import torch import torch.nn as nn import torch.nn.functional as F from torch.nn.attention import sdpa_kernel, SDPBackend from transformers import PreTrainedModel from .configuration_custom_mbz_test import CustomConfig from transformers.modeling_outputs import CausalLMOutput class RotaryPositionalEncoding(nn.Module): """ Rotary Position Embeddings (RoPE) - efficient implementation """ def __init__(self, d_head, max_seq_len=8192, base=10000.0): super().__init__() self.d_head = d_head self.max_seq_len = max_seq_len self.base = base # Precompute inverse frequencies inv_freq = 1.0 / (base ** (torch.arange(0, d_head, 2).float() / d_head)) self.register_buffer('inv_freq', inv_freq, persistent=False) # Precompute cos and sin for maximum sequence length self._precompute_freqs(max_seq_len) def _precompute_freqs(self, seq_len): """Precompute cos and sin values for positions""" t = torch.arange(seq_len, dtype=self.inv_freq.dtype, device=self.inv_freq.device) freqs = torch.outer(t, self.inv_freq) # (seq_len, d_head/2) # Create cos and sin embeddings freqs_cos = torch.cos(freqs) freqs_sin = torch.sin(freqs) # Interleave to match the dimension (seq_len, d_head) self.register_buffer('freqs_cos', freqs_cos.repeat_interleave(2, dim=-1), persistent=False) self.register_buffer('freqs_sin', freqs_sin.repeat_interleave(2, dim=-1), persistent=False) def rotate_half(self, x): """Rotate half the hidden dims of the input""" x1 = x[..., ::2] x2 = x[..., 1::2] return torch.stack([-x2, x1], dim=-1).flatten(-2) def forward(self, q, k, start_pos=0): """ Apply rotary embeddings to query and key tensors Args: q: (batch_size, n_heads, seq_len, d_head) k: (batch_size, n_heads, seq_len, d_head) start_pos: starting position for caching scenarios Returns: q_rot, k_rot with rotary embeddings applied """ seq_len = q.shape[2] # Get the precomputed frequencies for this sequence length freqs_cos = self.freqs_cos[start_pos:start_pos + seq_len] freqs_sin = self.freqs_sin[start_pos:start_pos + seq_len] # Apply rotary embeddings q_rot = q * freqs_cos + self.rotate_half(q) * freqs_sin k_rot = k * freqs_cos + self.rotate_half(k) * freqs_sin return q_rot, k_rot class Attention(nn.Module): def __init__(self, d_model, n_heads, d_head): super().__init__() self.d_model = d_model self.n_heads = n_heads self.d_head = d_head self.Wq = nn.Linear(d_model, n_heads * d_head, bias=False) self.Wk = nn.Linear(d_model, n_heads * d_head, bias=False) self.Wv = nn.Linear(d_model, n_heads * d_head, bias=False) self.Wo = nn.Linear(n_heads * d_head, d_model, bias=False) # Initialize RoPE self.rope = RotaryPositionalEncoding(d_head) def forward(self, x): # x is shape batch_size, seq_len, d_model batch_size, seq_len, d_model = x.shape q = self.Wq(x) # q is shape batch_size, seq_len, n_heads * d_head k = self.Wk(x) v = self.Wv(x) # reshape to batch_size, n_heads, seq_len, d_head q = q.reshape(batch_size, seq_len, self.n_heads, self.d_head).transpose(1,2) k = k.reshape(batch_size, seq_len, self.n_heads, self.d_head).transpose(1,2) v = v.reshape(batch_size, seq_len, self.n_heads, self.d_head).transpose(1,2) q, k = self.rope(q, k) with sdpa_kernel(SDPBackend.FLASH_ATTENTION): # ensure use flash attention a = F.scaled_dot_product_attention(q, k, v, attn_mask=None, is_causal=True)# a is (batch_size, n_heads, seq_len, d_head) a = a.transpose(1,2) # change a to (batch_size, seq_len, n_heads, d_head) a = a.reshape(batch_size, seq_len, self.n_heads * self.d_head) out = self.Wo(a) # out is (batch_size, seq_len, d_model) return out class TransformerBlock(nn.Module): def __init__(self, d_model, n_heads, d_head): super().__init__() self.d_model = d_model self.n_heads = n_heads self.d_head = d_head self.attn = Attention(d_model, n_heads, d_head) self.mlp = nn.Sequential(nn.Linear(d_model, 4*d_model), nn.ReLU(), nn.Linear(4*d_model, d_model)) self.norm1 = nn.RMSNorm(d_model) self.norm2 = nn.RMSNorm(d_model) def forward(self, x): x = self.attn(self.norm1(x)) + x x = self.mlp(self.norm2(x)) + x return x class GPT(nn.Module): def __init__(self, d_model, n_heads, d_head, n_vocab, n_layers): super().__init__() self.d_model = d_model self.n_heads = n_heads self.d_head = d_head self.n_vocab = n_vocab self.embed = nn.Embedding(n_vocab, d_model) self.blocks = nn.ModuleList([TransformerBlock(d_model, n_heads, d_head) for _ in range(n_layers)]) self.norm = nn.RMSNorm(d_model) self.out_head = nn.Linear(d_model, n_vocab) def forward(self, x): x = self.embed(x) for block in self.blocks: x = block(x) x = self.out_head(self.norm(x)) return x class CustomModelForCausalLM(PreTrainedModel): config_class = CustomConfig _supports_attention_backend = True def __init__(self, config): super().__init__(config) self.model = GPT(config.d_model, config.n_heads, config.d_head, config.n_vocab, config.n_layers) def forward(self, tensor): with torch.autocast('cuda', dtype=torch.bfloat16): logits = self.model(tensor) return CausalLMOutput(logits=logits) def get_input_embeddings(self): return self.model.embed def set_input_embeddings(self, x): self.model.embed = x