WIP
Browse files- README.md +14 -35
- config.json +13 -0
- hifigan_ar_v2.py +1180 -0
README.md
CHANGED
@@ -9,46 +9,25 @@ tags:
|
|
9 |
- tts
|
10 |
---
|
11 |
|
12 |
-
# HiFiGAN
|
13 |
|
14 |
-
|
15 |
-
|
16 |
-
## Model Details
|
17 |
-
- Base Model: HiFiGAN
|
18 |
-
- Training Type: Finetuned from HuggingFace checkpoint
|
19 |
-
- Sample Rate: 22050 Hz
|
20 |
-
- Checkpoint Date: 2025-03-30
|
21 |
-
|
22 |
-
## Files
|
23 |
-
- `generator.ckpt`: The model weights
|
24 |
-
- `hyperparams.yaml`: Model hyperparameters
|
25 |
|
26 |
## Usage
|
|
|
27 |
```python
|
28 |
-
from
|
29 |
import torch
|
30 |
-
from hyperpyyaml import load_hyperpyyaml
|
31 |
|
32 |
-
# Load
|
33 |
-
|
34 |
-
hparams = load_hyperpyyaml(f)
|
35 |
|
36 |
-
#
|
37 |
-
|
38 |
-
|
39 |
-
out_channels=hparams["out_channels"],
|
40 |
-
resblock_type=hparams["resblock_type"],
|
41 |
-
resblock_dilation_sizes=hparams["resblock_dilation_sizes"],
|
42 |
-
resblock_kernel_sizes=hparams["resblock_kernel_sizes"],
|
43 |
-
upsample_kernel_sizes=hparams["upsample_kernel_sizes"],
|
44 |
-
upsample_initial_channel=hparams["upsample_initial_channel"],
|
45 |
-
upsample_factors=hparams["upsample_factors"],
|
46 |
-
inference_padding=hparams["inference_padding"],
|
47 |
-
cond_channels=hparams["cond_channels"],
|
48 |
-
conv_post_bias=hparams["conv_post_bias"],
|
49 |
-
)
|
50 |
-
|
51 |
-
# Load checkpoint
|
52 |
-
generator.load_state_dict(torch.load("generator.ckpt"))
|
53 |
-
generator.eval()
|
54 |
```
|
|
|
|
|
|
|
|
|
|
|
|
9 |
- tts
|
10 |
---
|
11 |
|
12 |
+
# HiFiGAN Arabic Vocoder
|
13 |
|
14 |
+
A standalone implementation of HiFiGAN vocoder for Arabic text-to-speech, based on the paper "HiFi-GAN: Generative Adversarial Networks for Efficient and High Fidelity Speech Synthesis" (https://arxiv.org/pdf/2010.05646.pdf).
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
## Usage
|
17 |
+
|
18 |
```python
|
19 |
+
from hifigan_ar_v2 import HiFiGANArabicGenerator
|
20 |
import torch
|
|
|
21 |
|
22 |
+
# Load the model
|
23 |
+
model = HiFiGANArabicGenerator.from_pretrained("generator.ckpt", "config.json")
|
|
|
24 |
|
25 |
+
# Generate audio from mel spectrogram
|
26 |
+
mel = torch.rand(1, 80, 122) # Example mel spectrogram
|
27 |
+
audio = model(mel) # Shape: [1, 1, 8448]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
```
|
29 |
+
|
30 |
+
## Model Details
|
31 |
+
- Sample Rate: 22050 Hz
|
32 |
+
- Input: Mel spectrogram (80 channels)
|
33 |
+
- Output: Audio waveform (1 channel)
|
config.json
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"in_channels": 80,
|
3 |
+
"out_channels": 1,
|
4 |
+
"resblock_type": "1",
|
5 |
+
"resblock_dilation_sizes": [[1, 3, 5], [1, 3, 5], [1, 3, 5]],
|
6 |
+
"resblock_kernel_sizes": [3, 7, 11],
|
7 |
+
"upsample_kernel_sizes": [16, 16, 4, 4],
|
8 |
+
"upsample_initial_channel": 512,
|
9 |
+
"upsample_factors": [8, 8, 2, 2],
|
10 |
+
"inference_padding": 5,
|
11 |
+
"cond_channels": 0,
|
12 |
+
"conv_post_bias": true
|
13 |
+
}
|
hifigan_ar_v2.py
ADDED
@@ -0,0 +1,1180 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Neural network modules for the HiFi-GAN: Generative Adversarial Networks for
|
3 |
+
Efficient and High Fidelity Speech Synthesis
|
4 |
+
|
5 |
+
For more details: https://arxiv.org/pdf/2010.05646.pdf, https://arxiv.org/abs/2406.10735
|
6 |
+
|
7 |
+
Authors
|
8 |
+
* Jarod Duret 2021
|
9 |
+
* Yingzhi WANG 2022
|
10 |
+
"""
|
11 |
+
|
12 |
+
# Adapted from https://github.com/jik876/hifi-gan/ and https://github.com/coqui-ai/TTS/
|
13 |
+
# MIT License
|
14 |
+
|
15 |
+
# Copyright (c) 2020 Jungil Kong
|
16 |
+
|
17 |
+
# Permission is hereby granted, free of charge, to any person obtaining a copy
|
18 |
+
# of this software and associated documentation files (the "Software"), to deal
|
19 |
+
# in the Software without restriction, including without limitation the rights
|
20 |
+
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
21 |
+
# copies of the Software, and to permit persons to whom the Software is
|
22 |
+
# furnished to do so, subject to the following conditions:
|
23 |
+
|
24 |
+
# The above copyright notice and this permission notice shall be included in all
|
25 |
+
# copies or substantial portions of the Software.
|
26 |
+
|
27 |
+
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
28 |
+
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
29 |
+
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
30 |
+
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
31 |
+
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
32 |
+
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
33 |
+
# SOFTWARE.
|
34 |
+
|
35 |
+
|
36 |
+
import json
|
37 |
+
import logging
|
38 |
+
import math
|
39 |
+
import os
|
40 |
+
from typing import Tuple
|
41 |
+
|
42 |
+
import torch
|
43 |
+
import torch.nn as nn
|
44 |
+
import torch.nn.functional as F
|
45 |
+
|
46 |
+
|
47 |
+
LRELU_SLOPE = 0.1
|
48 |
+
|
49 |
+
|
50 |
+
def get_padding_elem(L_in: int, stride: int, kernel_size: int, dilation: int):
|
51 |
+
"""This function computes the number of elements to add for zero-padding.
|
52 |
+
|
53 |
+
Arguments
|
54 |
+
---------
|
55 |
+
L_in : int
|
56 |
+
stride: int
|
57 |
+
kernel_size : int
|
58 |
+
dilation : int
|
59 |
+
|
60 |
+
Returns
|
61 |
+
-------
|
62 |
+
padding : int
|
63 |
+
The size of the padding to be added
|
64 |
+
"""
|
65 |
+
if stride > 1:
|
66 |
+
padding = [math.floor(kernel_size / 2), math.floor(kernel_size / 2)]
|
67 |
+
|
68 |
+
else:
|
69 |
+
L_out = (
|
70 |
+
math.floor((L_in - dilation * (kernel_size - 1) - 1) / stride) + 1
|
71 |
+
)
|
72 |
+
padding = [
|
73 |
+
math.floor((L_in - L_out) / 2),
|
74 |
+
math.floor((L_in - L_out) / 2),
|
75 |
+
]
|
76 |
+
return padding
|
77 |
+
|
78 |
+
|
79 |
+
def get_padding_elem_transposed(
|
80 |
+
L_out: int,
|
81 |
+
L_in: int,
|
82 |
+
stride: int,
|
83 |
+
kernel_size: int,
|
84 |
+
dilation: int,
|
85 |
+
output_padding: int,
|
86 |
+
):
|
87 |
+
"""This function computes the required padding size for transposed convolution
|
88 |
+
|
89 |
+
Arguments
|
90 |
+
---------
|
91 |
+
L_out : int
|
92 |
+
L_in : int
|
93 |
+
stride: int
|
94 |
+
kernel_size : int
|
95 |
+
dilation : int
|
96 |
+
output_padding : int
|
97 |
+
|
98 |
+
Returns
|
99 |
+
-------
|
100 |
+
padding : int
|
101 |
+
The size of the padding to be applied
|
102 |
+
"""
|
103 |
+
|
104 |
+
padding = -0.5 * (
|
105 |
+
L_out
|
106 |
+
- (L_in - 1) * stride
|
107 |
+
- dilation * (kernel_size - 1)
|
108 |
+
- output_padding
|
109 |
+
- 1
|
110 |
+
)
|
111 |
+
return int(padding)
|
112 |
+
|
113 |
+
|
114 |
+
class Conv1d(nn.Module):
|
115 |
+
"""This function implements 1d convolution.
|
116 |
+
|
117 |
+
Arguments
|
118 |
+
---------
|
119 |
+
out_channels : int
|
120 |
+
It is the number of output channels.
|
121 |
+
kernel_size : int
|
122 |
+
Kernel size of the convolutional filters.
|
123 |
+
input_shape : tuple
|
124 |
+
The shape of the input. Alternatively use ``in_channels``.
|
125 |
+
in_channels : int
|
126 |
+
The number of input channels. Alternatively use ``input_shape``.
|
127 |
+
stride : int
|
128 |
+
Stride factor of the convolutional filters. When the stride factor > 1,
|
129 |
+
a decimation in time is performed.
|
130 |
+
dilation : int
|
131 |
+
Dilation factor of the convolutional filters.
|
132 |
+
padding : str
|
133 |
+
(same, valid, causal). If "valid", no padding is performed.
|
134 |
+
If "same" and stride is 1, output shape is the same as the input shape.
|
135 |
+
"causal" results in causal (dilated) convolutions.
|
136 |
+
groups : int
|
137 |
+
Number of blocked connections from input channels to output channels.
|
138 |
+
bias : bool
|
139 |
+
Whether to add a bias term to convolution operation.
|
140 |
+
padding_mode : str
|
141 |
+
This flag specifies the type of padding. See torch.nn documentation
|
142 |
+
for more information.
|
143 |
+
skip_transpose : bool
|
144 |
+
If False, uses batch x time x channel convention of speechbrain.
|
145 |
+
If True, uses batch x channel x time convention.
|
146 |
+
weight_norm : bool
|
147 |
+
If True, use weight normalization,
|
148 |
+
to be removed with self.remove_weight_norm() at inference
|
149 |
+
conv_init : str
|
150 |
+
Weight initialization for the convolution network
|
151 |
+
default_padding: str or int
|
152 |
+
This sets the default padding mode that will be used by the pytorch Conv1d backend.
|
153 |
+
|
154 |
+
Example
|
155 |
+
-------
|
156 |
+
>>> inp_tensor = torch.rand([10, 40, 16])
|
157 |
+
>>> cnn_1d = Conv1d(
|
158 |
+
... input_shape=inp_tensor.shape, out_channels=8, kernel_size=5
|
159 |
+
... )
|
160 |
+
>>> out_tensor = cnn_1d(inp_tensor)
|
161 |
+
>>> out_tensor.shape
|
162 |
+
torch.Size([10, 40, 8])
|
163 |
+
"""
|
164 |
+
|
165 |
+
def __init__(
|
166 |
+
self,
|
167 |
+
out_channels,
|
168 |
+
kernel_size,
|
169 |
+
input_shape=None,
|
170 |
+
in_channels=None,
|
171 |
+
stride=1,
|
172 |
+
dilation=1,
|
173 |
+
padding="same",
|
174 |
+
groups=1,
|
175 |
+
bias=True,
|
176 |
+
padding_mode="reflect",
|
177 |
+
skip_transpose=False,
|
178 |
+
weight_norm=False,
|
179 |
+
conv_init=None,
|
180 |
+
default_padding=0,
|
181 |
+
):
|
182 |
+
super().__init__()
|
183 |
+
self.kernel_size = kernel_size
|
184 |
+
self.stride = stride
|
185 |
+
self.dilation = dilation
|
186 |
+
self.padding = padding
|
187 |
+
self.padding_mode = padding_mode
|
188 |
+
self.unsqueeze = False
|
189 |
+
self.skip_transpose = skip_transpose
|
190 |
+
|
191 |
+
if input_shape is None and in_channels is None:
|
192 |
+
raise ValueError("Must provide one of input_shape or in_channels")
|
193 |
+
|
194 |
+
if in_channels is None:
|
195 |
+
in_channels = self._check_input_shape(input_shape)
|
196 |
+
|
197 |
+
self.in_channels = in_channels
|
198 |
+
|
199 |
+
self.conv = nn.Conv1d(
|
200 |
+
in_channels,
|
201 |
+
out_channels,
|
202 |
+
self.kernel_size,
|
203 |
+
stride=self.stride,
|
204 |
+
dilation=self.dilation,
|
205 |
+
padding=default_padding,
|
206 |
+
groups=groups,
|
207 |
+
bias=bias,
|
208 |
+
)
|
209 |
+
|
210 |
+
if conv_init == "kaiming":
|
211 |
+
nn.init.kaiming_normal_(self.conv.weight)
|
212 |
+
elif conv_init == "zero":
|
213 |
+
nn.init.zeros_(self.conv.weight)
|
214 |
+
elif conv_init == "normal":
|
215 |
+
nn.init.normal_(self.conv.weight, std=1e-6)
|
216 |
+
|
217 |
+
if weight_norm:
|
218 |
+
self.conv = nn.utils.weight_norm(self.conv)
|
219 |
+
|
220 |
+
def forward(self, x):
|
221 |
+
"""Returns the output of the convolution.
|
222 |
+
|
223 |
+
Arguments
|
224 |
+
---------
|
225 |
+
x : torch.Tensor (batch, time, channel)
|
226 |
+
input to convolve. 2d or 4d tensors are expected.
|
227 |
+
|
228 |
+
Returns
|
229 |
+
-------
|
230 |
+
wx : torch.Tensor
|
231 |
+
The convolved outputs.
|
232 |
+
"""
|
233 |
+
if not self.skip_transpose:
|
234 |
+
x = x.transpose(1, -1)
|
235 |
+
|
236 |
+
if self.unsqueeze:
|
237 |
+
x = x.unsqueeze(1)
|
238 |
+
|
239 |
+
if self.padding == "same":
|
240 |
+
x = self._manage_padding(
|
241 |
+
x, self.kernel_size, self.dilation, self.stride
|
242 |
+
)
|
243 |
+
|
244 |
+
elif self.padding == "causal":
|
245 |
+
num_pad = (self.kernel_size - 1) * self.dilation
|
246 |
+
x = F.pad(x, (num_pad, 0))
|
247 |
+
|
248 |
+
elif self.padding == "valid":
|
249 |
+
pass
|
250 |
+
|
251 |
+
else:
|
252 |
+
raise ValueError(
|
253 |
+
"Padding must be 'same', 'valid' or 'causal'. Got "
|
254 |
+
+ self.padding
|
255 |
+
)
|
256 |
+
|
257 |
+
wx = self.conv(x)
|
258 |
+
|
259 |
+
if self.unsqueeze:
|
260 |
+
wx = wx.squeeze(1)
|
261 |
+
|
262 |
+
if not self.skip_transpose:
|
263 |
+
wx = wx.transpose(1, -1)
|
264 |
+
|
265 |
+
return wx
|
266 |
+
|
267 |
+
def _manage_padding(self, x, kernel_size: int, dilation: int, stride: int):
|
268 |
+
"""This function performs zero-padding on the time axis
|
269 |
+
such that their lengths is unchanged after the convolution.
|
270 |
+
|
271 |
+
Arguments
|
272 |
+
---------
|
273 |
+
x : torch.Tensor
|
274 |
+
Input tensor.
|
275 |
+
kernel_size : int
|
276 |
+
Size of kernel.
|
277 |
+
dilation : int
|
278 |
+
Dilation used.
|
279 |
+
stride : int
|
280 |
+
Stride.
|
281 |
+
|
282 |
+
Returns
|
283 |
+
-------
|
284 |
+
x : torch.Tensor
|
285 |
+
The padded outputs.
|
286 |
+
"""
|
287 |
+
|
288 |
+
# Detecting input shape
|
289 |
+
L_in = self.in_channels
|
290 |
+
|
291 |
+
# Time padding
|
292 |
+
padding = get_padding_elem(L_in, stride, kernel_size, dilation)
|
293 |
+
|
294 |
+
# Applying padding
|
295 |
+
x = F.pad(x, padding, mode=self.padding_mode)
|
296 |
+
|
297 |
+
return x
|
298 |
+
|
299 |
+
def _check_input_shape(self, shape):
|
300 |
+
"""Checks the input shape and returns the number of input channels."""
|
301 |
+
|
302 |
+
if len(shape) == 2:
|
303 |
+
self.unsqueeze = True
|
304 |
+
in_channels = 1
|
305 |
+
elif self.skip_transpose:
|
306 |
+
in_channels = shape[1]
|
307 |
+
elif len(shape) == 3:
|
308 |
+
in_channels = shape[2]
|
309 |
+
else:
|
310 |
+
raise ValueError(
|
311 |
+
"conv1d expects 2d, 3d inputs. Got " + str(len(shape))
|
312 |
+
)
|
313 |
+
|
314 |
+
# Kernel size must be odd
|
315 |
+
if not self.padding == "valid" and self.kernel_size % 2 == 0:
|
316 |
+
raise ValueError(
|
317 |
+
"The field kernel size must be an odd number. Got %s."
|
318 |
+
% (self.kernel_size)
|
319 |
+
)
|
320 |
+
|
321 |
+
return in_channels
|
322 |
+
|
323 |
+
def remove_weight_norm(self):
|
324 |
+
"""Removes weight normalization at inference if used during training."""
|
325 |
+
self.conv = nn.utils.remove_weight_norm(self.conv)
|
326 |
+
|
327 |
+
|
328 |
+
class Conv2d(nn.Module):
|
329 |
+
"""This function implements 2d convolution.
|
330 |
+
|
331 |
+
Arguments
|
332 |
+
---------
|
333 |
+
out_channels : int
|
334 |
+
It is the number of output channels.
|
335 |
+
kernel_size : tuple
|
336 |
+
Kernel size of the 2d convolutional filters over time and frequency
|
337 |
+
axis.
|
338 |
+
input_shape : tuple
|
339 |
+
The shape of the input. Alternatively use ``in_channels``.
|
340 |
+
in_channels : int
|
341 |
+
The number of input channels. Alternatively use ``input_shape``.
|
342 |
+
stride: int
|
343 |
+
Stride factor of the 2d convolutional filters over time and frequency
|
344 |
+
axis.
|
345 |
+
dilation : int
|
346 |
+
Dilation factor of the 2d convolutional filters over time and
|
347 |
+
frequency axis.
|
348 |
+
padding : str
|
349 |
+
(same, valid, causal).
|
350 |
+
If "valid", no padding is performed.
|
351 |
+
If "same" and stride is 1, output shape is same as input shape.
|
352 |
+
If "causal" then proper padding is inserted to simulate causal convolution on the first spatial dimension.
|
353 |
+
(spatial dim 1 is dim 3 for both skip_transpose=False and skip_transpose=True)
|
354 |
+
groups : int
|
355 |
+
This option specifies the convolutional groups. See torch.nn
|
356 |
+
documentation for more information.
|
357 |
+
bias : bool
|
358 |
+
If True, the additive bias b is adopted.
|
359 |
+
padding_mode : str
|
360 |
+
This flag specifies the type of padding. See torch.nn documentation
|
361 |
+
for more information.
|
362 |
+
max_norm : float
|
363 |
+
kernel max-norm.
|
364 |
+
swap : bool
|
365 |
+
If True, the convolution is done with the format (B, C, W, H).
|
366 |
+
If False, the convolution is dine with (B, H, W, C).
|
367 |
+
Active only if skip_transpose is False.
|
368 |
+
skip_transpose : bool
|
369 |
+
If False, uses batch x spatial.dim2 x spatial.dim1 x channel convention of speechbrain.
|
370 |
+
If True, uses batch x channel x spatial.dim1 x spatial.dim2 convention.
|
371 |
+
weight_norm : bool
|
372 |
+
If True, use weight normalization,
|
373 |
+
to be removed with self.remove_weight_norm() at inference
|
374 |
+
conv_init : str
|
375 |
+
Weight initialization for the convolution network
|
376 |
+
|
377 |
+
Example
|
378 |
+
-------
|
379 |
+
>>> inp_tensor = torch.rand([10, 40, 16, 8])
|
380 |
+
>>> cnn_2d = Conv2d(
|
381 |
+
... input_shape=inp_tensor.shape, out_channels=5, kernel_size=(7, 3)
|
382 |
+
... )
|
383 |
+
>>> out_tensor = cnn_2d(inp_tensor)
|
384 |
+
>>> out_tensor.shape
|
385 |
+
torch.Size([10, 40, 16, 5])
|
386 |
+
"""
|
387 |
+
|
388 |
+
def __init__(
|
389 |
+
self,
|
390 |
+
out_channels,
|
391 |
+
kernel_size,
|
392 |
+
input_shape=None,
|
393 |
+
in_channels=None,
|
394 |
+
stride=(1, 1),
|
395 |
+
dilation=(1, 1),
|
396 |
+
padding="same",
|
397 |
+
groups=1,
|
398 |
+
bias=True,
|
399 |
+
padding_mode="reflect",
|
400 |
+
max_norm=None,
|
401 |
+
swap=False,
|
402 |
+
skip_transpose=False,
|
403 |
+
weight_norm=False,
|
404 |
+
conv_init=None,
|
405 |
+
):
|
406 |
+
super().__init__()
|
407 |
+
|
408 |
+
# handle the case if some parameter is int
|
409 |
+
if isinstance(kernel_size, int):
|
410 |
+
kernel_size = (kernel_size, kernel_size)
|
411 |
+
if isinstance(stride, int):
|
412 |
+
stride = (stride, stride)
|
413 |
+
if isinstance(dilation, int):
|
414 |
+
dilation = (dilation, dilation)
|
415 |
+
|
416 |
+
self.kernel_size = kernel_size
|
417 |
+
self.stride = stride
|
418 |
+
self.dilation = dilation
|
419 |
+
self.padding = padding
|
420 |
+
self.padding_mode = padding_mode
|
421 |
+
self.unsqueeze = False
|
422 |
+
self.max_norm = max_norm
|
423 |
+
self.swap = swap
|
424 |
+
self.skip_transpose = skip_transpose
|
425 |
+
|
426 |
+
if input_shape is None and in_channels is None:
|
427 |
+
raise ValueError("Must provide one of input_shape or in_channels")
|
428 |
+
|
429 |
+
if in_channels is None:
|
430 |
+
in_channels = self._check_input(input_shape)
|
431 |
+
|
432 |
+
self.in_channels = in_channels
|
433 |
+
|
434 |
+
# Weights are initialized following pytorch approach
|
435 |
+
self.conv = nn.Conv2d(
|
436 |
+
self.in_channels,
|
437 |
+
out_channels,
|
438 |
+
self.kernel_size,
|
439 |
+
stride=self.stride,
|
440 |
+
padding=0,
|
441 |
+
dilation=self.dilation,
|
442 |
+
groups=groups,
|
443 |
+
bias=bias,
|
444 |
+
)
|
445 |
+
|
446 |
+
if conv_init == "kaiming":
|
447 |
+
nn.init.kaiming_normal_(self.conv.weight)
|
448 |
+
elif conv_init == "zero":
|
449 |
+
nn.init.zeros_(self.conv.weight)
|
450 |
+
|
451 |
+
if weight_norm:
|
452 |
+
self.conv = nn.utils.weight_norm(self.conv)
|
453 |
+
|
454 |
+
def forward(self, x):
|
455 |
+
"""Returns the output of the convolution.
|
456 |
+
|
457 |
+
Arguments
|
458 |
+
---------
|
459 |
+
x : torch.Tensor (batch, time, channel)
|
460 |
+
input to convolve. 2d or 4d tensors are expected.
|
461 |
+
|
462 |
+
Returns
|
463 |
+
-------
|
464 |
+
x : torch.Tensor
|
465 |
+
The output of the convolution.
|
466 |
+
"""
|
467 |
+
if not self.skip_transpose:
|
468 |
+
x = x.transpose(1, -1)
|
469 |
+
if self.swap:
|
470 |
+
x = x.transpose(-1, -2)
|
471 |
+
|
472 |
+
if self.unsqueeze:
|
473 |
+
x = x.unsqueeze(1)
|
474 |
+
|
475 |
+
if self.padding == "same":
|
476 |
+
x = self._manage_padding(
|
477 |
+
x, self.kernel_size, self.dilation, self.stride
|
478 |
+
)
|
479 |
+
|
480 |
+
elif self.padding == "causal":
|
481 |
+
num_pad = (self.kernel_size[0] - 1) * self.dilation[1]
|
482 |
+
x = F.pad(x, (0, 0, num_pad, 0))
|
483 |
+
|
484 |
+
elif self.padding == "valid":
|
485 |
+
pass
|
486 |
+
|
487 |
+
else:
|
488 |
+
raise ValueError(
|
489 |
+
"Padding must be 'same','valid' or 'causal'. Got "
|
490 |
+
+ self.padding
|
491 |
+
)
|
492 |
+
|
493 |
+
if self.max_norm is not None:
|
494 |
+
self.conv.weight.data = torch.renorm(
|
495 |
+
self.conv.weight.data, p=2, dim=0, maxnorm=self.max_norm
|
496 |
+
)
|
497 |
+
|
498 |
+
wx = self.conv(x)
|
499 |
+
|
500 |
+
if self.unsqueeze:
|
501 |
+
wx = wx.squeeze(1)
|
502 |
+
|
503 |
+
if not self.skip_transpose:
|
504 |
+
wx = wx.transpose(1, -1)
|
505 |
+
if self.swap:
|
506 |
+
wx = wx.transpose(1, 2)
|
507 |
+
return wx
|
508 |
+
|
509 |
+
def _manage_padding(
|
510 |
+
self,
|
511 |
+
x,
|
512 |
+
kernel_size: Tuple[int, int],
|
513 |
+
dilation: Tuple[int, int],
|
514 |
+
stride: Tuple[int, int],
|
515 |
+
):
|
516 |
+
"""This function performs zero-padding on the time and frequency axes
|
517 |
+
such that their lengths is unchanged after the convolution.
|
518 |
+
|
519 |
+
Arguments
|
520 |
+
---------
|
521 |
+
x : torch.Tensor
|
522 |
+
Input to be padded
|
523 |
+
kernel_size : int
|
524 |
+
Size of the kernel for computing padding
|
525 |
+
dilation : int
|
526 |
+
Dilation rate for computing padding
|
527 |
+
stride: int
|
528 |
+
Stride for computing padding
|
529 |
+
|
530 |
+
Returns
|
531 |
+
-------
|
532 |
+
x : torch.Tensor
|
533 |
+
The padded outputs.
|
534 |
+
"""
|
535 |
+
# Detecting input shape
|
536 |
+
L_in = self.in_channels
|
537 |
+
|
538 |
+
# Time padding
|
539 |
+
padding_time = get_padding_elem(
|
540 |
+
L_in, stride[-1], kernel_size[-1], dilation[-1]
|
541 |
+
)
|
542 |
+
|
543 |
+
padding_freq = get_padding_elem(
|
544 |
+
L_in, stride[-2], kernel_size[-2], dilation[-2]
|
545 |
+
)
|
546 |
+
padding = padding_time + padding_freq
|
547 |
+
|
548 |
+
# Applying padding
|
549 |
+
x = nn.functional.pad(x, padding, mode=self.padding_mode)
|
550 |
+
|
551 |
+
return x
|
552 |
+
|
553 |
+
def _check_input(self, shape):
|
554 |
+
"""Checks the input shape and returns the number of input channels."""
|
555 |
+
|
556 |
+
if len(shape) == 3:
|
557 |
+
self.unsqueeze = True
|
558 |
+
in_channels = 1
|
559 |
+
|
560 |
+
elif len(shape) == 4:
|
561 |
+
in_channels = shape[3]
|
562 |
+
|
563 |
+
else:
|
564 |
+
raise ValueError("Expected 3d or 4d inputs. Got " + len(shape))
|
565 |
+
|
566 |
+
# Kernel size must be odd
|
567 |
+
if not self.padding == "valid" and (
|
568 |
+
self.kernel_size[0] % 2 == 0 or self.kernel_size[1] % 2 == 0
|
569 |
+
):
|
570 |
+
raise ValueError(
|
571 |
+
"The field kernel size must be an odd number. Got %s."
|
572 |
+
% (self.kernel_size)
|
573 |
+
)
|
574 |
+
|
575 |
+
return in_channels
|
576 |
+
|
577 |
+
def remove_weight_norm(self):
|
578 |
+
"""Removes weight normalization at inference if used during training."""
|
579 |
+
self.conv = nn.utils.remove_weight_norm(self.conv)
|
580 |
+
|
581 |
+
|
582 |
+
class ConvTranspose1d(nn.Module):
|
583 |
+
"""This class implements 1d transposed convolution with speechbrain.
|
584 |
+
Transpose convolution is normally used to perform upsampling.
|
585 |
+
|
586 |
+
Arguments
|
587 |
+
---------
|
588 |
+
out_channels : int
|
589 |
+
It is the number of output channels.
|
590 |
+
kernel_size : int
|
591 |
+
Kernel size of the convolutional filters.
|
592 |
+
input_shape : tuple
|
593 |
+
The shape of the input. Alternatively use ``in_channels``.
|
594 |
+
in_channels : int
|
595 |
+
The number of input channels. Alternatively use ``input_shape``.
|
596 |
+
stride : int
|
597 |
+
Stride factor of the convolutional filters. When the stride factor > 1,
|
598 |
+
upsampling in time is performed.
|
599 |
+
dilation : int
|
600 |
+
Dilation factor of the convolutional filters.
|
601 |
+
padding : str or int
|
602 |
+
To have in output the target dimension, we suggest tuning the kernel
|
603 |
+
size and the padding properly. We also support the following function
|
604 |
+
to have some control over the padding and the corresponding output
|
605 |
+
dimensionality.
|
606 |
+
if "valid", no padding is applied
|
607 |
+
if "same", padding amount is inferred so that the output size is closest
|
608 |
+
to possible to input size. Note that for some kernel_size / stride combinations
|
609 |
+
it is not possible to obtain the exact same size, but we return the closest
|
610 |
+
possible size.
|
611 |
+
if "factor", padding amount is inferred so that the output size is closest
|
612 |
+
to inputsize*stride. Note that for some kernel_size / stride combinations
|
613 |
+
it is not possible to obtain the exact size, but we return the closest
|
614 |
+
possible size.
|
615 |
+
if an integer value is entered, a custom padding is used.
|
616 |
+
output_padding : int,
|
617 |
+
Additional size added to one side of the output shape
|
618 |
+
groups: int
|
619 |
+
Number of blocked connections from input channels to output channels.
|
620 |
+
Default: 1
|
621 |
+
bias: bool
|
622 |
+
If True, adds a learnable bias to the output
|
623 |
+
skip_transpose : bool
|
624 |
+
If False, uses batch x time x channel convention of speechbrain.
|
625 |
+
If True, uses batch x channel x time convention.
|
626 |
+
weight_norm : bool
|
627 |
+
If True, use weight normalization,
|
628 |
+
to be removed with self.remove_weight_norm() at inference
|
629 |
+
|
630 |
+
Example
|
631 |
+
-------
|
632 |
+
>>> from speechbrain.nnet.CNN import Conv1d, ConvTranspose1d
|
633 |
+
>>> inp_tensor = torch.rand([10, 12, 40]) #[batch, time, fea]
|
634 |
+
>>> convtranspose_1d = ConvTranspose1d(
|
635 |
+
... input_shape=inp_tensor.shape, out_channels=8, kernel_size=3, stride=2
|
636 |
+
... )
|
637 |
+
>>> out_tensor = convtranspose_1d(inp_tensor)
|
638 |
+
>>> out_tensor.shape
|
639 |
+
torch.Size([10, 25, 8])
|
640 |
+
|
641 |
+
>>> # Combination of Conv1d and ConvTranspose1d
|
642 |
+
>>> from speechbrain.nnet.CNN import Conv1d, ConvTranspose1d
|
643 |
+
>>> signal = torch.tensor([1,100])
|
644 |
+
>>> signal = torch.rand([1,100]) #[batch, time]
|
645 |
+
>>> conv1d = Conv1d(input_shape=signal.shape, out_channels=1, kernel_size=3, stride=2)
|
646 |
+
>>> conv_out = conv1d(signal)
|
647 |
+
>>> conv_t = ConvTranspose1d(input_shape=conv_out.shape, out_channels=1, kernel_size=3, stride=2, padding=1)
|
648 |
+
>>> signal_rec = conv_t(conv_out, output_size=[100])
|
649 |
+
>>> signal_rec.shape
|
650 |
+
torch.Size([1, 100])
|
651 |
+
|
652 |
+
>>> signal = torch.rand([1,115]) #[batch, time]
|
653 |
+
>>> conv_t = ConvTranspose1d(input_shape=signal.shape, out_channels=1, kernel_size=3, stride=2, padding='same')
|
654 |
+
>>> signal_rec = conv_t(signal)
|
655 |
+
>>> signal_rec.shape
|
656 |
+
torch.Size([1, 115])
|
657 |
+
|
658 |
+
>>> signal = torch.rand([1,115]) #[batch, time]
|
659 |
+
>>> conv_t = ConvTranspose1d(input_shape=signal.shape, out_channels=1, kernel_size=7, stride=2, padding='valid')
|
660 |
+
>>> signal_rec = conv_t(signal)
|
661 |
+
>>> signal_rec.shape
|
662 |
+
torch.Size([1, 235])
|
663 |
+
|
664 |
+
>>> signal = torch.rand([1,115]) #[batch, time]
|
665 |
+
>>> conv_t = ConvTranspose1d(input_shape=signal.shape, out_channels=1, kernel_size=7, stride=2, padding='factor')
|
666 |
+
>>> signal_rec = conv_t(signal)
|
667 |
+
>>> signal_rec.shape
|
668 |
+
torch.Size([1, 231])
|
669 |
+
|
670 |
+
>>> signal = torch.rand([1,115]) #[batch, time]
|
671 |
+
>>> conv_t = ConvTranspose1d(input_shape=signal.shape, out_channels=1, kernel_size=3, stride=2, padding=10)
|
672 |
+
>>> signal_rec = conv_t(signal)
|
673 |
+
>>> signal_rec.shape
|
674 |
+
torch.Size([1, 211])
|
675 |
+
|
676 |
+
"""
|
677 |
+
|
678 |
+
def __init__(
|
679 |
+
self,
|
680 |
+
out_channels,
|
681 |
+
kernel_size,
|
682 |
+
input_shape=None,
|
683 |
+
in_channels=None,
|
684 |
+
stride=1,
|
685 |
+
dilation=1,
|
686 |
+
padding=0,
|
687 |
+
output_padding=0,
|
688 |
+
groups=1,
|
689 |
+
bias=True,
|
690 |
+
skip_transpose=False,
|
691 |
+
weight_norm=False,
|
692 |
+
):
|
693 |
+
super().__init__()
|
694 |
+
self.kernel_size = kernel_size
|
695 |
+
self.stride = stride
|
696 |
+
self.dilation = dilation
|
697 |
+
self.padding = padding
|
698 |
+
self.unsqueeze = False
|
699 |
+
self.skip_transpose = skip_transpose
|
700 |
+
|
701 |
+
if input_shape is None and in_channels is None:
|
702 |
+
raise ValueError("Must provide one of input_shape or in_channels")
|
703 |
+
|
704 |
+
if in_channels is None:
|
705 |
+
in_channels = self._check_input_shape(input_shape)
|
706 |
+
|
707 |
+
if self.padding == "same":
|
708 |
+
L_in = input_shape[-1] if skip_transpose else input_shape[1]
|
709 |
+
padding_value = get_padding_elem_transposed(
|
710 |
+
L_in,
|
711 |
+
L_in,
|
712 |
+
stride=stride,
|
713 |
+
kernel_size=kernel_size,
|
714 |
+
dilation=dilation,
|
715 |
+
output_padding=output_padding,
|
716 |
+
)
|
717 |
+
elif self.padding == "factor":
|
718 |
+
L_in = input_shape[-1] if skip_transpose else input_shape[1]
|
719 |
+
padding_value = get_padding_elem_transposed(
|
720 |
+
L_in * stride,
|
721 |
+
L_in,
|
722 |
+
stride=stride,
|
723 |
+
kernel_size=kernel_size,
|
724 |
+
dilation=dilation,
|
725 |
+
output_padding=output_padding,
|
726 |
+
)
|
727 |
+
elif self.padding == "valid":
|
728 |
+
padding_value = 0
|
729 |
+
elif type(self.padding) is int:
|
730 |
+
padding_value = padding
|
731 |
+
else:
|
732 |
+
raise ValueError("Not supported padding type")
|
733 |
+
|
734 |
+
self.conv = nn.ConvTranspose1d(
|
735 |
+
in_channels,
|
736 |
+
out_channels,
|
737 |
+
self.kernel_size,
|
738 |
+
stride=self.stride,
|
739 |
+
dilation=self.dilation,
|
740 |
+
padding=padding_value,
|
741 |
+
groups=groups,
|
742 |
+
bias=bias,
|
743 |
+
)
|
744 |
+
|
745 |
+
if weight_norm:
|
746 |
+
self.conv = nn.utils.weight_norm(self.conv)
|
747 |
+
|
748 |
+
def forward(self, x, output_size=None):
|
749 |
+
"""Returns the output of the convolution.
|
750 |
+
|
751 |
+
Arguments
|
752 |
+
---------
|
753 |
+
x : torch.Tensor (batch, time, channel)
|
754 |
+
input to convolve. 2d or 4d tensors are expected.
|
755 |
+
output_size : int
|
756 |
+
The size of the output
|
757 |
+
|
758 |
+
Returns
|
759 |
+
-------
|
760 |
+
x : torch.Tensor
|
761 |
+
The convolved output
|
762 |
+
"""
|
763 |
+
|
764 |
+
if not self.skip_transpose:
|
765 |
+
x = x.transpose(1, -1)
|
766 |
+
|
767 |
+
if self.unsqueeze:
|
768 |
+
x = x.unsqueeze(1)
|
769 |
+
|
770 |
+
wx = self.conv(x, output_size=output_size)
|
771 |
+
|
772 |
+
if self.unsqueeze:
|
773 |
+
wx = wx.squeeze(1)
|
774 |
+
|
775 |
+
if not self.skip_transpose:
|
776 |
+
wx = wx.transpose(1, -1)
|
777 |
+
|
778 |
+
return wx
|
779 |
+
|
780 |
+
def _check_input_shape(self, shape):
|
781 |
+
"""Checks the input shape and returns the number of input channels."""
|
782 |
+
|
783 |
+
if len(shape) == 2:
|
784 |
+
self.unsqueeze = True
|
785 |
+
in_channels = 1
|
786 |
+
elif self.skip_transpose:
|
787 |
+
in_channels = shape[1]
|
788 |
+
elif len(shape) == 3:
|
789 |
+
in_channels = shape[2]
|
790 |
+
else:
|
791 |
+
raise ValueError(
|
792 |
+
"conv1d expects 2d, 3d inputs. Got " + str(len(shape))
|
793 |
+
)
|
794 |
+
|
795 |
+
return in_channels
|
796 |
+
|
797 |
+
def remove_weight_norm(self):
|
798 |
+
"""Removes weight normalization at inference if used during training."""
|
799 |
+
self.conv = nn.utils.remove_weight_norm(self.conv)
|
800 |
+
|
801 |
+
|
802 |
+
class ResBlock1(torch.nn.Module):
|
803 |
+
"""
|
804 |
+
Residual Block Type 1, which has 3 convolutional layers in each convolution block.
|
805 |
+
|
806 |
+
Arguments
|
807 |
+
---------
|
808 |
+
channels : int
|
809 |
+
number of hidden channels for the convolutional layers.
|
810 |
+
kernel_size : int
|
811 |
+
size of the convolution filter in each layer.
|
812 |
+
dilation : list
|
813 |
+
list of dilation value for each conv layer in a block.
|
814 |
+
"""
|
815 |
+
|
816 |
+
def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5)):
|
817 |
+
super().__init__()
|
818 |
+
self.convs1 = nn.ModuleList(
|
819 |
+
[
|
820 |
+
Conv1d(
|
821 |
+
in_channels=channels,
|
822 |
+
out_channels=channels,
|
823 |
+
kernel_size=kernel_size,
|
824 |
+
stride=1,
|
825 |
+
dilation=dilation[0],
|
826 |
+
padding="same",
|
827 |
+
skip_transpose=True,
|
828 |
+
weight_norm=True,
|
829 |
+
),
|
830 |
+
Conv1d(
|
831 |
+
in_channels=channels,
|
832 |
+
out_channels=channels,
|
833 |
+
kernel_size=kernel_size,
|
834 |
+
stride=1,
|
835 |
+
dilation=dilation[1],
|
836 |
+
padding="same",
|
837 |
+
skip_transpose=True,
|
838 |
+
weight_norm=True,
|
839 |
+
),
|
840 |
+
Conv1d(
|
841 |
+
in_channels=channels,
|
842 |
+
out_channels=channels,
|
843 |
+
kernel_size=kernel_size,
|
844 |
+
stride=1,
|
845 |
+
dilation=dilation[2],
|
846 |
+
padding="same",
|
847 |
+
skip_transpose=True,
|
848 |
+
weight_norm=True,
|
849 |
+
),
|
850 |
+
]
|
851 |
+
)
|
852 |
+
|
853 |
+
self.convs2 = nn.ModuleList(
|
854 |
+
[
|
855 |
+
Conv1d(
|
856 |
+
in_channels=channels,
|
857 |
+
out_channels=channels,
|
858 |
+
kernel_size=kernel_size,
|
859 |
+
stride=1,
|
860 |
+
dilation=1,
|
861 |
+
padding="same",
|
862 |
+
skip_transpose=True,
|
863 |
+
weight_norm=True,
|
864 |
+
),
|
865 |
+
Conv1d(
|
866 |
+
in_channels=channels,
|
867 |
+
out_channels=channels,
|
868 |
+
kernel_size=kernel_size,
|
869 |
+
stride=1,
|
870 |
+
dilation=1,
|
871 |
+
padding="same",
|
872 |
+
skip_transpose=True,
|
873 |
+
weight_norm=True,
|
874 |
+
),
|
875 |
+
Conv1d(
|
876 |
+
in_channels=channels,
|
877 |
+
out_channels=channels,
|
878 |
+
kernel_size=kernel_size,
|
879 |
+
stride=1,
|
880 |
+
dilation=1,
|
881 |
+
padding="same",
|
882 |
+
skip_transpose=True,
|
883 |
+
weight_norm=True,
|
884 |
+
),
|
885 |
+
]
|
886 |
+
)
|
887 |
+
|
888 |
+
def forward(self, x):
|
889 |
+
"""Returns the output of ResBlock1
|
890 |
+
|
891 |
+
Arguments
|
892 |
+
---------
|
893 |
+
x : torch.Tensor (batch, channel, time)
|
894 |
+
input tensor.
|
895 |
+
|
896 |
+
Returns
|
897 |
+
-------
|
898 |
+
The ResBlock outputs
|
899 |
+
"""
|
900 |
+
|
901 |
+
for c1, c2 in zip(self.convs1, self.convs2):
|
902 |
+
xt = F.leaky_relu(x, LRELU_SLOPE)
|
903 |
+
xt = c1(xt)
|
904 |
+
xt = F.leaky_relu(xt, LRELU_SLOPE)
|
905 |
+
xt = c2(xt)
|
906 |
+
x = xt + x
|
907 |
+
return x
|
908 |
+
|
909 |
+
def remove_weight_norm(self):
|
910 |
+
"""This functions removes weight normalization during inference."""
|
911 |
+
for layer in self.convs1:
|
912 |
+
layer.remove_weight_norm()
|
913 |
+
for layer in self.convs2:
|
914 |
+
layer.remove_weight_norm()
|
915 |
+
|
916 |
+
|
917 |
+
class ResBlock2(torch.nn.Module):
|
918 |
+
"""
|
919 |
+
Residual Block Type 2, which has 2 convolutional layers in each convolution block.
|
920 |
+
|
921 |
+
Arguments
|
922 |
+
---------
|
923 |
+
channels : int
|
924 |
+
number of hidden channels for the convolutional layers.
|
925 |
+
kernel_size : int
|
926 |
+
size of the convolution filter in each layer.
|
927 |
+
dilation : list
|
928 |
+
list of dilation value for each conv layer in a block.
|
929 |
+
"""
|
930 |
+
|
931 |
+
def __init__(self, channels, kernel_size=3, dilation=(1, 3)):
|
932 |
+
super().__init__()
|
933 |
+
self.convs = nn.ModuleList(
|
934 |
+
[
|
935 |
+
Conv1d(
|
936 |
+
in_channels=channels,
|
937 |
+
out_channels=channels,
|
938 |
+
kernel_size=kernel_size,
|
939 |
+
stride=1,
|
940 |
+
dilation=dilation[0],
|
941 |
+
padding="same",
|
942 |
+
skip_transpose=True,
|
943 |
+
weight_norm=True,
|
944 |
+
),
|
945 |
+
Conv1d(
|
946 |
+
in_channels=channels,
|
947 |
+
out_channels=channels,
|
948 |
+
kernel_size=kernel_size,
|
949 |
+
stride=1,
|
950 |
+
dilation=dilation[1],
|
951 |
+
padding="same",
|
952 |
+
skip_transpose=True,
|
953 |
+
weight_norm=True,
|
954 |
+
),
|
955 |
+
]
|
956 |
+
)
|
957 |
+
|
958 |
+
def forward(self, x):
|
959 |
+
"""Returns the output of ResBlock1
|
960 |
+
|
961 |
+
Arguments
|
962 |
+
---------
|
963 |
+
x : torch.Tensor (batch, channel, time)
|
964 |
+
input tensor.
|
965 |
+
|
966 |
+
Returns
|
967 |
+
-------
|
968 |
+
The ResBlock outputs
|
969 |
+
"""
|
970 |
+
|
971 |
+
for c in self.convs:
|
972 |
+
xt = F.leaky_relu(x, LRELU_SLOPE)
|
973 |
+
xt = c(xt)
|
974 |
+
x = xt + x
|
975 |
+
return x
|
976 |
+
|
977 |
+
def remove_weight_norm(self):
|
978 |
+
"""This functions removes weight normalization during inference."""
|
979 |
+
for layer in self.convs:
|
980 |
+
layer.remove_weight_norm()
|
981 |
+
|
982 |
+
|
983 |
+
class HiFiGANArabicGenerator(torch.nn.Module):
|
984 |
+
"""HiFiGAN Generator with Multi-Receptive Field Fusion (MRF)
|
985 |
+
|
986 |
+
Arguments
|
987 |
+
---------
|
988 |
+
in_channels : int
|
989 |
+
number of input tensor channels.
|
990 |
+
out_channels : int
|
991 |
+
number of output tensor channels.
|
992 |
+
resblock_type : str
|
993 |
+
type of the `ResBlock`. '1' or '2'.
|
994 |
+
resblock_dilation_sizes : List[List[int]]
|
995 |
+
list of dilation values in each layer of a `ResBlock`.
|
996 |
+
resblock_kernel_sizes : List[int]
|
997 |
+
list of kernel sizes for each `ResBlock`.
|
998 |
+
upsample_kernel_sizes : List[int]
|
999 |
+
list of kernel sizes for each transposed convolution.
|
1000 |
+
upsample_initial_channel : int
|
1001 |
+
number of channels for the first upsampling layer. This is divided by 2
|
1002 |
+
for each consecutive upsampling layer.
|
1003 |
+
upsample_factors : List[int]
|
1004 |
+
upsampling factors (stride) for each upsampling layer.
|
1005 |
+
inference_padding : int
|
1006 |
+
constant padding applied to the input at inference time. Defaults to 5.
|
1007 |
+
cond_channels : int
|
1008 |
+
If provided, adds a conv layer to the beginning of the forward.
|
1009 |
+
conv_post_bias : bool
|
1010 |
+
Whether to add a bias term to the final conv.
|
1011 |
+
|
1012 |
+
Example
|
1013 |
+
-------
|
1014 |
+
>>> inp_tensor = torch.rand([4, 80, 33])
|
1015 |
+
>>> hifigan_generator= HifiganGenerator(
|
1016 |
+
... in_channels = 80,
|
1017 |
+
... out_channels = 1,
|
1018 |
+
... resblock_type = "1",
|
1019 |
+
... resblock_dilation_sizes = [[1, 3, 5], [1, 3, 5], [1, 3, 5]],
|
1020 |
+
... resblock_kernel_sizes = [3, 7, 11],
|
1021 |
+
... upsample_kernel_sizes = [16, 16, 4, 4],
|
1022 |
+
... upsample_initial_channel = 512,
|
1023 |
+
... upsample_factors = [8, 8, 2, 2],
|
1024 |
+
... )
|
1025 |
+
>>> out_tensor = hifigan_generator(inp_tensor)
|
1026 |
+
>>> out_tensor.shape
|
1027 |
+
torch.Size([4, 1, 8448])
|
1028 |
+
"""
|
1029 |
+
|
1030 |
+
def __init__(
|
1031 |
+
self,
|
1032 |
+
in_channels,
|
1033 |
+
out_channels,
|
1034 |
+
resblock_type,
|
1035 |
+
resblock_dilation_sizes,
|
1036 |
+
resblock_kernel_sizes,
|
1037 |
+
upsample_kernel_sizes,
|
1038 |
+
upsample_initial_channel,
|
1039 |
+
upsample_factors,
|
1040 |
+
inference_padding=5,
|
1041 |
+
cond_channels=0,
|
1042 |
+
conv_post_bias=True,
|
1043 |
+
):
|
1044 |
+
super().__init__()
|
1045 |
+
self.inference_padding = inference_padding
|
1046 |
+
self.num_kernels = len(resblock_kernel_sizes)
|
1047 |
+
self.num_upsamples = len(upsample_factors)
|
1048 |
+
# initial upsampling layers
|
1049 |
+
self.conv_pre = Conv1d(
|
1050 |
+
in_channels=in_channels,
|
1051 |
+
out_channels=upsample_initial_channel,
|
1052 |
+
kernel_size=7,
|
1053 |
+
stride=1,
|
1054 |
+
padding="same",
|
1055 |
+
skip_transpose=True,
|
1056 |
+
weight_norm=True,
|
1057 |
+
)
|
1058 |
+
resblock = ResBlock1 if resblock_type == "1" else ResBlock2
|
1059 |
+
# upsampling layers
|
1060 |
+
self.ups = nn.ModuleList()
|
1061 |
+
for i, (u, k) in enumerate(
|
1062 |
+
zip(upsample_factors, upsample_kernel_sizes)
|
1063 |
+
):
|
1064 |
+
self.ups.append(
|
1065 |
+
ConvTranspose1d(
|
1066 |
+
in_channels=upsample_initial_channel // (2**i),
|
1067 |
+
out_channels=upsample_initial_channel // (2 ** (i + 1)),
|
1068 |
+
kernel_size=k,
|
1069 |
+
stride=u,
|
1070 |
+
padding=(k - u) // 2,
|
1071 |
+
skip_transpose=True,
|
1072 |
+
weight_norm=True,
|
1073 |
+
)
|
1074 |
+
)
|
1075 |
+
# MRF blocks
|
1076 |
+
self.resblocks = nn.ModuleList()
|
1077 |
+
for i in range(len(self.ups)):
|
1078 |
+
ch = upsample_initial_channel // (2 ** (i + 1))
|
1079 |
+
for _, (k, d) in enumerate(
|
1080 |
+
zip(resblock_kernel_sizes, resblock_dilation_sizes)
|
1081 |
+
):
|
1082 |
+
self.resblocks.append(resblock(ch, k, d))
|
1083 |
+
# post convolution layer
|
1084 |
+
self.conv_post = Conv1d(
|
1085 |
+
in_channels=ch,
|
1086 |
+
out_channels=1,
|
1087 |
+
kernel_size=7,
|
1088 |
+
stride=1,
|
1089 |
+
padding="same",
|
1090 |
+
skip_transpose=True,
|
1091 |
+
bias=conv_post_bias,
|
1092 |
+
weight_norm=True,
|
1093 |
+
)
|
1094 |
+
if cond_channels > 0:
|
1095 |
+
self.cond_layer = Conv1d(
|
1096 |
+
in_channels=cond_channels,
|
1097 |
+
out_channels=upsample_initial_channel,
|
1098 |
+
kernel_size=1,
|
1099 |
+
)
|
1100 |
+
|
1101 |
+
def forward(self, x, g=None):
|
1102 |
+
"""
|
1103 |
+
Arguments
|
1104 |
+
---------
|
1105 |
+
x : torch.Tensor (batch, channel, time)
|
1106 |
+
feature input tensor.
|
1107 |
+
g : torch.Tensor (batch, 1, time)
|
1108 |
+
global conditioning input tensor.
|
1109 |
+
|
1110 |
+
Returns
|
1111 |
+
-------
|
1112 |
+
The generator outputs
|
1113 |
+
"""
|
1114 |
+
|
1115 |
+
o = self.conv_pre(x)
|
1116 |
+
if hasattr(self, "cond_layer"):
|
1117 |
+
o = o + self.cond_layer(g)
|
1118 |
+
for i in range(self.num_upsamples):
|
1119 |
+
o = F.leaky_relu(o, LRELU_SLOPE)
|
1120 |
+
o = self.ups[i](o)
|
1121 |
+
z_sum = None
|
1122 |
+
for j in range(self.num_kernels):
|
1123 |
+
if z_sum is None:
|
1124 |
+
z_sum = self.resblocks[i * self.num_kernels + j](o)
|
1125 |
+
else:
|
1126 |
+
z_sum += self.resblocks[i * self.num_kernels + j](o)
|
1127 |
+
o = z_sum / self.num_kernels
|
1128 |
+
o = F.leaky_relu(o)
|
1129 |
+
o = self.conv_post(o)
|
1130 |
+
o = torch.tanh(o)
|
1131 |
+
return o
|
1132 |
+
|
1133 |
+
def remove_weight_norm(self):
|
1134 |
+
"""This functions removes weight normalization during inference."""
|
1135 |
+
|
1136 |
+
for layer in self.ups:
|
1137 |
+
layer.remove_weight_norm()
|
1138 |
+
for layer in self.resblocks:
|
1139 |
+
layer.remove_weight_norm()
|
1140 |
+
self.conv_pre.remove_weight_norm()
|
1141 |
+
self.conv_post.remove_weight_norm()
|
1142 |
+
|
1143 |
+
@torch.no_grad()
|
1144 |
+
def inference(self, c, padding=True):
|
1145 |
+
"""The inference function performs a padding and runs the forward method.
|
1146 |
+
|
1147 |
+
Arguments
|
1148 |
+
---------
|
1149 |
+
c : torch.Tensor (batch, channel, time)
|
1150 |
+
feature input tensor.
|
1151 |
+
padding : bool
|
1152 |
+
Whether to pad tensor before forward.
|
1153 |
+
|
1154 |
+
Returns
|
1155 |
+
-------
|
1156 |
+
The generator outputs
|
1157 |
+
"""
|
1158 |
+
if padding:
|
1159 |
+
c = torch.nn.functional.pad(
|
1160 |
+
c, (self.inference_padding, self.inference_padding), "replicate"
|
1161 |
+
)
|
1162 |
+
return self.forward(c)
|
1163 |
+
|
1164 |
+
@classmethod
|
1165 |
+
def from_pretrained(cls, checkpoint_path, config_path=None, device='cpu'):
|
1166 |
+
if config_path is None:
|
1167 |
+
config_path = os.path.join(os.path.dirname(__file__), "config.json")
|
1168 |
+
with open(config_path, "r") as file:
|
1169 |
+
config = json.load(file)
|
1170 |
+
model = cls(**config)
|
1171 |
+
ckpt = torch.load(checkpoint_path, map_location='cpu')
|
1172 |
+
model.load_state_dict(ckpt)
|
1173 |
+
return model.eval().to(device)
|
1174 |
+
|
1175 |
+
|
1176 |
+
|
1177 |
+
if __name__ == '__main__':
|
1178 |
+
gen = HifiganGenerator.from_pretrained("generator.ckpt", "config.json")
|
1179 |
+
x = torch.rand(1, 80, 122)
|
1180 |
+
mel = gen(x)
|