Push model using huggingface_hub.
Browse files
README.md
CHANGED
@@ -4,23 +4,17 @@ tags:
|
|
4 |
- sentence-transformers
|
5 |
- text-classification
|
6 |
- generated_from_setfit_trainer
|
7 |
-
widget:
|
8 |
-
- text: This sentence is positive
|
9 |
-
- text: This sentence is positive
|
10 |
-
- text: This sentence is negative
|
11 |
-
- text: This sentence is positive
|
12 |
-
- text: This sentence is negative
|
13 |
metrics:
|
14 |
- accuracy
|
15 |
pipeline_tag: text-classification
|
16 |
library_name: setfit
|
17 |
inference: true
|
18 |
-
base_model: TaylorAI/bge-micro-v2
|
19 |
---
|
20 |
|
21 |
-
# SetFit
|
22 |
|
23 |
-
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification.
|
24 |
|
25 |
The model has been trained using an efficient few-shot learning technique that involves:
|
26 |
|
@@ -31,7 +25,7 @@ The model has been trained using an efficient few-shot learning technique that i
|
|
31 |
|
32 |
### Model Description
|
33 |
- **Model Type:** SetFit
|
34 |
-
- **Sentence Transformer
|
35 |
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
|
36 |
- **Maximum Sequence Length:** 512 tokens
|
37 |
- **Number of Classes:** 2 classes
|
@@ -45,12 +39,6 @@ The model has been trained using an efficient few-shot learning technique that i
|
|
45 |
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
|
46 |
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
|
47 |
|
48 |
-
### Model Labels
|
49 |
-
| Label | Examples |
|
50 |
-
|:------|:----------------------------------------------------------------------------------------------------------------------|
|
51 |
-
| 0 | <ul><li>'This sentence is positive'</li><li>'This sentence is positive'</li><li>'This sentence is positive'</li></ul> |
|
52 |
-
| 1 | <ul><li>'This sentence is negative'</li><li>'This sentence is negative'</li><li>'This sentence is negative'</li></ul> |
|
53 |
-
|
54 |
## Uses
|
55 |
|
56 |
### Direct Use for Inference
|
@@ -69,7 +57,7 @@ from setfit import SetFitModel
|
|
69 |
# Download from the 🤗 Hub
|
70 |
model = SetFitModel.from_pretrained("mahitha-t/text_classification_model")
|
71 |
# Run inference
|
72 |
-
preds = model("
|
73 |
```
|
74 |
|
75 |
<!--
|
@@ -98,39 +86,6 @@ preds = model("This sentence is positive")
|
|
98 |
|
99 |
## Training Details
|
100 |
|
101 |
-
### Training Set Metrics
|
102 |
-
| Training set | Min | Median | Max |
|
103 |
-
|:-------------|:----|:-------|:----|
|
104 |
-
| Word count | 4 | 4.0 | 4 |
|
105 |
-
|
106 |
-
| Label | Training Sample Count |
|
107 |
-
|:------|:----------------------|
|
108 |
-
| 0 | 8 |
|
109 |
-
| 1 | 8 |
|
110 |
-
|
111 |
-
### Training Hyperparameters
|
112 |
-
- batch_size: (16, 2)
|
113 |
-
- num_epochs: (1, 16)
|
114 |
-
- max_steps: -1
|
115 |
-
- sampling_strategy: oversampling
|
116 |
-
- body_learning_rate: (2e-05, 1e-05)
|
117 |
-
- head_learning_rate: 0.01
|
118 |
-
- loss: CosineSimilarityLoss
|
119 |
-
- distance_metric: cosine_distance
|
120 |
-
- margin: 0.25
|
121 |
-
- end_to_end: False
|
122 |
-
- use_amp: False
|
123 |
-
- warmup_proportion: 0.1
|
124 |
-
- l2_weight: 0.01
|
125 |
-
- seed: 42
|
126 |
-
- eval_max_steps: -1
|
127 |
-
- load_best_model_at_end: False
|
128 |
-
|
129 |
-
### Training Results
|
130 |
-
| Epoch | Step | Training Loss | Validation Loss |
|
131 |
-
|:------:|:----:|:-------------:|:---------------:|
|
132 |
-
| 0.1111 | 1 | 0.1561 | - |
|
133 |
-
|
134 |
### Framework Versions
|
135 |
- Python: 3.11.13
|
136 |
- SetFit: 1.1.2
|
|
|
4 |
- sentence-transformers
|
5 |
- text-classification
|
6 |
- generated_from_setfit_trainer
|
7 |
+
widget: []
|
|
|
|
|
|
|
|
|
|
|
8 |
metrics:
|
9 |
- accuracy
|
10 |
pipeline_tag: text-classification
|
11 |
library_name: setfit
|
12 |
inference: true
|
|
|
13 |
---
|
14 |
|
15 |
+
# SetFit
|
16 |
|
17 |
+
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
|
18 |
|
19 |
The model has been trained using an efficient few-shot learning technique that involves:
|
20 |
|
|
|
25 |
|
26 |
### Model Description
|
27 |
- **Model Type:** SetFit
|
28 |
+
<!-- - **Sentence Transformer:** [Unknown](https://huggingface.co/unknown) -->
|
29 |
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
|
30 |
- **Maximum Sequence Length:** 512 tokens
|
31 |
- **Number of Classes:** 2 classes
|
|
|
39 |
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
|
40 |
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
|
41 |
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
## Uses
|
43 |
|
44 |
### Direct Use for Inference
|
|
|
57 |
# Download from the 🤗 Hub
|
58 |
model = SetFitModel.from_pretrained("mahitha-t/text_classification_model")
|
59 |
# Run inference
|
60 |
+
preds = model("I loved the spiderman movie!")
|
61 |
```
|
62 |
|
63 |
<!--
|
|
|
86 |
|
87 |
## Training Details
|
88 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
### Framework Versions
|
90 |
- Python: 3.11.13
|
91 |
- SetFit: 1.1.2
|