Upload folder using huggingface_hub
Browse files
README.md
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
```python
|
3 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
4 |
+
|
5 |
+
model_name = "minpeter/Llama-3.2-1B-chatml-tool-v3"
|
6 |
+
|
7 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
8 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
9 |
+
|
10 |
+
input_text = """
|
11 |
+
<|im_start|>system
|
12 |
+
You are a function calling AI model. You are provided with function signatures within <tools> </tools> XML tags. You may call one or more functions to assist with the user query. Don't make assumptions about what values to plug into functions.
|
13 |
+
<tools>
|
14 |
+
[{"function": {"description": "Get the current weather in a given location", "name": "get_current_weather", "parameters": {"properties": {"location": {"description": "The city and state, e.g. San Francisco, CA", "type": "string"}, "unit": {"enum": ["celsius", "fahrenheit"], "type": "string"}}, "required": ["location"], "type": "object"}}, "type": "function"}]
|
15 |
+
</tools>
|
16 |
+
For each function call return a json object with function name and arguments within <tool_call> </tool_call> tags with the following schema:
|
17 |
+
<tool_call>
|
18 |
+
{'arguments': <args-dict>, 'name': <function-name>}
|
19 |
+
</tool_call><|im_end|>
|
20 |
+
<|im_start|>user
|
21 |
+
What is the weather like in Boston?<|im_end|>
|
22 |
+
<|im_start|>assistant
|
23 |
+
"""
|
24 |
+
|
25 |
+
input_length = len(tokenizer.tokenize(input_text))
|
26 |
+
|
27 |
+
input_ids = tokenizer.encode(input_text, return_tensors="pt")
|
28 |
+
|
29 |
+
output = model.generate(input_ids, max_new_tokens=600)
|
30 |
+
generated_ids = output[0][input_length:]
|
31 |
+
|
32 |
+
generated_text = tokenizer.decode(generated_ids, skip_special_tokens=True)
|
33 |
+
|
34 |
+
tokens = tokenizer.tokenize(generated_text)
|
35 |
+
token_ids = tokenizer.convert_tokens_to_ids(tokens)
|
36 |
+
|
37 |
+
for token, id in zip(tokens, token_ids):
|
38 |
+
print(f"Token: {token:20} ID: {id}")
|
39 |
+
|
40 |
+
print(f"\nGenerated text:\n{generated_text}")
|
41 |
+
```
|