File size: 1,384 Bytes
94aedc2
3eec08c
 
 
 
 
 
 
 
94aedc2
3eec08c
 
94aedc2
 
3eec08c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
94aedc2
 
3eec08c
94aedc2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
---
language:
- en
tags:
- llama
- fine-tuned
- causal-lm
license: apache-2.0
base_model: YongganFu/Llama-400M-12L
---
# data4elm_full_finetuned_no_lora
Fine-tuned Llama-400M model

## Model Details
This model is a fully fine-tuned version of [YongganFu/Llama-400M-12L](https://huggingface.co/YongganFu/Llama-400M-12L).

## Model Files
The model directory contains:
- `config.json` - Model configuration
- `generation_config.json` - Generation settings
- `model.safetensors` - Model weights in safetensors format
- `special_tokens_map.json` - Special token mapping
- `tokenizer.json` - Tokenizer configuration
- `tokenizer.model` - Tokenizer model
- `trainer_state.json` - Training state information
- `training_args.bin` - Training arguments

## Usage
```python
from transformers import AutoModelForCausalLM, AutoTokenizer

# Load the fine-tuned model
model = AutoModelForCausalLM.from_pretrained("lxaw/data4elm_full_finetuned_no_lora")
tokenizer = AutoTokenizer.from_pretrained("lxaw/data4elm_full_finetuned_no_lora")

# Example usage
input_text = "What is the capital of France?"
inputs = tokenizer(input_text, return_tensors="pt")
outputs = model.generate(inputs.input_ids, max_length=50)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```

## Training Details
This model was fine-tuned using standard full fine-tuning (not parameter-efficient methods like LoRA).