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Real-Time Multi-Person Pose Estimation on Edge 

Many human-centered vision applications rely on real-time multi-person pose estimation 
on edge devices, requiring low-computation pose estimation models. 
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Current Pose Estimation Models are too Heavy for Edge Devices

However, current pose estimation models are too heavy for edge devices.                               
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Current Pose Estimation Models are too Heavy for Edge Devices

However, current pose estimation models are too heavy for edge devices. We introduce 
LitePose to close the gap.
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Overview of LitePose 
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Key insights: 
1. Single-branch architecture is efficient 
2. Large kernel convolution is efficient.  
3. Light-weight fusion deconv head.
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High-Resolution Branches are the Key Bottleneck

Most of the computational cost comes from high-resolution branches.  
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Stem Stage2 Stage3 Stage4 Cost

High-Resolution Branches are the Key Bottleneck

Most of the computational cost comes from high-resolution branches. Previous study in 
high-computation scenarios suggest that these high-resolution branches are essential.
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Stem Stage2 Stage3 Stage4 Cost

High-Resolution Branches are the Key Bottleneck

Most of the computational cost comes from high-resolution branches. Previous study in 
high-computation scenarios suggest that these high-resolution branches are essential.
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(b) Shrink1, -29% blocks, base channel = 16

(d) Shrink3, -33% blocks, base channel = 18 (Single-Branch)(c) Shrink2, -30% blocks, base channel = 18

(a) HigherHRNet (Baseline), base channel = 16 (Multi-Branch)

Stem Stage2 Stage3 Stage4

Gradual Shrinking Experiments

We gradually remove blocks in high-resolution branches starting from HigherHRNet. Removed 
blocks are shown in transparent. 
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Improved AP when gradually shrinking depth

Single Branch, Higher Performance

Removing high-resolution branches not only reduces the computational cost, but also improves 
the performance. 
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Single Branch, Higher Hardware Efficiency

Removing high-resolution branches makes the model more friendly for hardware, improving the 
GMACs / second by 1.1x.
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Large Kernel Convolution is Important for Pose Estimation

Unlike image classification, large kernel depthwise convolution plays a critical role in pose 
estimation. Increasing the kernel size from 3 to 7 improves the mAP by 13% on the CrowdPose 
dataset with little overhead.
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(b) Deconv vs. Fusion Deconv

Deconv Head HR Fusion (Redundant)

Fusion Deconv Head (Efficient)

(a) Illustration of Heads

Lightweight Fusion Deconv Head

We employ the lightweight fusion deconv head to enable multi-resolution feature fusion without 
heavy high-resolution branches.  
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2.8x MACs Reduction, 5.0x Speed Up
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Compare with SOTA on the CrowdPose Dataset
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Real-Time Demo on LG 
G8s ThinQ (Qualcomm 
Snapdragon 855) with 
LitePose-XS 
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Thank you!

https://github.com/mit-han-lab/litepose 
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