End of training
Browse files
README.md
ADDED
@@ -0,0 +1,138 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: dccuchile/bert-base-spanish-wwm-cased
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- accuracy
|
7 |
+
- f1
|
8 |
+
model-index:
|
9 |
+
- name: ABL_trad_2a
|
10 |
+
results: []
|
11 |
+
---
|
12 |
+
|
13 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
14 |
+
should probably proofread and complete it, then remove this comment. -->
|
15 |
+
|
16 |
+
# ABL_trad_2a
|
17 |
+
|
18 |
+
This model is a fine-tuned version of [dccuchile/bert-base-spanish-wwm-cased](https://huggingface.co/dccuchile/bert-base-spanish-wwm-cased) on an unknown dataset.
|
19 |
+
It achieves the following results on the evaluation set:
|
20 |
+
- Loss: 3.5485
|
21 |
+
- Accuracy: 0.6917
|
22 |
+
- F1: 0.6904
|
23 |
+
|
24 |
+
## Model description
|
25 |
+
|
26 |
+
More information needed
|
27 |
+
|
28 |
+
## Intended uses & limitations
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Training and evaluation data
|
33 |
+
|
34 |
+
More information needed
|
35 |
+
|
36 |
+
## Training procedure
|
37 |
+
|
38 |
+
### Training hyperparameters
|
39 |
+
|
40 |
+
The following hyperparameters were used during training:
|
41 |
+
- learning_rate: 1e-05
|
42 |
+
- train_batch_size: 6
|
43 |
+
- eval_batch_size: 6
|
44 |
+
- seed: 42
|
45 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
46 |
+
- lr_scheduler_type: linear
|
47 |
+
- num_epochs: 78
|
48 |
+
|
49 |
+
### Training results
|
50 |
+
|
51 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|
52 |
+
|:-------------:|:-----:|:------:|:---------------:|:--------:|:------:|
|
53 |
+
| 0.9204 | 1.0 | 2000 | 0.8942 | 0.5825 | 0.5814 |
|
54 |
+
| 0.8116 | 2.0 | 4000 | 0.8397 | 0.615 | 0.6112 |
|
55 |
+
| 0.7443 | 3.0 | 6000 | 0.8179 | 0.635 | 0.6340 |
|
56 |
+
| 0.7074 | 4.0 | 8000 | 0.8130 | 0.65 | 0.6475 |
|
57 |
+
| 0.6663 | 5.0 | 10000 | 0.8134 | 0.6625 | 0.6590 |
|
58 |
+
| 0.6385 | 6.0 | 12000 | 0.8092 | 0.6708 | 0.6694 |
|
59 |
+
| 0.5702 | 7.0 | 14000 | 0.8355 | 0.6708 | 0.6699 |
|
60 |
+
| 0.5436 | 8.0 | 16000 | 0.8662 | 0.6758 | 0.6728 |
|
61 |
+
| 0.5002 | 9.0 | 18000 | 0.9040 | 0.6825 | 0.6804 |
|
62 |
+
| 0.4602 | 10.0 | 20000 | 0.9345 | 0.6967 | 0.6948 |
|
63 |
+
| 0.4324 | 11.0 | 22000 | 1.0021 | 0.6858 | 0.6842 |
|
64 |
+
| 0.3862 | 12.0 | 24000 | 1.0713 | 0.6917 | 0.6899 |
|
65 |
+
| 0.3586 | 13.0 | 26000 | 1.1688 | 0.7017 | 0.6989 |
|
66 |
+
| 0.3536 | 14.0 | 28000 | 1.2699 | 0.695 | 0.6923 |
|
67 |
+
| 0.3041 | 15.0 | 30000 | 1.4034 | 0.6917 | 0.6911 |
|
68 |
+
| 0.2851 | 16.0 | 32000 | 1.5512 | 0.6917 | 0.6897 |
|
69 |
+
| 0.3071 | 17.0 | 34000 | 1.6367 | 0.69 | 0.6885 |
|
70 |
+
| 0.2586 | 18.0 | 36000 | 1.7689 | 0.6892 | 0.6880 |
|
71 |
+
| 0.2192 | 19.0 | 38000 | 1.9568 | 0.6842 | 0.6828 |
|
72 |
+
| 0.2418 | 20.0 | 40000 | 2.0536 | 0.6808 | 0.6770 |
|
73 |
+
| 0.2066 | 21.0 | 42000 | 2.1762 | 0.6917 | 0.6899 |
|
74 |
+
| 0.1449 | 22.0 | 44000 | 2.3044 | 0.69 | 0.6879 |
|
75 |
+
| 0.1669 | 23.0 | 46000 | 2.3854 | 0.6908 | 0.6891 |
|
76 |
+
| 0.1376 | 24.0 | 48000 | 2.5111 | 0.6883 | 0.6849 |
|
77 |
+
| 0.1434 | 25.0 | 50000 | 2.5862 | 0.685 | 0.6829 |
|
78 |
+
| 0.1123 | 26.0 | 52000 | 2.6845 | 0.685 | 0.6825 |
|
79 |
+
| 0.0949 | 27.0 | 54000 | 2.7896 | 0.6825 | 0.6804 |
|
80 |
+
| 0.1264 | 28.0 | 56000 | 2.8471 | 0.6908 | 0.6887 |
|
81 |
+
| 0.0774 | 29.0 | 58000 | 2.8967 | 0.6883 | 0.6860 |
|
82 |
+
| 0.1046 | 30.0 | 60000 | 2.9571 | 0.6867 | 0.6837 |
|
83 |
+
| 0.0967 | 31.0 | 62000 | 2.9687 | 0.6892 | 0.6858 |
|
84 |
+
| 0.0689 | 32.0 | 64000 | 3.0554 | 0.6917 | 0.6887 |
|
85 |
+
| 0.069 | 33.0 | 66000 | 3.0982 | 0.6917 | 0.6888 |
|
86 |
+
| 0.044 | 34.0 | 68000 | 3.1798 | 0.6917 | 0.6898 |
|
87 |
+
| 0.0654 | 35.0 | 70000 | 3.2407 | 0.685 | 0.6821 |
|
88 |
+
| 0.0438 | 36.0 | 72000 | 3.1972 | 0.6908 | 0.6881 |
|
89 |
+
| 0.0553 | 37.0 | 74000 | 3.2033 | 0.6967 | 0.6947 |
|
90 |
+
| 0.0534 | 38.0 | 76000 | 3.2928 | 0.6883 | 0.6856 |
|
91 |
+
| 0.0568 | 39.0 | 78000 | 3.3607 | 0.6933 | 0.6893 |
|
92 |
+
| 0.03 | 40.0 | 80000 | 3.2983 | 0.6867 | 0.6836 |
|
93 |
+
| 0.0539 | 41.0 | 82000 | 3.2896 | 0.6908 | 0.6870 |
|
94 |
+
| 0.0459 | 42.0 | 84000 | 3.3401 | 0.6883 | 0.6855 |
|
95 |
+
| 0.0322 | 43.0 | 86000 | 3.3879 | 0.6883 | 0.6847 |
|
96 |
+
| 0.0251 | 44.0 | 88000 | 3.3517 | 0.6875 | 0.6855 |
|
97 |
+
| 0.063 | 45.0 | 90000 | 3.3609 | 0.6875 | 0.6856 |
|
98 |
+
| 0.0343 | 46.0 | 92000 | 3.4785 | 0.6825 | 0.6801 |
|
99 |
+
| 0.052 | 47.0 | 94000 | 3.4663 | 0.6817 | 0.6794 |
|
100 |
+
| 0.038 | 48.0 | 96000 | 3.4157 | 0.6908 | 0.6889 |
|
101 |
+
| 0.0312 | 49.0 | 98000 | 3.3996 | 0.6958 | 0.6933 |
|
102 |
+
| 0.0469 | 50.0 | 100000 | 3.3978 | 0.6942 | 0.6918 |
|
103 |
+
| 0.0405 | 51.0 | 102000 | 3.4383 | 0.6833 | 0.6801 |
|
104 |
+
| 0.0438 | 52.0 | 104000 | 3.3833 | 0.7025 | 0.7004 |
|
105 |
+
| 0.0366 | 53.0 | 106000 | 3.5241 | 0.6917 | 0.6879 |
|
106 |
+
| 0.0415 | 54.0 | 108000 | 3.4236 | 0.6992 | 0.6972 |
|
107 |
+
| 0.0315 | 55.0 | 110000 | 3.3053 | 0.7033 | 0.7009 |
|
108 |
+
| 0.041 | 56.0 | 112000 | 3.4287 | 0.6975 | 0.6961 |
|
109 |
+
| 0.024 | 57.0 | 114000 | 3.4783 | 0.695 | 0.6919 |
|
110 |
+
| 0.0263 | 58.0 | 116000 | 3.5307 | 0.6942 | 0.6917 |
|
111 |
+
| 0.0231 | 59.0 | 118000 | 3.4495 | 0.6908 | 0.6883 |
|
112 |
+
| 0.0269 | 60.0 | 120000 | 3.4664 | 0.6925 | 0.6907 |
|
113 |
+
| 0.0152 | 61.0 | 122000 | 3.4655 | 0.6917 | 0.6893 |
|
114 |
+
| 0.025 | 62.0 | 124000 | 3.4954 | 0.6967 | 0.6957 |
|
115 |
+
| 0.0313 | 63.0 | 126000 | 3.4727 | 0.6967 | 0.6942 |
|
116 |
+
| 0.0175 | 64.0 | 128000 | 3.5688 | 0.6908 | 0.6892 |
|
117 |
+
| 0.0319 | 65.0 | 130000 | 3.4812 | 0.6975 | 0.6963 |
|
118 |
+
| 0.0382 | 66.0 | 132000 | 3.5716 | 0.6975 | 0.6942 |
|
119 |
+
| 0.0168 | 67.0 | 134000 | 3.5241 | 0.7008 | 0.6978 |
|
120 |
+
| 0.0351 | 68.0 | 136000 | 3.5020 | 0.6917 | 0.6889 |
|
121 |
+
| 0.0185 | 69.0 | 138000 | 3.4793 | 0.6908 | 0.6894 |
|
122 |
+
| 0.0264 | 70.0 | 140000 | 3.5716 | 0.6883 | 0.6847 |
|
123 |
+
| 0.0236 | 71.0 | 142000 | 3.5403 | 0.69 | 0.6861 |
|
124 |
+
| 0.0238 | 72.0 | 144000 | 3.5622 | 0.6917 | 0.6886 |
|
125 |
+
| 0.0163 | 73.0 | 146000 | 3.4998 | 0.7008 | 0.6984 |
|
126 |
+
| 0.0229 | 74.0 | 148000 | 3.5659 | 0.6925 | 0.6898 |
|
127 |
+
| 0.0168 | 75.0 | 150000 | 3.5080 | 0.6983 | 0.6958 |
|
128 |
+
| 0.0149 | 76.0 | 152000 | 3.4678 | 0.7008 | 0.6985 |
|
129 |
+
| 0.0175 | 77.0 | 154000 | 3.5733 | 0.6967 | 0.6939 |
|
130 |
+
| 0.0118 | 78.0 | 156000 | 3.5485 | 0.6917 | 0.6904 |
|
131 |
+
|
132 |
+
|
133 |
+
### Framework versions
|
134 |
+
|
135 |
+
- Transformers 4.37.2
|
136 |
+
- Pytorch 2.1.0+cu121
|
137 |
+
- Datasets 2.16.1
|
138 |
+
- Tokenizers 0.15.1
|
runs/Jun07_08-08-45_PcJavierOmen/events.out.tfevents.1717740525.PcJavierOmen.15760.0
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:60965d4463ac6e6f413d51ee6f289447a4ae26e417a3e8fd834706af04124ac7
|
3 |
+
size 83985
|
runs/Jun07_08-08-45_PcJavierOmen/events.out.tfevents.1717753619.PcJavierOmen.15760.1
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5edee9515f46a81017420e683ec772ef4ef1823da2f409308c912359a1b9b94a
|
3 |
+
size 464
|