File size: 2,343 Bytes
8901161
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
---
license: apache-2.0
base_model: swiss-ai/Apertus-8B-Instruct-2509
pipeline_tag: text-generation
library_name: mlx
tags:
- multilingual
- compliant
- swiss-ai
- apertus
- mlx
extra_gated_prompt: "### Apertus LLM Acceptable Use Policy  \n(1.0 | September 1,\
  \ 2025)\n\"Agreement\" The Swiss National AI Institute (SNAI) is a partnership between\
  \ the two Swiss Federal Institutes of Technology, ETH Zurich and EPFL. \n\nBy using\
  \ the Apertus LLM you agree to indemnify, defend, and hold harmless ETH Zurich and\
  \ EPFL against any third-party claims arising from your use of Apertus LLM. \n\n\
  The training data and the Apertus LLM may contain or generate information that directly\
  \ or indirectly refers to an identifiable individual (Personal Data). You process\
  \ Personal Data as independent controller in accordance with applicable data protection\
  \ law. SNAI will regularly provide a file with hash values for download which you\
  \ can apply as an output filter to your use of our Apertus LLM. The file reflects\
  \ data protection deletion requests which have been addressed to SNAI as the developer\
  \ of the Apertus LLM. It allows you to remove Personal Data contained in the model\
  \ output. We strongly advise downloading and applying this output filter from SNAI\
  \ every six months following the release of the model.  "
extra_gated_fields:
  Your Name: text
  Country: country
  Affiliation: text
  geo: ip_location
  By clicking Submit below I accept the terms of use: checkbox
extra_gated_button_content: Submit
---

# mlx-community/Apertus-8B-Instruct-2509-8bit

This model [mlx-community/Apertus-8B-Instruct-2509-8bit](https://huggingface.co/mlx-community/Apertus-8B-Instruct-2509-8bit) was
converted to MLX format from [swiss-ai/Apertus-8B-Instruct-2509](https://huggingface.co/swiss-ai/Apertus-8B-Instruct-2509)
using mlx-lm version **0.27.0**.

## Use with mlx

```bash
pip install mlx-lm
```

```python
from mlx_lm import load, generate

model, tokenizer = load("mlx-community/Apertus-8B-Instruct-2509-8bit")

prompt = "hello"

if tokenizer.chat_template is not None:
    messages = [{"role": "user", "content": prompt}]
    prompt = tokenizer.apply_chat_template(
        messages, add_generation_prompt=True
    )

response = generate(model, tokenizer, prompt=prompt, verbose=True)
```