File size: 2,013 Bytes
603c9d9 cc965d1 603c9d9 8e152f5 603c9d9 8e152f5 d0b2113 cc965d1 603c9d9 d0b2113 603c9d9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 |
---
language:
- es
- guc
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- bleu
model-index:
- name: byt5-base-es_guc
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# byt5-base-es_guc
This model is a fine-tuned version of [google/byt5-base](https://huggingface.co/google/byt5-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7552
- Bleu: 2.594
- Gen Len: 100.8294
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 65
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|
| No log | 1.0 | 381 | 1.0652 | 0.0167 | 19.0 |
| 1.5288 | 2.0 | 762 | 0.9339 | 0.0402 | 19.0 |
| 1.063 | 3.0 | 1143 | 0.8651 | 0.0311 | 19.0 |
| 0.9558 | 4.0 | 1524 | 0.8271 | 0.1018 | 19.0 |
| 0.9558 | 5.0 | 1905 | 0.8043 | 0.0744 | 19.0 |
| 0.8979 | 6.0 | 2286 | 0.7831 | 0.0786 | 19.0 |
| 0.8598 | 7.0 | 2667 | 0.7699 | 0.086 | 19.0 |
| 0.8346 | 8.0 | 3048 | 0.7630 | 0.0803 | 19.0 |
| 0.8346 | 9.0 | 3429 | 0.7572 | 0.1179 | 19.0 |
| 0.8194 | 10.0 | 3810 | 0.7552 | 0.1133 | 19.0 |
### Framework versions
- Transformers 4.27.4
- Pytorch 2.0.0+cu118
- Datasets 2.11.0
- Tokenizers 0.13.3
|