--- license: cc-by-nc-4.0 datasets: - Salesforce/APIGen-MT-5k - Salesforce/xlam-function-calling-60k language: - en pipeline_tag: text-generation tags: - function-calling - LLM Agent - tool-use - llama - qwen - pytorch - LLaMA-factory - mlx - mlx-my-repo library_name: transformers base_model: Salesforce/Llama-xLAM-2-8b-fc-r --- # mxmcc/Llama-xLAM-2-8b-fc-r-mlx-8Bit The Model [mxmcc/Llama-xLAM-2-8b-fc-r-mlx-8Bit](https://huggingface.co/mxmcc/Llama-xLAM-2-8b-fc-r-mlx-8Bit) was converted to MLX format from [Salesforce/Llama-xLAM-2-8b-fc-r](https://huggingface.co/Salesforce/Llama-xLAM-2-8b-fc-r) using mlx-lm version **0.22.3**. ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("mxmcc/Llama-xLAM-2-8b-fc-r-mlx-8Bit") prompt="hello" if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None: messages = [{"role": "user", "content": prompt}] prompt = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) response = generate(model, tokenizer, prompt=prompt, verbose=True) ```