Commit
·
b8aa404
1
Parent(s):
e742085
readme update
Browse files- .DS_Store +0 -0
- 1_Pooling/config.json +7 -0
- README.md +19 -17
.DS_Store
ADDED
|
Binary file (8.2 kB). View file
|
|
|
1_Pooling/config.json
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"word_embedding_dimension": 768,
|
| 3 |
+
"pooling_mode_cls_token": true,
|
| 4 |
+
"pooling_mode_mean_tokens": false,
|
| 5 |
+
"pooling_mode_max_tokens": false,
|
| 6 |
+
"pooling_mode_mean_sqrt_len_tokens": false
|
| 7 |
+
}
|
README.md
CHANGED
|
@@ -8,7 +8,7 @@ tags:
|
|
| 8 |
|
| 9 |
---
|
| 10 |
|
| 11 |
-
#
|
| 12 |
|
| 13 |
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
|
| 14 |
|
|
@@ -28,7 +28,7 @@ Then you can use the model like this:
|
|
| 28 |
from sentence_transformers import SentenceTransformer
|
| 29 |
sentences = ["This is an example sentence", "Each sentence is converted"]
|
| 30 |
|
| 31 |
-
model = SentenceTransformer(
|
| 32 |
embeddings = model.encode(sentences)
|
| 33 |
print(embeddings)
|
| 34 |
```
|
|
@@ -51,32 +51,23 @@ def cls_pooling(model_output, attention_mask):
|
|
| 51 |
sentences = ['This is an example sentence', 'Each sentence is converted']
|
| 52 |
|
| 53 |
# Load model from HuggingFace Hub
|
| 54 |
-
tokenizer = AutoTokenizer.from_pretrained(
|
| 55 |
-
model = AutoModel.from_pretrained(
|
| 56 |
|
| 57 |
# Tokenize sentences
|
| 58 |
-
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors=
|
| 59 |
|
| 60 |
# Compute token embeddings
|
| 61 |
with torch.no_grad():
|
| 62 |
model_output = model(**encoded_input)
|
| 63 |
|
| 64 |
# Perform pooling. In this case, cls pooling.
|
| 65 |
-
sentence_embeddings = cls_pooling(model_output, encoded_input[
|
| 66 |
|
| 67 |
print("Sentence embeddings:")
|
| 68 |
print(sentence_embeddings)
|
| 69 |
```
|
| 70 |
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
## Evaluation Results
|
| 74 |
-
|
| 75 |
-
<!--- Describe how your model was evaluated -->
|
| 76 |
-
|
| 77 |
-
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
|
| 78 |
-
|
| 79 |
-
|
| 80 |
## Training
|
| 81 |
The model was trained with the parameters:
|
| 82 |
|
|
@@ -96,7 +87,6 @@ Parameters of the fit()-Method:
|
|
| 96 |
{
|
| 97 |
"epochs": 1,
|
| 98 |
"evaluation_steps": 0,
|
| 99 |
-
"evaluator": "NoneType",
|
| 100 |
"max_grad_norm": 1,
|
| 101 |
"optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
|
| 102 |
"optimizer_params": {
|
|
@@ -120,4 +110,16 @@ SentenceTransformer(
|
|
| 120 |
|
| 121 |
## Citing & Authors
|
| 122 |
|
| 123 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
|
| 9 |
---
|
| 10 |
|
| 11 |
+
# Domain-adapted BERT for General Legal Practice
|
| 12 |
|
| 13 |
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
|
| 14 |
|
|
|
|
| 28 |
from sentence_transformers import SentenceTransformer
|
| 29 |
sentences = ["This is an example sentence", "Each sentence is converted"]
|
| 30 |
|
| 31 |
+
model = SentenceTransformer("louisbrulenaudet/tsdae-lemone-mbert-base")
|
| 32 |
embeddings = model.encode(sentences)
|
| 33 |
print(embeddings)
|
| 34 |
```
|
|
|
|
| 51 |
sentences = ['This is an example sentence', 'Each sentence is converted']
|
| 52 |
|
| 53 |
# Load model from HuggingFace Hub
|
| 54 |
+
tokenizer = AutoTokenizer.from_pretrained("louisbrulenaudet/tsdae-lemone-mbert-base")
|
| 55 |
+
model = AutoModel.from_pretrained("louisbrulenaudet/tsdae-lemone-mbert-base")
|
| 56 |
|
| 57 |
# Tokenize sentences
|
| 58 |
+
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors="pt")
|
| 59 |
|
| 60 |
# Compute token embeddings
|
| 61 |
with torch.no_grad():
|
| 62 |
model_output = model(**encoded_input)
|
| 63 |
|
| 64 |
# Perform pooling. In this case, cls pooling.
|
| 65 |
+
sentence_embeddings = cls_pooling(model_output, encoded_input["attention_mask"])
|
| 66 |
|
| 67 |
print("Sentence embeddings:")
|
| 68 |
print(sentence_embeddings)
|
| 69 |
```
|
| 70 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 71 |
## Training
|
| 72 |
The model was trained with the parameters:
|
| 73 |
|
|
|
|
| 87 |
{
|
| 88 |
"epochs": 1,
|
| 89 |
"evaluation_steps": 0,
|
|
|
|
| 90 |
"max_grad_norm": 1,
|
| 91 |
"optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
|
| 92 |
"optimizer_params": {
|
|
|
|
| 110 |
|
| 111 |
## Citing & Authors
|
| 112 |
|
| 113 |
+
If you use this code in your research, please use the following BibTeX entry.
|
| 114 |
+
|
| 115 |
+
```BibTeX
|
| 116 |
+
@misc{louisbrulenaudet2023,
|
| 117 |
+
author = {Louis Brulé Naudet},
|
| 118 |
+
title = {Tranformer-based Denoising AutoEncoder for tax practice},
|
| 119 |
+
year = {2023}
|
| 120 |
+
}
|
| 121 |
+
```
|
| 122 |
+
|
| 123 |
+
## Feedback
|
| 124 |
+
|
| 125 |
+
If you have any feedback, please reach out at [[email protected]](mailto:[email protected]).
|