mozihe commited on
Commit
13ac683
·
verified ·
1 Parent(s): ff4763c

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +124 -0
README.md ADDED
@@ -0,0 +1,124 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - llm
5
+ - mozihe
6
+ - agv
7
+ - defect-detection
8
+ - chinese
9
+ - english
10
+ - transformers
11
+ - ollama
12
+ model_name: agv_llm
13
+ base_model: meta-llama/Llama-3.1-8B
14
+ library_name: transformers
15
+ ---
16
+
17
+ # 📄 AGV-LLM
18
+
19
+ > **Small enough to self-host, smart enough to 写巡检报告,分析缺陷数据**
20
+ > 8 B bilingual model fine-tuned for **tunnel-defect description** & **work-order drafting**.
21
+ > Works in both **Transformers** and **Ollama**.
22
+
23
+ ---
24
+
25
+ ## ✨ Highlights
26
+ | Feature | Details |
27
+ | ------- | ------- |
28
+ | 🔧 **Domain-specific** | 56 K 巡检对话 / 工单指令数据 / 数据分析 |
29
+ | 🧑‍🏫 **LoRA fine-tuned** | QLoRA-NF4, Rank 8, α = 16 |
30
+ | 🈶 **Bilingual** | 中文 ↔ English |
31
+ | ⚡ **Fast** | ~15 tok/s on RTX 4090 (fp16) |
32
+ | 📦 **Drop-in** | `AutoModelForCausalLM` **or** `ollama pull mozihe/agv_llm` |
33
+
34
+ ---
35
+
36
+ ## 🛠️ Usage
37
+
38
+ ### Transformers
39
+
40
+ ```python
41
+ from transformers import AutoTokenizer, AutoModelForCausalLM
42
+ import torch, textwrap
43
+
44
+ tok = AutoTokenizer.from_pretrained("mozihe/agv_llm")
45
+ model = AutoModelForCausalLM.from_pretrained(
46
+ "mozihe/agv_llm", torch_dtype=torch.float16, device_map="auto"
47
+ )
48
+
49
+ prompt = (
50
+ "请根据以下检测框信息,生成缺陷描述和整改建议:\\n"
51
+ "位置:x=12.3,y=1.2,z=7.8\\n种类:裂缝\\n置信度:0.87"
52
+ )
53
+ inputs = tok(prompt, return_tensors="pt").to(model.device)
54
+ out = model.generate(**inputs, max_new_tokens=256, temperature=0.3)
55
+ print(textwrap.fill(tok.decode(out[0], skip_special_tokens=True), 80))
56
+ ```
57
+
58
+ ### Ollama
59
+
60
+
61
+ 1. 构建本地模型并命名:
62
+
63
+ ```bash
64
+ ollama create agv_llm -f Modelfile
65
+ ```
66
+
67
+ 2. 运行:
68
+
69
+ ```
70
+ ollama run agv_llm
71
+ ```
72
+
73
+ > 说明
74
+ > - `ADAPTER` 行既支持远程 Hugging Face 路径,也支持 `file://` 本地 .safetensors。
75
+ > - 更多 Modelfile 指令见 <https://github.com/ollama/ollama/blob/main/docs/modelfile.md>
76
+ ---
77
+
78
+ ## 📚 Training Details
79
+ | Item | Value |
80
+ | ---- | ----- |
81
+ | Base | Llama-3.1-8B |
82
+ | Method | QLoRA (bitsandbytes NF4) |
83
+ | Steps | 25 epochs |
84
+ | LR / Scheduler | 1e-4 / cosine |
85
+ | Context | 4 096 tokens |
86
+ | Precision | bfloat16 |
87
+ | Hardware | 4 × A100-80 GB |
88
+
89
+ ---
90
+
91
+ ## ✅ Intended Use
92
+ * YOLO 检出 → 结构化缺陷描述
93
+ * 生成整改建议 / 工单标题 / 优先级
94
+ * 巡检知识库问答(RAG + Ollama)
95
+
96
+ ### ❌ Out-of-scope
97
+ * 医疗 / 法律结论
98
+ * 任何未经人工复核的安全决策
99
+
100
+ ---
101
+
102
+ ## ⚠️ Limitations
103
+ * 8 B 参数 ≠ GPT-4 级别推理深度
104
+ * 训练域集中在隧道场景,泛化到其他土木结构有限
105
+ * 多语种(非中英)支持较弱
106
+
107
+ ---
108
+
109
+ ## 📄 Citation
110
+
111
+ ```text
112
+ @misc{mozihe2025agvllm,
113
+ title = {AGV-LLM: A Domain LLM for Tunnel Inspection},
114
+ author = {Zhu, Junheng},
115
+ year = {2025},
116
+ url = {https://huggingface.co/mozihe/agv_llm}
117
+ }
118
+ ```
119
+
120
+ ---
121
+
122
+ ## 📝 License
123
+ Apache 2.0 — 商用、私有部署皆可,保留版权与许可证即可。
124
+ 若本模型帮你省掉一张加班单,欢迎 ⭐!