import pandas as pd import openai import faiss import os # Load your custom CSV data data = pd.read_csv( os.getcwd() + "\\Learning_Pathway_Index.csv") # Initialize and populate FAISS index vector_dimension = 768 # For example, if you use a GPT-3 model with 768-dimensional embeddings index = faiss.IndexFlatL2(vector_dimension) vectors = [] # List to store vector representations of data for text in data['text_column']: # Vectorize the text using a pre-trained model (e.g., GPT-3) # Replace 'YOUR_OPENAI_API_KEY' with your actual API key openai.api_key = os.getenv("OPENAI_API_KEY") response = openai.Completion.create( engine="text-davinci-002", prompt=text, max_tokens=50 # Adjust the token limit as needed ) vector = response.choices[0].embedding vectors.append(vector) # Convert the list of vectors to a numpy array vectors = np.array(vectors).astype('float32') # Add vectors to the FAISS index index.add(vectors) # Accept user questions using OpenAI user_question = input("Ask a question: ") # Vectorize the user's question user_vector = vectorize_user_question(user_question) # Implement this function # Search for similar items in the FAISS index k = 5 # Number of similar items to retrieve distances, indices = index.search(user_vector, k) # Retrieve and display the similar items similar_items = data.iloc[indices[0]] print(similar_items)