File size: 4,653 Bytes
5a5a343
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
---
library_name: peft
language:
- it
license: apache-2.0
base_model: openai/whisper-medium
tags:
- generated_from_trainer
datasets:
- Dysarthria_Synthetic_Easycall_Common
metrics:
- wer
model-index:
- name: Whisper Medium
  results:
  - task:
      type: automatic-speech-recognition
      name: Automatic Speech Recognition
    dataset:
      name: Dysarthria_Synthetic_Easycall_Common
      type: Dysarthria_Synthetic_Easycall_Common
      config: default
      split: train
      args: default
    metrics:
    - type: wer
      value: 70.3225806451613
      name: Wer
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Whisper Medium

This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the Dysarthria_Synthetic_Easycall_Common dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9647
- Wer: 70.3226

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: reduce_lr_on_plateau
- lr_scheduler_warmup_steps: 100
- num_epochs: 30
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch   | Step | Validation Loss | Wer      |
|:-------------:|:-------:|:----:|:---------------:|:--------:|
| 6.0651        | 0.6897  | 50   | 5.7375          | 162.9032 |
| 4.9066        | 1.3793  | 100  | 5.3309          | 93.5484  |
| 4.2186        | 2.0690  | 150  | 4.7377          | 89.3548  |
| 3.628         | 2.7586  | 200  | 4.0118          | 81.6129  |
| 3.0181        | 3.4483  | 250  | 3.6058          | 81.6129  |
| 2.6682        | 4.1379  | 300  | 3.2728          | 78.3871  |
| 2.3183        | 4.8276  | 350  | 2.8405          | 75.4839  |
| 1.9084        | 5.5172  | 400  | 2.1841          | 71.9355  |
| 1.2191        | 6.2069  | 450  | 1.2534          | 73.5484  |
| 0.8483        | 6.8966  | 500  | 1.1853          | 73.5484  |
| 0.8115        | 7.5862  | 550  | 1.1503          | 70.9677  |
| 0.7512        | 8.2759  | 600  | 1.1072          | 73.5484  |
| 0.7064        | 8.9655  | 650  | 1.0806          | 74.5161  |
| 0.6779        | 9.6552  | 700  | 1.0477          | 75.1613  |
| 0.6345        | 10.3448 | 750  | 1.0352          | 74.8387  |
| 0.6097        | 11.0345 | 800  | 1.0186          | 73.8710  |
| 0.5927        | 11.7241 | 850  | 1.0120          | 74.5161  |
| 0.5619        | 12.4138 | 900  | 1.0017          | 73.5484  |
| 0.5349        | 13.1034 | 950  | 0.9879          | 70.0     |
| 0.5207        | 13.7931 | 1000 | 0.9900          | 70.0     |
| 0.5168        | 14.4828 | 1050 | 0.9828          | 173.8710 |
| 0.4703        | 15.1724 | 1100 | 0.9676          | 73.5484  |
| 0.476         | 15.8621 | 1150 | 0.9729          | 175.8065 |
| 0.4443        | 16.5517 | 1200 | 0.9652          | 74.1935  |
| 0.4215        | 17.2414 | 1250 | 0.9635          | 176.1290 |
| 0.4206        | 17.9310 | 1300 | 0.9631          | 179.3548 |
| 0.3971        | 18.6207 | 1350 | 0.9687          | 70.6452  |
| 0.3838        | 19.3103 | 1400 | 0.9543          | 147.7419 |
| 0.3791        | 20.0    | 1450 | 0.9594          | 68.3871  |
| 0.3441        | 20.6897 | 1500 | 0.9608          | 257.0968 |
| 0.3574        | 21.3793 | 1550 | 0.9589          | 71.2903  |
| 0.3323        | 22.0690 | 1600 | 0.9619          | 69.6774  |
| 0.3187        | 22.7586 | 1650 | 0.9552          | 154.1935 |
| 0.3011        | 23.4483 | 1700 | 0.9568          | 67.0968  |
| 0.2997        | 24.1379 | 1750 | 0.9580          | 70.9677  |
| 0.287         | 24.8276 | 1800 | 0.9566          | 70.6452  |
| 0.2747        | 25.5172 | 1850 | 0.9694          | 68.3871  |
| 0.2665        | 26.2069 | 1900 | 0.9544          | 69.0323  |
| 0.2565        | 26.8966 | 1950 | 0.9518          | 155.8065 |
| 0.2448        | 27.5862 | 2000 | 0.9579          | 68.7097  |
| 0.2377        | 28.2759 | 2050 | 0.9589          | 67.0968  |
| 0.2323        | 28.9655 | 2100 | 0.9590          | 68.7097  |
| 0.2224        | 29.6552 | 2150 | 0.9647          | 70.3226  |


### Framework versions

- PEFT 0.14.0
- Transformers 4.45.2
- Pytorch 2.2.0
- Datasets 3.2.0
- Tokenizers 0.20.3