--- license: gemma pipeline_tag: sentence-similarity library_name: sentence-transformers tags: - sentence-transformers - sentence-similarity - feature-extraction - mlx extra_gated_heading: Access EmbeddingGemma on Hugging Face extra_gated_prompt: To access EmbeddingGemma on Hugging Face, you’re required to review and agree to Google’s usage license. To do this, please ensure you’re logged in to Hugging Face and click below. Requests are processed immediately. extra_gated_button_content: Acknowledge license --- # mlx-community/embeddinggemma-300m-4bit The Model [mlx-community/embeddinggemma-300m-4bit](https://huggingface.co/mlx-community/embeddinggemma-300m-4bit) was converted to MLX format from [google/embeddinggemma-300m-qat-q4_0-unquantized](https://huggingface.co/google/embeddinggemma-300m-qat-q4_0-unquantized) using mlx-lm version **0.0.4**. ## Use with mlx ```bash pip install mlx-embeddings ``` ```python from mlx_embeddings import load, generate import mlx.core as mx model, tokenizer = load("mlx-community/embeddinggemma-300m-4bit") # For text embedding sentences = [ "task: sentence similarity | query: Nothing really matters.", "task: sentence similarity | query: The dog is barking.", "task: sentence similarity | query: The dog is barking.", ] encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='mlx') # Compute token embeddings input_ids = encoded_input['input_ids'] attention_mask = encoded_input['attention_mask'] output = model(input_ids, attention_mask) embeddings = output.text_embeds # Normalized embeddings # Compute dot product between normalized embeddings similarity_matrix = mx.matmul(embeddings, embeddings.T) print("Similarity matrix between texts:") print(similarity_matrix) # You can use these task-specific prefixes for different tasks task_prefixes = { "BitextMining": "task: search result | query: ", "Clustering": "task: clustering | query: ", "Classification": "task: classification | query: ", "MultilabelClassification": "task: classification | query: ", "PairClassification": "task: sentence similarity | query: ", "InstructionRetrieval": "task: code retrieval | query: ", "Reranking": "task: search result | query: ", "Retrieval": "task: search result | query: ", "Retrieval-query": "task: search result | query: ", "Retrieval-document": "title: none | text: ", "STS": "task: sentence similarity | query: ", "Summarization": "task: summarization | query: ", "document": "title: none | text: " } ```