files from speaker %s'%(len(files), speaker))
inputs.append((files, root, out_root, speaker))
pool.map(sox_func, inputs)
if __name__ == '__main__':
import sys, os
mode = sys.argv[1]
if mode == 'text':
repo_dir = sys.argv[2]
dump_dir = sys.argv[3]
os.makedirs(dump_dir, exist_ok=True)
content = []
content += open(os.path.join(repo_dir, 'data/nlu_annotation/valid')).readlines()[1:]
content += open(os.path.join(repo_dir, 'data/nlu_annotation/test')).readlines()[1:]
content += open(os.path.join(repo_dir, 'data/nlu_annotation/train')).readlines()[1:]
apply_text_norm_and_modify_slots(content, dump_dir)
create_multispk_for_snips(dump_dir)
elif mode == 'audio':
audio_dir = sys.argv[2]
dump_dir = sys.argv[3]
# Step: sox the snips *.mp3 to the correct format
sox_mp3_to_wav(audio_dir, dump_dir)
else:
print('Usage: python preprocess.py [text|audio] [data_path] [dump_path]')