Lite Pose: Efficient Architecture Design for 2D Human Pose Estimation

Yihan Wang¹, Muyang Li², Han Cai³, Wei-Ming Chen³, Song Han³

¹Tsinghua University ²CMU ³MIT

CVPR 2022

Real-Time Multi-Person Pose Estimation on Edge

Multi-Person Pose Estimation

Many human-centered vision applications rely on **real-time multi-person** pose estimation on **edge** devices, requiring **low-computation** pose estimation models.

Edge Devices

Current Pose Estimation Models are too Heavy for Edge Devices

However, current pose estimation models are too heavy for edge devices.

Current Pose Estimation Models are too Heavy for Edge Devices

However, current pose estimation models are too **heavy** for edge devices. We introduce **LitePose** to close the gap.

Overview of LitePose

Key insights:

- **1. Single-branch architecture is efficient**
- 2. Large kernel convolution is efficient.
- 3. Light-weight fusion deconv head.

High-Resolution Branches are the Key Bottleneck

Most of the computational cost comes from high-resolution branches.

High-Resolution Branches are the Key Bottleneck

Most of the computational cost comes from high-resolution branches. Previous study in high-computation scenarios suggest that these high-resolution branches are essential.

High-Resolution Branches are the Key Bottleneck

Most of the computational cost comes from high-resolution branches. Previous study in high-computation scenarios suggest that these high-resolution branches are essential.

Gradual Shrinking Experiments

(c) Shrink2, -30% blocks, base channel = 18

We gradually remove blocks in high-resolution branches starting from HigherHRNet. Removed blocks are shown in transparent.

(d) Shrink3, -33% blocks, base channel = 18 (**Single-Branch**)

Single Branch, Higher Performance

Removing high-resolution branches not only reduces the computational cost, but also improves the performance.

Single Branch, Higher Hardware Efficiency

Removing high-resolution branches makes the model more friendly for hardware, improving the GMACs / second by 1.1x.

11

Large Kernel Convolution is Important for Pose Estimation

Unlike image classification, large kernel depthwise convolution plays a critical role in pose estimation. Increasing the kernel size from 3 to 7 improves the mAP by 13% on the CrowdPose dataset with little overhead.

Human Pose Estimation

Lightweight Fusion Deconv Head

(a) Illustration of Heads

We employ the lightweight fusion deconv head to enable multi-resolution feature fusion without heavy high-resolution branches.

(b) Deconv vs. Fusion Deconv

Compare with SOTA on the CrowdPose Dataset

2.8x MACs Reduction, 5.0x Speed Up

14

Real-Time Demo on LG G8s ThinQ (Qualcomm Snapdragon 855) with LitePose-XS

Thank you!

https://github.com/mit-han-lab/litepose

