Update README.md
Browse files
README.md
CHANGED
@@ -16,15 +16,17 @@ language:
|
|
16 |
- en
|
17 |
base_model:
|
18 |
- HuggingFaceTB/SmolLM2-135M-Instruct
|
|
|
|
|
19 |
---
|
20 |
|
21 |
# Orga Dynamic (1) — Bilingual End-of-Utterance Classifier
|
22 |
|
23 |
-
**Orga Dynamic (1)** es un adaptador LoRA (Low-Rank Adaptation) entrenado para detectar automáticamente el **fin de turno** (End of Utterance, EOU) en conversaciones
|
24 |
|
25 |
-
- **Base model:** `HuggingFaceTB/SmolLM2-135M-Instruct`
|
26 |
- **Method:** LoRA-r16 / α32 sobre `q_proj`, `k_proj`, `v_proj`, `o_proj`
|
27 |
-
- **Training data:** 4 000 intervenciones
|
28 |
- **Metrics (test 20 %)**
|
29 |
|
30 |
| Metric | EN + ES |
|
@@ -32,7 +34,6 @@ base_model:
|
|
32 |
| Accuracy | **0.951** |
|
33 |
| F1 | **0.948** |
|
34 |
|
35 |
-
> **Use-case:** dotar a bots, ASR o UX-logging de una señal fiable para saber cuándo el usuario ha terminado de hablar o escribir.
|
36 |
|
37 |
---
|
38 |
|
@@ -40,12 +41,11 @@ base_model:
|
|
40 |
|
41 |
| | |
|
42 |
|---|---|
|
43 |
-
| **Architecture** | Llama-based sequence classifier (135 M params) + LoRA-r16 |
|
44 |
| **Languages** | English (en), Spanish (es) |
|
45 |
| **Labels** | `0 = NO_EOU`, `1 = EOU` |
|
46 |
| **Precision** | fp16 (LoRA weights ≈ 5 MB) |
|
47 |
| **License** | Apache 2.0 |
|
48 |
-
| **Author** | @
|
49 |
|
50 |
|
51 |
---
|
@@ -58,7 +58,7 @@ from peft import PeftModel
|
|
58 |
|
59 |
base = AutoModelForSequenceClassification.from_pretrained(
|
60 |
"HuggingFaceTB/SmolLM2-135M-Instruct", num_labels=2)
|
61 |
-
model = PeftModel.from_pretrained(base, "
|
62 |
tok = AutoTokenizer.from_pretrained("latishab/turnsense")
|
63 |
|
64 |
def is_end(text):
|
|
|
16 |
- en
|
17 |
base_model:
|
18 |
- HuggingFaceTB/SmolLM2-135M-Instruct
|
19 |
+
metrics:
|
20 |
+
- accuracy
|
21 |
---
|
22 |
|
23 |
# Orga Dynamic (1) — Bilingual End-of-Utterance Classifier
|
24 |
|
25 |
+
**Orga Dynamic (1)** es un adaptador LoRA (Low-Rank Adaptation) entrenado para detectar automáticamente el **fin de turno** (End of Utterance, EOU) en conversaciones.
|
26 |
|
27 |
+
- **Base model:** `HuggingFaceTB/SmolLM2-135M-Instruct`
|
28 |
- **Method:** LoRA-r16 / α32 sobre `q_proj`, `k_proj`, `v_proj`, `o_proj`
|
29 |
+
- **Training data:** 4 000 intervenciones
|
30 |
- **Metrics (test 20 %)**
|
31 |
|
32 |
| Metric | EN + ES |
|
|
|
34 |
| Accuracy | **0.951** |
|
35 |
| F1 | **0.948** |
|
36 |
|
|
|
37 |
|
38 |
---
|
39 |
|
|
|
41 |
|
42 |
| | |
|
43 |
|---|---|
|
|
|
44 |
| **Languages** | English (en), Spanish (es) |
|
45 |
| **Labels** | `0 = NO_EOU`, `1 = EOU` |
|
46 |
| **Precision** | fp16 (LoRA weights ≈ 5 MB) |
|
47 |
| **License** | Apache 2.0 |
|
48 |
+
| **Author** | @marc-es |
|
49 |
|
50 |
|
51 |
---
|
|
|
58 |
|
59 |
base = AutoModelForSequenceClassification.from_pretrained(
|
60 |
"HuggingFaceTB/SmolLM2-135M-Instruct", num_labels=2)
|
61 |
+
model = PeftModel.from_pretrained(base, "marc-es/orga-dynamic-1")
|
62 |
tok = AutoTokenizer.from_pretrained("latishab/turnsense")
|
63 |
|
64 |
def is_end(text):
|