File size: 8,126 Bytes
af359c9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 |
import os, re, numpy as np
import matplotlib.pyplot as plt
import matplotlib.pyplot as plt_xsec
from datetime import datetime
input_log_file = './ewnet_logs_TRANS3_20240708.txt'
flag_all_xsections = True
prev_station = ''
now = datetime.now()
now_str = now.strftime('%Y%m%d_%H%M')
label_list = ['pave_layer1', 'pave_layer2', 'pave_layer3', 'pave_layer4', 'cut_ea', 'cut_rr', 'cut_br', 'cut_ditch', 'fill_subbed', 'fill_subbody', 'curb', 'above', 'below', 'pave_int', 'pave_surface', 'pave_subgrade', 'ground', 'pave_bottom', 'rr', 'br', 'slope', 'struct', 'steps']
color_list = [[0.8,0.8,0.8],[0.6,0.6,0.6],[0.4,0.4,0.4],[0.2,0.2,0.2],[0.8,0.4,0.2],[0.8,0.6,0.2],[0.8,0.8,0.2],[0.6,0.8,0.2],[0.3,0.8,0.3],[0.3,0.6,0.3],[0.3,0.4,0.3],[0.0,0.8,0.0],[0.6,0.0,0.0],[0.8,0.0,0.0],[1.0,0.0,0.0],[0.2,0.2,0.6],[0.0,1.0,0.0],[0.2,0.2,1.0],[0.4,0.2,1.0],[0.6,0.2,1.0],[0.2,0.8,0.6],[0.8,0.2,1.0],[1.0,0.2,1.0]]
# make folder
if not os.path.exists('./graph'):
os.makedirs('./graph')
def draw_colorbox_list():
global label_list, color_list
fig, ax = plt.subplots(figsize=(9.2, 5))
ax.invert_yaxis()
ax.set_xlim(0, 1.5)
fig.set_size_inches(12, 7)
token_list = ['item1', 'item2', 'item3', 'item4', 'item5', 'item6']
for i, (colname, color) in enumerate(zip(label_list, color_list)):
width = 1.0 / len(label_list)
widths = [width] * len(token_list)
starts = width * i
rects = ax.barh(token_list, widths, left=starts, height=0.5, label=colname, color=color)
text_color = 'white' if np.max(color) < 0.4 else 'black'
ax.legend()
plt.savefig('./graph/box_colors.png')
plt.close()
def output_graph_matrics(index, tag, text):
global label_list, color_list
prediction = ''
tokens = []
polyline = []
geom_index = text.find('Geom:')
if geom_index >= 0:
pred_label = ''
label_index = text.find('Predicted: ')
if label_index >= 0:
pred = text[label_index + 11:geom_index]
labels = pred.split(', ')
if len(labels) > 0:
prediction = labels[0]
pred_label = labels[0] + '(0.3'
polyline_index = text.find('Polyline:')
if polyline_index > 0:
pred = text[geom_index + 6:polyline_index - 2]
polyline_text = text[polyline_index + 10:]
polyline = eval(polyline_text)
else:
pred = text[geom_index + 6:]
pred = pred.replace('[', '').replace(']', '')
pred = pred.replace(')', '').replace("'", '')
tokens = pred.split(',')
if len(tokens) <= 1:
tokens = pred.split(' ')
if len(tokens) > 0:
tokens.insert(0, pred_label)
last = tokens[-1]
if len(last) == 0:
tokens.pop()
else:
return
token_list = [token.split('(')[0] for token in tokens]
token_list = [token.replace(' ', '') for token in token_list]
ratios = [float(token.split('(')[1]) for token in tokens]
results = {token_list[0]: ratios}
labels = [label.replace(" ", "") for label in list(results.keys())]
data = np.array(list(results.values()))
data_cum = data.cumsum(axis=1)
token_colors = [color_list[label_list.index(label)] for label in token_list]
global plt_xsec, now_str, flag_all_xsections
if flag_all_xsections == False:
fig, ax = plt.subplots(figsize=(9.2, 5))
ax.invert_yaxis()
ax.xaxis.set_visible(False)
ax.set_xlim(0, np.sum(data, axis=1).max())
fig.set_size_inches(15, 0.5)
for i, (colname, color) in enumerate(zip(token_list, token_colors)):
widths = data[:, i]
starts = data_cum[:, i] - widths
if i > 0:
starts += 0.02
rects = ax.barh(labels, widths, left=starts, height=0.5, label=colname, color=color)
if i != 0:
text_color = 'white' if np.max(color) < 0.4 else 'black'
ax.bar_label(rects, label_type='center', color=text_color)
ax.legend(ncols=len(token_list), bbox_to_anchor=(0, 1), loc='lower right', fontsize='small')
tag = tag.replace(' ', '_')
tag = tag.replace(':', '')
if text.find('True') > 0:
plt.savefig(f'./graph/box_list_{now_str}_{tag}_{index}_T.png')
else:
plt.savefig(f'./graph/box_list_{now_str}_{tag}_{index}_F.png')
plt.close()
else:
if polyline[0] != polyline[-1]:
polyline.append(polyline[0])
x, y = zip(*polyline)
color = color_list[label_list.index(prediction)]
plt_xsec.fill(x, y, color=color)
centroid_x = sum(x) / len(x)
centroid_y = sum(y) / len(y)
area = 0.5 * abs(sum(x[i]*y[i+1] - x[i+1]*y[i] for i in range(len(polyline)-1)))
if prediction.find('pave') < 0:
plt_xsec.text(centroid_x, centroid_y, f'{prediction}={area:.2f}', horizontalalignment='center', verticalalignment='center', fontsize=5, color='black')
return prediction, area, token_list
output_stations = ['4+440.00000', '3+780.00000', '3+800.00000', '3+880.00000', '3+940.00000']
def output_logs(tag, equal='none'):
global input_log_file, plt_xsec, now_str, prev_station, flag_all_xsection, output_stations
text_list = []
logs = []
with open(input_log_file, 'r') as file:
for index, label in enumerate(label_list):
file.seek(0)
for line in file:
if flag_all_xsections == False and line.find(tag) < 0:
continue
tag_model = tag.split(' ')[0]
if flag_all_xsections == True and line.find(tag_model) < 0:
continue
if flag_all_xsections == False and line.find('Label: ' + label) < 0:
continue
line = line.replace('\n', '')
if equal == 'none':
text_list.append(line)
elif line.find(equal) > 0:
text_list.append(line)
if flag_all_xsections == False:
break
if flag_all_xsections:
break
if len(text_list) == 0:
return logs
def extract_station(text):
sta_index = text.find('Station:') + 9 # Start of station value
end_index = text.find(',', sta_index)
return text[sta_index:end_index] if end_index != -1 else text[sta_index:]
text_list = sorted(text_list, key=extract_station)
station = ''
for index, text in enumerate(text_list):
sta_index = text.find('Station:')
equal_index = text.find('Equal: ')
equal_check = 'T' if text.find('True') > 0 else 'F'
if sta_index > 0 and equal_index > 0:
station = text[sta_index + 9:equal_index-2]
print(station)
try:
if len(output_stations) and output_stations.index(station) < 0:
continue
except Exception as e:
continue
if prev_station != station:
if len(prev_station) > 0:
plt_xsec.savefig(f'./graph/polygon_{now_str}_{tag}_{prev_station}_{equal_check}.png', dpi=300)
plt_xsec.close()
plt_xsec.figure()
plt_xsec.gca().set_xlim([-60, 60])
plt_xsec.gca().axis('equal')
plt_xsec.gca().text(0, 0, f'{station}', fontsize=12, color='black')
prev_station = station
text = text.replace('\n', '')
label, area, tokens = output_graph_matrics(index, tag, text)
log = {
'index': index,
'station': station,
'label': label,
'area': area,
'tokens': tokens
}
logs.append(log)
if index == len(text_list) - 1:
plt_xsec.savefig(f'./graph/polygon_{now_str}_{tag}_{prev_station}_{equal_check}.png', dpi=300)
plt_xsec.close()
return logs
def main():
draw_colorbox_list()
summary_log_file = open('./graph/summary_log.csv', 'a')
if summary_log_file is None:
return
summary_log_file.write(f'model, ground true, length, ground false, length\n')
tags = ['MLP [128, 64, 32]', 'MLP [64, 128, 64]', 'MLP [64, 128, 64, 32]', 'LSTM [128]', 'LSTM [128, 64, 32]', 'LSTM [256, 128, 64]', 'transformer 32', 'transformer 64', 'transformer 128', 'BERT']
for tag in tags:
print(tag)
if len(output_stations) > 0:
logs1 = output_logs(tag,)
continue
logs1 = output_logs(tag, 'Equal: True')
logs2 = output_logs(tag, 'Equal: False')
if len(logs1) == 0 or len(logs2) == 0:
continue
area1 = area2 = 0
area1 += sum([log['area'] for log in logs1])
area2 += sum([log['area'] for log in logs2])
log_record = f'{tag}, {area1}, {len(logs1)}, {area2}, {len(logs2)}'
summary_log_file.write(f'{log_record}\n')
if flag_all_xsections:
break
summary_log_file.close()
if __name__ == '__main__':
main()
|