--- license: mit datasets: - ethz/food101 language: - en metrics: - accuracy base_model: - google/efficientnet-b4 pipeline_tag: image-classification library_name: keras tags: - computer-vision - classification - deep-learning - efficientnet --- # EfficientNetB4 Fine-Tuned on Food101 This repository contains a fine-tuned EfficientNetB4 model trained on the [Food101 dataset](https://huggingface.co/datasets/mhamza-007/multi-class-food-dataset). The Food101 dataset comprises 101 different classes of food, making it an excellent benchmark for image classification tasks in the food domain. ## Model Details - **Base Architecture**: EfficientNetB4 (pre-trained on ImageNet) - **Fine-Tuning Layers**: Last 10 layers unfrozen - **Number of Classes**: 101 (Food101) - **Input Shape**: (224, 224, 3) ## Training Configuration - **Epochs**: 10 - **Batch Size**: 32 - **Optimizer**: Adam - **Learning Rate**: 0.0001 - **Loss Function**: `sparse_categorical_crossentropy` - **Metrics**: `accuracy` - **Validation Split**: 0.15 - **Fine-Tuning**: Unfreezing last 10 layers of the base model ## Performance | Phase | Loss | Accuracy | |--------------|---------|----------| | **Train** | 0.4790 | 87.40% | | **Test** | 0.9583 | 74.28% |