import torch | |
from s3prl.dataio.dataset.load_audio import LoadAudio | |
from s3prl.util.pseudo_data import pseudo_audio | |
def test_load_audio(): | |
with pseudo_audio([3.0, 4.0, 5.2]) as (paths, num_frames): | |
dataset = LoadAudio(paths, [None, 1.0, 3.1], [None, 3.2, None], max_secs=4.2) | |
for item in dataset: | |
assert isinstance(item["wav"], torch.Tensor) | |