monentiadev commited on
Commit
2706f1f
·
verified ·
1 Parent(s): fb509fc

Push model using huggingface_hub.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,206 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - setfit
4
+ - sentence-transformers
5
+ - text-classification
6
+ - generated_from_setfit_trainer
7
+ widget:
8
+ - text: poopchute
9
+ - text: Made
10
+ - text: prox
11
+ - text: What happens, uncle, everything in order?
12
+ - text: I need Maritima Avenue to reduce congestion
13
+ metrics:
14
+ - accuracy
15
+ pipeline_tag: text-classification
16
+ library_name: setfit
17
+ inference: true
18
+ base_model: sentence-transformers/all-MiniLM-L6-v2
19
+ ---
20
+
21
+ # SetFit with sentence-transformers/all-MiniLM-L6-v2
22
+
23
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
24
+
25
+ The model has been trained using an efficient few-shot learning technique that involves:
26
+
27
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
28
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
29
+
30
+ ## Model Details
31
+
32
+ ### Model Description
33
+ - **Model Type:** SetFit
34
+ - **Sentence Transformer body:** [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2)
35
+ - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
36
+ - **Maximum Sequence Length:** 256 tokens
37
+ - **Number of Classes:** 4 classes
38
+ <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
39
+ <!-- - **Language:** Unknown -->
40
+ <!-- - **License:** Unknown -->
41
+
42
+ ### Model Sources
43
+
44
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
45
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
46
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
47
+
48
+ ### Model Labels
49
+ | Label | Examples |
50
+ |:-------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------|
51
+ | request | <ul><li>'necessary lingerie'</li><li>'necessary material for today'</li><li>'I finished the room 234'</li></ul> |
52
+ | conversation | <ul><li>"What's up, uncle, all good?"</li><li>'Good, how is the thing going?!'</li><li>'Hello how are you'</li></ul> |
53
+ | help | <ul><li>'Please help'</li><li>"Help I don't know what I can do"</li><li>'Hello, what can I do'</li></ul> |
54
+ | censorship | <ul><li>'You are a useless complete, you are useless'</li><li>'Always saying stupidities, better shut up'</li><li>'Your single existence is a shame'</li></ul> |
55
+
56
+ ## Uses
57
+
58
+ ### Direct Use for Inference
59
+
60
+ First install the SetFit library:
61
+
62
+ ```bash
63
+ pip install setfit
64
+ ```
65
+
66
+ Then you can load this model and run inference.
67
+
68
+ ```python
69
+ from setfit import SetFitModel
70
+
71
+ # Download from the 🤗 Hub
72
+ model = SetFitModel.from_pretrained("monentiadev/en-input-classifier")
73
+ # Run inference
74
+ preds = model("Made")
75
+ ```
76
+
77
+ <!--
78
+ ### Downstream Use
79
+
80
+ *List how someone could finetune this model on their own dataset.*
81
+ -->
82
+
83
+ <!--
84
+ ### Out-of-Scope Use
85
+
86
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
87
+ -->
88
+
89
+ <!--
90
+ ## Bias, Risks and Limitations
91
+
92
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
93
+ -->
94
+
95
+ <!--
96
+ ### Recommendations
97
+
98
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
99
+ -->
100
+
101
+ ## Training Details
102
+
103
+ ### Training Set Metrics
104
+ | Training set | Min | Median | Max |
105
+ |:-------------|:----|:-------|:----|
106
+ | Word count | 1 | 5.1483 | 40 |
107
+
108
+ | Label | Training Sample Count |
109
+ |:-------------|:----------------------|
110
+ | censorship | 576 |
111
+ | conversation | 123 |
112
+ | help | 204 |
113
+ | request | 520 |
114
+
115
+ ### Training Hyperparameters
116
+ - batch_size: (128, 128)
117
+ - num_epochs: (3, 3)
118
+ - max_steps: -1
119
+ - sampling_strategy: oversampling
120
+ - num_iterations: 20
121
+ - body_learning_rate: (2e-05, 1e-05)
122
+ - head_learning_rate: 0.01
123
+ - loss: CosineSimilarityLoss
124
+ - distance_metric: cosine_distance
125
+ - margin: 0.25
126
+ - end_to_end: False
127
+ - use_amp: False
128
+ - warmup_proportion: 0.1
129
+ - l2_weight: 0.01
130
+ - seed: 42
131
+ - eval_max_steps: -1
132
+ - load_best_model_at_end: False
133
+
134
+ ### Training Results
135
+ | Epoch | Step | Training Loss | Validation Loss |
136
+ |:------:|:----:|:-------------:|:---------------:|
137
+ | 0.0022 | 1 | 0.3104 | - |
138
+ | 0.1124 | 50 | 0.3267 | - |
139
+ | 0.2247 | 100 | 0.2008 | - |
140
+ | 0.3371 | 150 | 0.0842 | - |
141
+ | 0.4494 | 200 | 0.0218 | - |
142
+ | 0.5618 | 250 | 0.0103 | - |
143
+ | 0.6742 | 300 | 0.0052 | - |
144
+ | 0.7865 | 350 | 0.0034 | - |
145
+ | 0.8989 | 400 | 0.0025 | - |
146
+ | 1.0112 | 450 | 0.0019 | - |
147
+ | 1.1236 | 500 | 0.0019 | - |
148
+ | 1.2360 | 550 | 0.0017 | - |
149
+ | 1.3483 | 600 | 0.001 | - |
150
+ | 1.4607 | 650 | 0.001 | - |
151
+ | 1.5730 | 700 | 0.0011 | - |
152
+ | 1.6854 | 750 | 0.0009 | - |
153
+ | 1.7978 | 800 | 0.001 | - |
154
+ | 1.9101 | 850 | 0.0007 | - |
155
+ | 2.0225 | 900 | 0.0008 | - |
156
+ | 2.1348 | 950 | 0.0007 | - |
157
+ | 2.2472 | 1000 | 0.0007 | - |
158
+ | 2.3596 | 1050 | 0.0006 | - |
159
+ | 2.4719 | 1100 | 0.0006 | - |
160
+ | 2.5843 | 1150 | 0.0006 | - |
161
+ | 2.6966 | 1200 | 0.0006 | - |
162
+ | 2.8090 | 1250 | 0.0006 | - |
163
+ | 2.9213 | 1300 | 0.0006 | - |
164
+
165
+ ### Framework Versions
166
+ - Python: 3.10.0
167
+ - SetFit: 1.1.2
168
+ - Sentence Transformers: 5.0.0
169
+ - Transformers: 4.53.1
170
+ - PyTorch: 2.7.1+cu126
171
+ - Datasets: 2.19.2
172
+ - Tokenizers: 0.21.2
173
+
174
+ ## Citation
175
+
176
+ ### BibTeX
177
+ ```bibtex
178
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
179
+ doi = {10.48550/ARXIV.2209.11055},
180
+ url = {https://arxiv.org/abs/2209.11055},
181
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
182
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
183
+ title = {Efficient Few-Shot Learning Without Prompts},
184
+ publisher = {arXiv},
185
+ year = {2022},
186
+ copyright = {Creative Commons Attribution 4.0 International}
187
+ }
188
+ ```
189
+
190
+ <!--
191
+ ## Glossary
192
+
193
+ *Clearly define terms in order to be accessible across audiences.*
194
+ -->
195
+
196
+ <!--
197
+ ## Model Card Authors
198
+
199
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
200
+ -->
201
+
202
+ <!--
203
+ ## Model Card Contact
204
+
205
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
206
+ -->
config.json ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "BertModel"
4
+ ],
5
+ "attention_probs_dropout_prob": 0.1,
6
+ "classifier_dropout": null,
7
+ "gradient_checkpointing": false,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 384,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 1536,
13
+ "layer_norm_eps": 1e-12,
14
+ "max_position_embeddings": 512,
15
+ "model_type": "bert",
16
+ "num_attention_heads": 12,
17
+ "num_hidden_layers": 6,
18
+ "pad_token_id": 0,
19
+ "position_embedding_type": "absolute",
20
+ "torch_dtype": "float32",
21
+ "transformers_version": "4.53.1",
22
+ "type_vocab_size": 2,
23
+ "use_cache": true,
24
+ "vocab_size": 30522
25
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "5.0.0",
4
+ "transformers": "4.53.1",
5
+ "pytorch": "2.7.1+cu126"
6
+ },
7
+ "model_type": "SentenceTransformer",
8
+ "prompts": {
9
+ "query": "",
10
+ "document": ""
11
+ },
12
+ "default_prompt_name": null,
13
+ "similarity_fn_name": "cosine"
14
+ }
config_setfit.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "labels": [
3
+ "censorship",
4
+ "conversation",
5
+ "help",
6
+ "request"
7
+ ],
8
+ "normalize_embeddings": false
9
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:87613263cc276eac42ef44d8645c9b0f24d0110857af119f2372ea6760b1e8f3
3
+ size 90864192
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cbff5e1e7b5a2889b86964a856c66be2622be1ca77dcf595383bed32815e7b6d
3
+ size 13351
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 256,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": false,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "extra_special_tokens": {},
49
+ "mask_token": "[MASK]",
50
+ "max_length": 128,
51
+ "model_max_length": 256,
52
+ "never_split": null,
53
+ "pad_to_multiple_of": null,
54
+ "pad_token": "[PAD]",
55
+ "pad_token_type_id": 0,
56
+ "padding_side": "right",
57
+ "sep_token": "[SEP]",
58
+ "stride": 0,
59
+ "strip_accents": null,
60
+ "tokenize_chinese_chars": true,
61
+ "tokenizer_class": "BertTokenizer",
62
+ "truncation_side": "right",
63
+ "truncation_strategy": "longest_first",
64
+ "unk_token": "[UNK]"
65
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff