michaelfeil
commited on
Commit
·
3614af0
1
Parent(s):
a4d1c67
upload model with 1024
Browse files- 1_Pooling/config.json +7 -0
- README.md +216 -0
- config.json +36 -0
- generation_config.json +5 -0
- model.safetensors +3 -0
- modules.json +14 -0
- onnx/model.onnx +3 -0
- onnx/model_fp16.onnx +3 -0
- onnx/model_quantized.onnx +3 -0
- pytorch_model.bin +3 -0
- sentence_bert_config.json +5 -0
- special_tokens_map.json +15 -0
- tokenizer.json +0 -0
- tokenizer_config.json +22 -0
- train_results.json +8 -0
- trainer_state.json +0 -0
- vocab.json +0 -0
1_Pooling/config.json
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"word_embedding_dimension": 768,
|
| 3 |
+
"pooling_mode_cls_token": false,
|
| 4 |
+
"pooling_mode_mean_tokens": true,
|
| 5 |
+
"pooling_mode_max_tokens": false,
|
| 6 |
+
"pooling_mode_mean_sqrt_len_tokens": false
|
| 7 |
+
}
|
README.md
ADDED
|
@@ -0,0 +1,216 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
tags:
|
| 3 |
+
- sentence-transformers
|
| 4 |
+
- feature-extraction
|
| 5 |
+
- sentence-similarity
|
| 6 |
+
- mteb
|
| 7 |
+
- transformers
|
| 8 |
+
- transformers.js
|
| 9 |
+
datasets:
|
| 10 |
+
- allenai/c4
|
| 11 |
+
language: en
|
| 12 |
+
inference: false
|
| 13 |
+
license: apache-2.0
|
| 14 |
+
---
|
| 15 |
+
<!-- TODO: add evaluation results here -->
|
| 16 |
+
<br><br>
|
| 17 |
+
|
| 18 |
+
<p align="center">
|
| 19 |
+
<img src="https://aeiljuispo.cloudimg.io/v7/https://cdn-uploads.huggingface.co/production/uploads/603763514de52ff951d89793/AFoybzd5lpBQXEBrQHuTt.png?w=200&h=200&f=face" alt="Finetuner logo: Finetuner helps you to create experiments in order to improve embeddings on search tasks. It accompanies you to deliver the last mile of performance-tuning for neural search applications." width="150px">
|
| 20 |
+
</p>
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
<p align="center">
|
| 24 |
+
<b>The text embedding set trained by <a href="https://jina.ai/"><b>Jina AI</b></a>.</b>
|
| 25 |
+
</p>
|
| 26 |
+
|
| 27 |
+
## Quick Start
|
| 28 |
+
|
| 29 |
+
The easiest way to starting using `jina-embeddings-v2-base-code` is to use Jina AI's [Embedding API](https://jina.ai/embeddings/).
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
## Intended Usage & Model Info
|
| 33 |
+
|
| 34 |
+
`jina-embeddings-v2-base-code` is an multilingual **embedding model** speaks **English and 30 widely used programming languages**.
|
| 35 |
+
Same as other jina-embeddings-v2 series, it supports **8192** sequence length.
|
| 36 |
+
|
| 37 |
+
`jina-embeddings-v2-base-code` is based on a Bert architecture (JinaBert) that supports the symmetric bidirectional variant of [ALiBi](https://arxiv.org/abs/2108.12409) to allow longer sequence length.
|
| 38 |
+
The backbone `jina-bert-v2-base-code` is pretrained on the [github-code](https://huggingface.co/datasets/codeparrot/github-code) dataset.
|
| 39 |
+
The model is further trained on Jina AI's collection of more than 150 millions of coding question answer and docstring source code pairs.
|
| 40 |
+
These pairs were obtained from various domains and were carefully selected through a thorough cleaning process.
|
| 41 |
+
|
| 42 |
+
The embedding model was trained using 512 sequence length, but extrapolates to 8k sequence length (or even longer) thanks to ALiBi.
|
| 43 |
+
This makes our model useful for a range of use cases, especially when processing long documents is needed, including technical question answering and code search.
|
| 44 |
+
|
| 45 |
+
This model has 161 million parameters, which enables fast and memory efficient inference, while delivering impressive performance.
|
| 46 |
+
Additionally, we provide the following embedding models:
|
| 47 |
+
|
| 48 |
+
- [`jina-embeddings-v2-small-en`](https://huggingface.co/jinaai/jina-embeddings-v2-small-en): 33 million parameters.
|
| 49 |
+
- [`jina-embeddings-v2-base-en`](https://huggingface.co/jinaai/jina-embeddings-v2-base-en): 137 million parameters.
|
| 50 |
+
- [`jina-embeddings-v2-base-zh`](https://huggingface.co/jinaai/jina-embeddings-v2-base-zh): Chinese-English Bilingual embeddings.
|
| 51 |
+
- [`jina-embeddings-v2-base-de`](https://huggingface.co/jinaai/jina-embeddings-v2-base-de): German-English Bilingual embeddings.
|
| 52 |
+
- [`jina-embeddings-v2-base-es`](https://huggingface.co/jinaai/jina-embeddings-v2-base-es): Spanish-English Bilingual embeddings (soon).
|
| 53 |
+
- [`jina-embeddings-v2-base-code`](https://huggingface.co/jinaai/jina-embeddings-v2-base-code): 161 million parameters code embeddings.
|
| 54 |
+
|
| 55 |
+
**<details><summary>Supported (Programming) Languages</summary>**
|
| 56 |
+
<p>
|
| 57 |
+
|
| 58 |
+
- English
|
| 59 |
+
- Assembly
|
| 60 |
+
- Batchfile
|
| 61 |
+
- C
|
| 62 |
+
- C#
|
| 63 |
+
- C++
|
| 64 |
+
- CMake
|
| 65 |
+
- CSS
|
| 66 |
+
- Dockerfile
|
| 67 |
+
- FORTRAN
|
| 68 |
+
- GO
|
| 69 |
+
- Haskell
|
| 70 |
+
- HTML
|
| 71 |
+
- Java
|
| 72 |
+
- JavaScript
|
| 73 |
+
- Julia
|
| 74 |
+
- Lua
|
| 75 |
+
- Makefile
|
| 76 |
+
- Markdown
|
| 77 |
+
- PHP
|
| 78 |
+
- Perl
|
| 79 |
+
- PowerShell
|
| 80 |
+
- Python
|
| 81 |
+
- Ruby
|
| 82 |
+
- Rust
|
| 83 |
+
- SQL
|
| 84 |
+
- Scala
|
| 85 |
+
- Shell
|
| 86 |
+
- TypeScript
|
| 87 |
+
- TeX
|
| 88 |
+
- Visual Basic
|
| 89 |
+
</p>
|
| 90 |
+
</details>
|
| 91 |
+
|
| 92 |
+
## Data & Parameters
|
| 93 |
+
|
| 94 |
+
Jina Embeddings V2 [technical report](https://arxiv.org/abs/2310.19923)
|
| 95 |
+
|
| 96 |
+
## Usage
|
| 97 |
+
|
| 98 |
+
**<details><summary>Please apply mean pooling when integrating the model.</summary>**
|
| 99 |
+
<p>
|
| 100 |
+
|
| 101 |
+
### Why mean pooling?
|
| 102 |
+
|
| 103 |
+
`mean poooling` takes all token embeddings from model output and averaging them at sentence/paragraph level.
|
| 104 |
+
It has been proved to be the most effective way to produce high-quality sentence embeddings.
|
| 105 |
+
We offer an `encode` function to deal with this.
|
| 106 |
+
|
| 107 |
+
However, if you would like to do it without using the default `encode` function:
|
| 108 |
+
|
| 109 |
+
```python
|
| 110 |
+
import torch
|
| 111 |
+
import torch.nn.functional as F
|
| 112 |
+
from transformers import AutoTokenizer, AutoModel
|
| 113 |
+
|
| 114 |
+
def mean_pooling(model_output, attention_mask):
|
| 115 |
+
token_embeddings = model_output[0]
|
| 116 |
+
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
| 117 |
+
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
|
| 118 |
+
|
| 119 |
+
sentences = [
|
| 120 |
+
'How do I access the index while iterating over a sequence with a for loop?',
|
| 121 |
+
'# Use the built-in enumerator\nfor idx, x in enumerate(xs):\n print(idx, x)',
|
| 122 |
+
]
|
| 123 |
+
|
| 124 |
+
tokenizer = AutoTokenizer.from_pretrained('jinaai/jina-embeddings-v2-base-code')
|
| 125 |
+
model = AutoModel.from_pretrained('jinaai/jina-embeddings-v2-base-code', trust_remote_code=True)
|
| 126 |
+
|
| 127 |
+
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
| 128 |
+
|
| 129 |
+
with torch.no_grad():
|
| 130 |
+
model_output = model(**encoded_input)
|
| 131 |
+
|
| 132 |
+
embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
|
| 133 |
+
embeddings = F.normalize(embeddings, p=2, dim=1)
|
| 134 |
+
```
|
| 135 |
+
|
| 136 |
+
</p>
|
| 137 |
+
</details>
|
| 138 |
+
|
| 139 |
+
You can use Jina Embedding models directly from transformers package:
|
| 140 |
+
```python
|
| 141 |
+
!pip install transformers
|
| 142 |
+
from transformers import AutoModel
|
| 143 |
+
from numpy.linalg import norm
|
| 144 |
+
|
| 145 |
+
cos_sim = lambda a,b: (a @ b.T) / (norm(a)*norm(b))
|
| 146 |
+
model = AutoModel.from_pretrained('jinaai/jina-embeddings-v2-base-code', trust_remote_code=True)
|
| 147 |
+
embeddings = model.encode(
|
| 148 |
+
[
|
| 149 |
+
'How do I access the index while iterating over a sequence with a for loop?',
|
| 150 |
+
'# Use the built-in enumerator\nfor idx, x in enumerate(xs):\n print(idx, x)',
|
| 151 |
+
]
|
| 152 |
+
)
|
| 153 |
+
print(cos_sim(embeddings[0], embeddings[1]))
|
| 154 |
+
>>> tensor([[0.7282]])
|
| 155 |
+
```
|
| 156 |
+
|
| 157 |
+
If you only want to handle shorter sequence, such as 2k, pass the `max_length` parameter to the `encode` function:
|
| 158 |
+
|
| 159 |
+
```python
|
| 160 |
+
embeddings = model.encode(
|
| 161 |
+
['Very long ... code'],
|
| 162 |
+
max_length=2048
|
| 163 |
+
)
|
| 164 |
+
```
|
| 165 |
+
|
| 166 |
+
Using the its latest release (v2.3.0) sentence-transformers also supports Jina embeddings (Please make sure that you are logged into huggingface as well):
|
| 167 |
+
|
| 168 |
+
```python
|
| 169 |
+
!pip install -U sentence-transformers
|
| 170 |
+
from sentence_transformers import SentenceTransformer
|
| 171 |
+
from sentence_transformers.util import cos_sim
|
| 172 |
+
|
| 173 |
+
model = SentenceTransformer(
|
| 174 |
+
"jinaai/jina-embeddings-v2-base-code",
|
| 175 |
+
trust_remote_code=True
|
| 176 |
+
)
|
| 177 |
+
|
| 178 |
+
# control your input sequence length up to 8192
|
| 179 |
+
model.max_seq_length = 1024
|
| 180 |
+
|
| 181 |
+
embeddings = model.encode([
|
| 182 |
+
'How do I access the index while iterating over a sequence with a for loop?',
|
| 183 |
+
'# Use the built-in enumerator\nfor idx, x in enumerate(xs):\n print(idx, x)',
|
| 184 |
+
])
|
| 185 |
+
print(cos_sim(embeddings[0], embeddings[1]))
|
| 186 |
+
```
|
| 187 |
+
|
| 188 |
+
You can also use the [Transformers.js](https://huggingface.co/docs/transformers.js) library to compute embeddings in JavaScript.
|
| 189 |
+
```js
|
| 190 |
+
// npm i @xenova/transformers
|
| 191 |
+
import { pipeline, cos_sim } from '@xenova/transformers';
|
| 192 |
+
|
| 193 |
+
const extractor = await pipeline('feature-extraction', 'jinaai/jina-embeddings-v2-base-code', {
|
| 194 |
+
quantized: false, // Comment out this line to use the 8-bit quantized version
|
| 195 |
+
});
|
| 196 |
+
|
| 197 |
+
const texts = [
|
| 198 |
+
'How do I access the index while iterating over a sequence with a for loop?',
|
| 199 |
+
'# Use the built-in enumerator\nfor idx, x in enumerate(xs):\n print(idx, x)',
|
| 200 |
+
]
|
| 201 |
+
const embeddings = await extractor(texts, { pooling: 'mean' });
|
| 202 |
+
|
| 203 |
+
const score = cos_sim(embeddings[0].data, embeddings[1].data);
|
| 204 |
+
console.log(score);
|
| 205 |
+
// 0.7281748759529421
|
| 206 |
+
```
|
| 207 |
+
|
| 208 |
+
## Plans
|
| 209 |
+
|
| 210 |
+
1. Bilingual embedding models supporting more European & Asian languages, including Spanish, French, Italian and Japanese.
|
| 211 |
+
2. Multimodal embedding models enable Multimodal RAG applications.
|
| 212 |
+
3. High-performt rerankers.
|
| 213 |
+
|
| 214 |
+
## Contact
|
| 215 |
+
|
| 216 |
+
Join our [Discord community](https://discord.jina.ai) and chat with other community members about ideas.
|
config.json
ADDED
|
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_name_or_path": "jinaai/jina-bert-v2-qk-post-norm",
|
| 3 |
+
"architectures": [
|
| 4 |
+
"JinaBertForMaskedLM"
|
| 5 |
+
],
|
| 6 |
+
"attention_probs_dropout_prob": 0.0,
|
| 7 |
+
"attn_implementation": "torch",
|
| 8 |
+
"auto_map": {
|
| 9 |
+
"AutoConfig": "jinaai/jina-bert-v2-qk-post-norm--configuration_bert.JinaBertConfig",
|
| 10 |
+
"AutoModel": "jinaai/jina-bert-v2-qk-post-norm--modeling_bert.JinaBertModel",
|
| 11 |
+
"AutoModelForMaskedLM": "jinaai/jina-bert-v2-qk-post-norm--modeling_bert.JinaBertForMaskedLM",
|
| 12 |
+
"AutoModelForSequenceClassification": "jinaai/jina-bert-v2-qk-post-norm--modeling_bert.JinaBertForSequenceClassification"
|
| 13 |
+
},
|
| 14 |
+
"classifier_dropout": null,
|
| 15 |
+
"emb_pooler": "mean",
|
| 16 |
+
"feed_forward_type": "geglu",
|
| 17 |
+
"gradient_checkpointing": false,
|
| 18 |
+
"hidden_act": "gelu",
|
| 19 |
+
"hidden_dropout_prob": 0.0,
|
| 20 |
+
"hidden_size": 768,
|
| 21 |
+
"initializer_range": 0.02,
|
| 22 |
+
"intermediate_size": 3072,
|
| 23 |
+
"layer_norm_eps": 1e-12,
|
| 24 |
+
"max_position_embeddings": 8192,
|
| 25 |
+
"model_max_length": 1024,
|
| 26 |
+
"model_type": "bert",
|
| 27 |
+
"num_attention_heads": 12,
|
| 28 |
+
"num_hidden_layers": 12,
|
| 29 |
+
"pad_token_id": 0,
|
| 30 |
+
"position_embedding_type": "alibi",
|
| 31 |
+
"torch_dtype": "float16",
|
| 32 |
+
"transformers_version": "4.35.2",
|
| 33 |
+
"type_vocab_size": 2,
|
| 34 |
+
"use_cache": true,
|
| 35 |
+
"vocab_size": 61056
|
| 36 |
+
}
|
generation_config.json
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_from_model_config": true,
|
| 3 |
+
"pad_token_id": 0,
|
| 4 |
+
"transformers_version": "4.31.0"
|
| 5 |
+
}
|
model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:8b53bfd4ae2cd586004a6ca4a16551b630a2a1b1d655ff1ee9be1286a1781c5b
|
| 3 |
+
size 321767312
|
modules.json
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[
|
| 2 |
+
{
|
| 3 |
+
"idx": 0,
|
| 4 |
+
"name": "0",
|
| 5 |
+
"path": "",
|
| 6 |
+
"type": "sentence_transformers.models.Transformer"
|
| 7 |
+
},
|
| 8 |
+
{
|
| 9 |
+
"idx": 1,
|
| 10 |
+
"name": "1",
|
| 11 |
+
"path": "1_Pooling",
|
| 12 |
+
"type": "sentence_transformers.models.Pooling"
|
| 13 |
+
}
|
| 14 |
+
]
|
onnx/model.onnx
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:63363fc178428b74620c6f3780cbc7191883fa5c7f84c0945c45eb5c4256733b
|
| 3 |
+
size 641517466
|
onnx/model_fp16.onnx
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:1aafc4fcd63d2e6899e88402ff731e7c646c2e435048294a3cbc908a40d45d7c
|
| 3 |
+
size 321072580
|
onnx/model_quantized.onnx
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ed45870251c9f0cf656e78aab0d37a23489066df8a222bb1c8caf8a45f2cb16d
|
| 3 |
+
size 161895621
|
pytorch_model.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:1c28fb0a8bc930d79b2b29091674a8a0ce0e983489e88b0e863efb1ad4444b01
|
| 3 |
+
size 321787514
|
sentence_bert_config.json
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"max_seq_length": 8192,
|
| 3 |
+
"do_lower_case": false,
|
| 4 |
+
"model_args": {"trust_remote_code": true}
|
| 5 |
+
}
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bos_token": "<s>",
|
| 3 |
+
"cls_token": "<s>",
|
| 4 |
+
"eos_token": "</s>",
|
| 5 |
+
"mask_token": {
|
| 6 |
+
"content": "<mask>",
|
| 7 |
+
"lstrip": true,
|
| 8 |
+
"normalized": false,
|
| 9 |
+
"rstrip": false,
|
| 10 |
+
"single_word": false
|
| 11 |
+
},
|
| 12 |
+
"pad_token": "<pad>",
|
| 13 |
+
"sep_token": "</s>",
|
| 14 |
+
"unk_token": "<unk>"
|
| 15 |
+
}
|
tokenizer.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"add_prefix_space": false,
|
| 3 |
+
"bos_token": "<s>",
|
| 4 |
+
"clean_up_tokenization_spaces": true,
|
| 5 |
+
"cls_token": "<s>",
|
| 6 |
+
"eos_token": "</s>",
|
| 7 |
+
"errors": "replace",
|
| 8 |
+
"mask_token": {
|
| 9 |
+
"__type": "AddedToken",
|
| 10 |
+
"content": "<mask>",
|
| 11 |
+
"lstrip": true,
|
| 12 |
+
"normalized": false,
|
| 13 |
+
"rstrip": false,
|
| 14 |
+
"single_word": false
|
| 15 |
+
},
|
| 16 |
+
"model_max_length": 8192,
|
| 17 |
+
"pad_token": "<pad>",
|
| 18 |
+
"sep_token": "</s>",
|
| 19 |
+
"tokenizer_class": "RobertaTokenizer",
|
| 20 |
+
"trim_offsets": true,
|
| 21 |
+
"unk_token": "<unk>"
|
| 22 |
+
}
|
train_results.json
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"epoch": 1.0,
|
| 3 |
+
"train_loss": 0.8820991159725189,
|
| 4 |
+
"train_runtime": 81002.545,
|
| 5 |
+
"train_samples": 100000,
|
| 6 |
+
"train_samples_per_second": 1264.158,
|
| 7 |
+
"train_steps_per_second": 1.235
|
| 8 |
+
}
|
trainer_state.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
vocab.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|