--- library_name: transformers tags: - lora - sequence-classification - end-of-utterance - multilingual - english - spanish license: apache-2.0 datasets: - marc-es/orga-dynamic-dataset model_type: llama language: - es - en base_model: - HuggingFaceTB/SmolLM2-135M-Instruct metrics: - accuracy --- # Orga Dynamic (1) — Bilingual End-of-Utterance Classifier **Orga Dynamic (1)** es un adaptador LoRA (Low-Rank Adaptation) entrenado para detectar automáticamente el **fin de turno** (End of Utterance, EOU) en conversaciones. - **Base model:** `HuggingFaceTB/SmolLM2-135M-Instruct` - **Method:** LoRA-r16 / α32 sobre `q_proj`, `k_proj`, `v_proj`, `o_proj` - **Training data:** 4 000 intervenciones - **Metrics (test 20 %)** | Metric | EN + ES | |--------|---------| | Accuracy | **0.951** | | F1 | **0.948** | --- ## Model Details | | | |---|---| | **Languages** | English (en), Spanish (es) | | **Labels** | `0 = NO_EOU`, `1 = EOU` | | **Precision** | fp16 (LoRA weights ≈ 5 MB) | | **License** | Apache 2.0 | | **Author** | @marc-es | --- ## Quick Start ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification from peft import PeftModel base = AutoModelForSequenceClassification.from_pretrained( "HuggingFaceTB/SmolLM2-135M-Instruct", num_labels=2) model = PeftModel.from_pretrained(base, "marc-es/orga-dynamic-1") tok = AutoTokenizer.from_pretrained("marc-es/orga-dynamic-1") def is_end(text): out = model(**tok(text, return_tensors="pt"))[0] return out.argmax(-1).item() == 1 # True = EOU