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ABSTRACT

Heliophysics is central to understanding and forecasting space weather events and so-
lar activity. Despite decades of high-resolution observations from the Solar Dynamics
Observatory (SDO), most models remain task-specific and constrained by scarce labeled
data, limiting their capacity to generalize across solar phenomena. We introduce Surya, a
366M parameters foundation model for heliophysics designed to learn general-purpose so-
lar representations from multi-instrument SDO observations, including eight Atmospheric
Imaging Assembly (AIA) channels and five Helioseismic and Magnetic Imager (HMI)
products. Surya employs a spatiotemporal transformer architecture with spectral gat-
ing and long–short range attention, pretrained on high-resolution solar image forecasting
tasks and further optimized through autoregressive rollout tuning. Zero-shot evaluations
demonstrate its ability to forecast solar dynamics and flare events, while downstream fine-
tuning with parameter-efficient Low-Rank Adaptation (LoRA) adaptation shows strong
performance on solar wind forecasting, active region segmentation, solar flare forecast-
ing, and EUV spectra. Surya is the first foundation model in heliophysics that uses time
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advancement as a pretext task on full-resolution SDO’s data. Its novel architecture and
performance suggest that the model is able to learn the underlying physics behind solar
evolution.

1 INTRODUCTION

In 0: 2015-01-13 03:12 In 1: 2015-01-13 04:12 Out 0: 2015-01-13 05:12 Out 1: 2015-01-13 06:12

GT 0: 2015-01-13 05:12 GT 1: 2015-01-13 06:12

Figure 1: An M-class solar flare that occurred on January 13, 2015, as forecasted by Surya. AIA, 94Å.
Top row, left two columns are model inputs (“In”). Top row, right two columns are model outputs (“Out”).
Bottom row shows corresponding ground truth (“GT”).

Heliophysics is the study of the Sun and its impact on the solar system. Its relevance goes significantly
beyond a purely scientific interest in our star. Indeed, one of the most critical aspects of heliophysics is
the study of space weather, which is driven by the Sun’s activity, such as solar flares and coronal mass
ejections (CMEs). These events can have significant effects on modern technology and consequently so-
ciety (Boteler, 2001). Space weather can disrupt satellite communications and GPS signals, interfere with
aviation navigation systems, and degrade the quality of radio transmissions. Strong geomagnetic storms
can induce damaging currents in electrical grids, leading to widespread power outages and costly infrastruc-
ture repairs (Oughton et al., 2017). In space, increased radiation levels pose a severe hazard to astronauts
and spacecraft electronics, potentially shortening mission lifespans or endangering human health. Even on
Earth, high-latitude flights can be exposed to elevated radiation levels, and critical services that depend on
precise timing, such as financial transactions, weather forecasting, and emergency response, can be severely
impacted. These impacts create a broad network of stakeholders, including space agencies, satellite opera-
tors, aviation authorities, power companies, defense organizations, high-precision farming, and emergency
management agencies Worman et al. (2018). Understanding and predicting solar activity is thus essential
for safeguarding critical systems and ensuring resilience to space weather hazards. Beyond its practical im-
portance, heliophysics offers a unique window into fundamental plasma physics in extreme environments
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and deepens our understanding of how solar activity shapes planetary atmospheres, informing studies of
planetary habitability both on Earth and across distant exoplanets (Schrijver et al., 2019).

In recent years, several ML-based methods have been developed to achieve results superior to conventional
methods in solving various problems in the field of solar and heliospheric physics. For example, for feature
detection on the Sun, be it coronal holes (CHs), active regions(ARs), prominences, or magnetic flux elements
(Illarionov & Tlatov, 2018; Mackovjak et al., 2021; Jiang et al., 2020; Jarolim et al., 2021b; Baek et al., 2021;
Armstrong & Fletcher, 2019; Inceoglu et al., 2022), forecasting solar flares (Ahmed et al., 2013; Bobra &
Couvidat, 2015; Nishizuka et al., 2017; 2018a; Abed et al., 2021; Yi et al., 2021), solar wind prediction
(Upendran et al., 2020; Brown et al., 2022; Raju & Das, 2021; Bernoux et al., 2022), 3D reconstruction
of the coronal magnetic fields (Chifu & Gafeira, 2021; Rahman et al., 2023), image to image translation
(Szenicer et al., 2019; Dos Santos et al., 2021; Kim et al., 2019; Jeong et al., 2020; 2022), super-resolution
tasks (Baso & Ramos, 2018; Dou et al., 2022), solar cycle predictions (Okoh et al., 2018; Benson et al.,
2020; Li et al., 2021; Prasad et al., 2022; Bizzarri et al., 2022).

Foundation models (FMs) are large, pretrained machine learning models that learn general-purpose rep-
resentations from vast datasets, and they have revolutionized practical applications, most notably in natural
language processing and computer vision by capturing rich, transferable features that enable rapid adaptation
to diverse downstream tasks with minimal task-specific training. Their potential is now increasingly recog-
nized in scientific disciplines that generate complex, multimodal data, and heliophysics is not an exception
(Roy et al., 2024). Despite decades of extensive solar observations from a fleet of ground-based telescopes
(Harvey et al., 1996; Rimmele et al., 2020) and space-based satellites (Pesnell et al., 2012; Domingo et al.,
1995), current ML applications in heliophysics research often depends on task-specific data (Bobra et al.,
2014; Kosovich et al., 2024) and models trained from scratch (Pandey et al., 2021; Kasapis et al., 2024),
which can be inefficient, prone to overfitting, and limited by the scarcity of labeled data, especially for rare
events Ahmadzadeh et al. (2019), which are often the most interesting ones (for a detailed review Asensio
Ramos et al. (2023)).

A heliophysics FM can address these limitations by learning generalized, physics-aware representations
from the wealth of high-resolution, multi-instrument solar data, enabling robust performance across a broad
spectrum of predictive, diagnostic, and analytical tasks Nita et al. (2020); Camporeale (2020); McGranaghan
(2024). By leveraging pre-training on a large database of solar observations, FMs can mitigate the super-
vision bottleneck, reducing the need for labeled data and improving real-world performance in forecasting
rare or extreme events (Roy et al., 2024; Walsh et al., 2024; Majid et al., 2024). Their versatility and
adaptability allow fine-tuning for diverse downstream applications, including solar feature detection (e.g.,
coronal holes Delouille et al. (2018); Jarolim et al. (2021a), sunspots (Seth et al., 2025), active regions (Ji
et al., 2023; Kasapis et al., 2023)), transient event forecasting (Sinha et al., 2022; Hu et al., 2022; Upen-
dran et al., 2022; Georgoulis et al., 2024; Ahmadzadeh et al., 2021; Nishizuka et al., 2018b, e.g. space
weather), and heliospheric modeling Nguyen et al. (2019); Singh et al. (2023); Sierra-Porta et al. (2024),
with minimal additional supervision. FMs also offer improved generalization, effectively handling data dis-
tribution shifts that hinder traditional models, and their scalability ensures compatibility with increasingly
large and high-resolution datasets for multi-scale modeling of solar dynamics. Furthermore, their capacity
for multi-modal integration can unlock more accurate and comprehensive predictions of solar activity and
heliospheric conditions. Collectively, these capabilities position foundation models as a transformative step
toward next-generation data-driven heliophysics.

In this paper, we introduce Surya (Sanskrit for Sun), our heliophysics foundation model trained on multi-
channel native-resolution observations from Solar Dynamics Observatory (Pesnell et al., 2012, SDO). We
detail the pretext task design, pretraining protocols, and engineering approaches used to efficiently process
and learn from large-scale, multimodal solar data. Our model architecture and training pipeline integrate
modern self-supervised learning paradigms to capture high-fidelity, general-purpose solar representations.
We demonstrate the model’s versatility across a suite of downstream applications, including active region
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emergence prediction, active region segmentation, solar flare forecasting, and solar wind forecasting. The
evaluations confirm that the model produces consistent, transferable representations that maintain competi-
tive or improved performance across diverse tasks, underscoring its potential as a scalable backbone for both
scientific discovery and practical forecasting applications.

2 SURYA FM

2.1 SDO DATA

SDO launched on February 11, 2010, as the first mission of NASA’s Living With a Star Program (LWS). It is
dedicated to advancing our understanding of solar variability and its impacts on Earth and near-Earth space.
By observing the solar atmosphere at high spatial and temporal resolution across multiple wavelengths,
SDO investigates how the Sun’s magnetic field is generated, structured, and released, driving the solar wind,
energetic particles, and irradiance variations. These observations aim to enable a predictive capability for
solar variations that affect life and technological systems on Earth, collectively known as space weather.

For this study, we utilize observations from two primary imaging instruments onboard SDO: the Atmospheric
Imaging Assembly (AIA)(Lemen et al., 2012), which records extreme ultraviolet (EUV) and ultraviolet (UV)
photometric intensities, and the Helioseismic and Magnetic Imager (HMI)(Schou et al., 2012), which pro-
vides spectropolarimetric measurements for deriving vector magnetic fields and line-of-sight velocities. Both
instruments utilize 4096× 4096 pixel CCD detectors, capturing full-disk images with sub-arcsecond spatial
resolution.

We selected SDO data from AIA and HMI because they uniquely provide the highest spatial resolution, full-
disk solar observations with high cadence. SDO offers a nearly continuous and uniform dataset spanning
15 years, covering more than a full solar cycle. The consistent and simultaneous observations of the Sun
by HMI and AIA make SDO a natural choice for building an FM, as its uniquely high spatial and temporal
resolution, sustained coverage, and diverse data products provide a rich basis for addressing multiple data-
driven learning problems in heliophysics and space weather, while enabling a wide spectrum of science use
cases. Furthermore, SDO is an ongoing mission that runs concurrently with the GOES-SUVI operational
satellites (which also makes EUV imaging observations Darnel et al., 2022) and ground-based magnetogram
and Doppler measurements by the GONG network (Harvey et al., 1996). This ensures that the Surya foun-

Figure 2: Illustrations of SDO solar imagery used for training Surya: Solar coronal EUV/UV images from
AIA (8 channels: 94, 131, 171, 193, 211, 304, 335, 1600 Å) and solar surface velocity and magnetic field
maps from HMI (5 channels: hmiV, hmiBx, hmiBy, hmiBz, hmiM)
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dation model will remain applicable to future unseen data, thereby extending its utility beyond historical
records.

2.1.1 DATASET PREPARATION

We construct our dataset by homogenizing multi-channel AIA EUV/UV imagery from the
aia.lev1_euv_12s and aia.lev1_uv_24s series with HMI products from the hmi.M_720s (line-
of-sight), hmi.B_720s (vector), and hmi.V_720s (line-of-sight) series. All data are downloaded from
the Joint Science Operations Center (JSOC1). The temporal cadence is standardized to 12 minutes, matching
the HMI vector magnetic field data series, with AIA observations temporally co-aligned within ±2 minutes
where possible and subject to quality flag checks. Table 1 summarizes the properties of the individual chan-
nels used in this study, including their instrument-specific temporal and spatial resolutions as well as the
dynamic range of the measurements.

The Level 1.0 AIA data are preprocessed by updating spacecraft pointing, aligning the y-axis of the image
with solar north, rescaling to a uniform 0.6 ′′/pixel grid, bringing solar disk center to the image center,
and normalizing for exposure-time variability. Time-dependent instrument degradations are corrected using
calibration factors, with values clamped to the instrument’s dynamic range to avoid saturation artifacts. The
Level 1.5 HMI data, with a pixel scale of 0.5 ′′/pixel, are preprocessed to align with the preprocessed AIA
images at a 0.6 ′′/pixel image scale by reprojecting using bilinear interpolation, which also corrects for the
HMI roll angle. Finally, the solar disk radius in both datasets is fixed to a constant value to remove the
nonphysical variations in the apparent solar disk radius due to the elliptical orbit of the Earth.

The resulting database consists of spatially and temporally aligned, preprocessed, multi-wavelength solar
images that are well-suited for machine learning applications. This harmonized processing pipeline ensures
that variations within the dataset are predominantly physical in origin rather than instrumental or geometric,
thereby enabling robust downstream applications in heliophysics and space weather. Figure 2 presents an
example set of preprocessed images from the eight AIA and five HMI channels used in this study.

Table 1: Key properties of the SDO/AIA and SDO/HMI instruments. Cadence values refer to both
instrument-native and standardized dataset cadence.

Instrument Resolution Cadence (instr./dataset) Dynamic range Channels / Measurements

AIA 1.2′′ (≈725 km) 12 s, 24 s / 12 min 0–16,383 DN 94, 131, 171, 193, 211, 304, 335, 1600 Å
HMI 1.0′′ (≈870 km) 45 s, 12 min / 12 min ±4,500 G (B), ±104 m/s (V) Bx, By , Bz , Blos, Vlos

2.1.2 DATASET STATISTICS

Our database contains ML-ready SDO data captured from May 13, 2010, to December 31, 2024. During
this interval, there are about 2.9% data unavailable (18,261 out of 623,280 total timestamps) for hmi.M_720s
series. The processed level 1.5 AIA and HMI data are stored in netCDF files (float32 format), with one file
per cadence. Each file contains data from five 12-minute timesteps within that hour, with the data shape
of [13, 4096, 4096]. Each netCDF file is using lz4 compression for better training performance (≈30%
improvement) and is about 630 MB. The total size of the data for dataset is around 257 TB.

Data details We define a solar observation as a multi-channel, co-registered raster representing simultane-
ous measurements from AIA and HMI onboard SDO. Each observation is encoded as a three-dimensional
tensor: X ∈ R13×4096×4096

Where:
1http://jsoc.stanford.edu
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• The first dimension indexes the physical measurement channel,

• The second and third dimensions represent the spatial domain, corresponding to the solar disk with
a native resolution of 0.6 ′′/pixel.

Channel Composition Information: The 13 channels are composed as follows:

• 8 AIA Channels: 7 EUV (94 Å, 131 Å, 171 Å, 193 Å, 211 Å, 304 Å, 335 Å) and 1 UV (1600 Å).

• 5 HMI Channels: 1 LOS magnetic field map B_los, 3 vector magnetic field component maps (B_x,
B_y, B_z), and 1 Doppler velocity map V_los.

Each AIA channel provides EUV or UV intensity measurements of the solar atmosphere, capturing coronal
and chromospheric emission at distinct temperature regimes. HMI-derived channels capture photospheric
vector magnetic field observations and line-of-sight plasma motion.

Train/test split For the train–test partition, observations from 2011 to 2019 were segmented by day-of-
year. Days 1–14 and 32–45 of each year were excluded as temporal buffers to mitigate potential information
leakage due to short-term temporal autocorrelation in solar activity. The interval spanning days 15–31 of
each year was reserved exclusively for the test set, while all remaining days from day 46 onward were
assigned to the training set. While data for Solar Cycle 25 is available, we excluded it to enable further
validation for both extended pretext tasks and downstream applications where there is potential for implicit
data leakage.

Normalization SDO data is highly skewed due to the predominance of pixels depicting the quiet sun and
the presence of a small number of pixels depicting extreme events such as solar flares. Modeling such
data often benefits from log-transformation before applying the standard scaling. Specifically, we consider
the signum-log transform sign(x) × log1p(|X|), which can be applied equally to the strictly positive AIA
channels and the HMI channels that contain both positive and negative values (where log1p(x) is the natural
logarithm of 1 + x). However, as figure 3 demonstrates, the standard signum-log transform comes with
the downside that it stretches the inherently noisy low-magnetic field range of HMI channels at the expense
of data points with good signal-to-noise ratio. Given the inherent noise level of the HMI_m channel of
15 Gauss, about 1/3 of the transformed scale would be occupied by data that is dominated by the inherent
detector noise, while the dynamic range of extreme events may be compressed too much. As a compromise
between applying the full signum-log or no transformation at all, we propose applying a scale factor of 10−2

to the raw data before applying the signum-log. Following this transformation, we standard-scale the data
per channel. Thus, the complete transformation per channel is

sign(X) log1p(|10−2x|)− µ

σ + ϵ
. (1)

Here, µ and σ are the per channel global means and standard deviations following the signum-log transfor-
mation; ϵ is a small constant, we use 10−8. A histogram of the resulting data distribution in 3 (D) shows that
the inherently noisy values are now occupying a much narrower range and the model can focus on learning
the important intermediate and extreme activity ranges of the sun.
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(A)

(C)

(B)

(D)

Figure 3: Scaled signum-log transform reduces the range over which noise dominates. (A) Standard signum-
log transform. (B) Scaled signum-log transform with scale factor 10−2. (C) Histogram of HMI_m channel
values after signum-log transform. (D) Histogram of HMI_m channel values after scaled signum-log trans-
form with scale factor 10−2. Red lines indicate the limits of the range where the magnetic field magnitude
is smaller than the noise level of 15 Gauss.

2.2 PRETEXT TASK AND BASELINES

2.2.1 PREDICTING FUTURE SDO IMAGERY AS A PRETEXT TASK

Prior to considering AI architectures, one needs to decide on a pretext task. Here one can take inspiration
from prior work in computer vision, but also other scientific domains such as earth observation or atmo-
spheric physics. Although there is a myriad of pretext tasks (i.e. self-supervised training methodologies)
the most dominant ones are arguably masked reconstruction (He et al., 2022), contrastive objectives (Chen
et al., 2020), and finally autoencoders. In addition, recent work in atmospheric physics moreover shows
that AI models can learn complex temporal dynamics purely from data by regressing onto a future time step
(Pathak et al., 2022; Lam et al., 2023). On the other hand, masked reconstruction has been successfully
used in earth observation (Jakubik et al., 2023; Szwarcman et al., 2024) while Schmude et al. (2024) used
a mixed objective combining reconstruction with forecasting. Yet in the end we note that our downstream
tasks are frequently in nature and choose forecasting as a pretrainig objective. In heliophysics, Majid et al.
(2024) trained with a 12-hour ahead forecasting objective while Walsh et al. (2024) explored both MAEs
and autoencoders. Both papers did so at 512 by 512 pixel resolution.

For future work, let us point out that a band-to-band translation pretext task, as was used with great success
by Jakubik et al. (2025) in earth observation, might be a strong alternative if combined with a temporal
objective. Especially given the inherent multi-modality of SDO data.
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Table 2: Baseline scores for 1 hour ahead forecasting. In model units.
Baseline Parameters Loss (MSE)
Persistence N/A 0.594044030
Learned flow 642 0.337624282

In either case, we use two timestamps, 60 minutes apart, as input to the model and train the model by
regressing on SDO data 60 minutes in the future. As is now standard in models for atmospheric physics,
this is followed by a second phase of pretraining where the outputs of Surya are used as inputs to predict
120, 180, . . . minutes into the future. This is generally referred to as “autoregressive rollout tuning”. During
rollout tuning, we average the loss across all steps. See section 2.4.2 for details on our pretraining protocol.

To formalize this, we denote observed frames as Xt and the model as fθ. Then we train Surya with a mean
square error (MSE) objective as follows:

LMSE =
1

N
∥Xt+1 − fθ(Xt,Xt−1)∥2 , (2)

If we further denote model output as X̂t+1 = fθ(Xt,Xt−1), autoregressive prediction takes the form

X̂t+2 = fθ

(
X̂t+1,Xt

)
= fθ (fθ (Xt,Xt−1) ,Xt) . (3)

The rollout loss is then

Lrollout =
1

2N

(
∥Xt+1 − fθ(Xt,Xt−1)∥2 + ∥Xt+2 − fθ(fθ(Xt,Xt−1) ,Xt)∥2

)
, (4)

and equivalent for multi-step rollouts. At inference time, this scheme enables longer forecasts from two
initial observations an hour apart.

2.2.2 BASELINE SCORES

With the pretraining task decided, it is important to identify a series of baseline scores to compare against.
The purpose is primarily to put model losses into context during training and development. The first of these
is simply persistence. Using the notation from section 2.2.1, the persistence forecast is simply X̂t+1 = Xt.
Technically speaking, note that one can obtain an improved persistence forecast by averaging over multiple
timestamps along the lines of X̂t+1 = (Xt +Xt−1) /2. The reason for this is that the averaging procedure
smooths out sharp features. Especially due to the sun’s rotation, sharp features lead to a double penalty on
MSE loss of persistence. However, our persistence scores serve simply as a baseline, so we use X̂t+1 = Xt.

The other relevant baseline is given by solar rotation. Rather than hard-coding rotation via a known equation,
we decide to learn the effect from data. To do so, we assign coordinates [−1, 1]× [−1, 1] to the 4096 x 4096
pixels. That is, the bottom left pixel is (−1,−1), the top right pixel (1, 1) etc. Then we train a very
small Multi-Layer Perceptron (MLP) that takes these coordinates of each pixel as input and yields a vector
as output. The result is a learned vector field along which we interpolate the data. As the input is data
independent, this trains a constant flow-field along which the data is moved to effectively learn the rotation.
If we denote the coordinates of each pixel as x, the MLP as Mθ, and the operation to interpolate2 along a

2Implementation wise, we use the F.grid_sample method from PyTorch for interpolation.
I.e. F.grid_sample(x, flow_field, mode="bilinear"), where x is the data X and flow_field the
output of the MLP Mθ .
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vector as ↗, we train this baseline as follows:

[Xt+1 −Mθ (x) ↗ Xt]
2
. (5)

Our MLP consists of two linear layers and an internal dimension of 128 with GELU activation. Thus, it has
a total of 642 parameters. Table 2 shows the baseline scores in the model units of equation equation 1.

2.3 ARCHITECTURE
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Figure 4: (A). The architecture of the Surya Foundation Model which uses 2 spectral blocks, 8 attention
blocks based on long-short attention, and 1 decoder block. We are using a learnable weight parameter
(Wc) after performing FFT for estimating the weights of frequency components. We then perform an
inverse FFT to transform the information back into physical space, as described in Patro et al. (2025). The
attention head is designed on the principle of long-short attention Zhu et al. (2021), where we calculate
short-term attention by sliding window, and long-range attention by dynamic projections. (B). Overview
of 4-step rollout finetuning, where the model is given a 2-timestep input and then predicts the next 4 steps
autoregressively. C. Inference of the model with 2 time step input and an hour forecast.
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2.3.1 OVERVIEW OF SURYA MODEL ARCHITECTURE

The Surya (figure 4) is a 2-D transformer architecture for high-resolution forecasting of SDO imagery and
solar dynamics. It integrates frequency-domain filtering with efficient multi-scale attention to capture both
fine-scale and global spatio-temporal dependencies. The architecture, shown in fig. 4, consists of two spec-
tral gating blocks, eight long-short attention blocks, and a decoder block for reconstruction in the physical
domain. See section A.1 for ablation studies.

Tokenization The raw input data to Surya is SDO data from 13 different channels scaled according to
equation 1. Using two timestamps, the input data initially has the shape 13× 2× 4096× 4096. To tokenize
the data, we simply flatten the channel and temporal dimensions and use a simple linear layer. The internal
dimension is D = 1280. Given a patch size of 16× 16, we end up with N = 65, 536 tokens:

C × T ×H ×W 7→ N ×D

(13× 2)× (256× 16)× (256× 16) → 65, 536× 1, 280.
(6)

Surya uses a Fourier position embedding.

Spectral Gating Blocks Let X ∈ RB×N×D denote the embedded spatiotemporal tokens, where B is the
batch size. Each spectral block reshapes X into Xs ∈ RB×Hp×Wp×D, where Hp = Wp = 256 are height
and width in token space, and applies a 2-D real Fast Fourier Transform (rFFT):

X̃ = F(Xs), (7)

followed by modulation with a learnable complex-valued weight Wc ∈ CHf×Wf×D:

X̃′ = X̃⊙Wc. (8)

Here, Hf = 256, Wf = 129, and ⊙ denotes element-wise complex multiplication.3 This adaptively re-
weights frequency components to emphasize informative spectral bands and suppress noise. The result is
transformed back to the physical domain via inverse rFFT:

X′
s = F−1(X̃′), (9)

and refined through a residual connection and feed-forward network (FFN):

Xℓ+1 = Xℓ + FFN(LN(X′)) . (10)

LN(·) denotes Layer Normalization and X′ is X′
s reshaped back to sequence order.

Long-Short Attention Blocks The attention backbone consists of L = 8 layers that fuse local and global
attention pathways, following the principle of the Long–Short Transformer Zhu et al. (2021) adapted for 2-D
spatiotemporal tokens.

Local (short-range) attention operates within non-overlapping spatial windows of size w × w, capturing
fine-scale dependencies. For each window Ω, queries, keys, and values are restricted to Ω, yielding:

Attnshort(X) = Softmax

(
QΩK

⊤
Ω√

dk
+∆rpe

)
VΩ, (11)

where ∆rpe is an optional relative positional bias, and dk is the per-head dimension.

3The weight matrices Wc are large at 84, 541, 440 real parameters. See section A.1 for a discussion. Note also that
the imbalance between Hf and Wf arises from X being real and the use of the real FFT here.
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Global (long-range) attention uses dynamic low-rank projection: keys and values are content-adaptively
compressed into a rank-r basis,

K = αK, V = αV, (12)

where α ∈ RB×h×r×N is a learned mixing weight obtained from the keys. Queries then attend to (K,V )
across the entire sequence:

Attnlong(X) = Softmax

(
QK

⊤

√
dk

)
V . (13)

The two branches are normalized to align their scales and then concatenated along the key-value dimension:

X′ = Concat(Attnlong,Attnshort) , (14)

followed by a residual MLP:
Xℓ+1 = Xℓ +MLP(LN(X′)) . (15)

This design efficiently combines localized modeling with global context aggregation, achieving multi-scale
representation learning at reduced complexity as proposed by Zhu et al. (2021).

Decoder The decoder is a lightweight projection that maps the final token representation XL back to the
spatial domain:

Y ∈ RB×C×H×W = Unembed(XL), (16)

where C is the number of output channels.

2.4 PRETRAINING

2.4.1 SCALING

In its final configuration, Surya comprises 366 million parameters. Considering that two timestamps of SDO
data comprise

2× 13× 4096× 4096× 32bit = 1.7GB (17)

of data, GPU memory is a primary concern. At a patch size of 16×16, we are dealing with 65, 536 tokens. To
deal with memory pressure, we use Fully Sharded Data Parallel (FSDP), mixed precision as well as gradient
checkpointing. The model’s input and output layers operate in float32, yet the transformer layer uses
bfloat16. Note that the spectral gating layers explicitly cast to float32 for the FFT operations. Table
8 shows 1 hour ahead performance and memory consumptions of Surya as well as ablations and baselines.
Here, the “No spectral gating” ablation replaces the two spectral gating blocks with additional long-short
attention. As the table shows, the use of the spectral gating layers leads to the same loss at 6% less GPU
memory.

2.4.2 PRETRAINING PROTOCOL

As outlined above, pretraining of Surya followed what has become a standard approach in AI forecasting
models in atmospheric physics (Pathak et al., 2022; Lam et al., 2023). That is, Surya was trained with a two
phase approach consisting of one step ahead forecasting and subsequent rollout tuning.

In phase one, we trained Surya for 160,000 gradient descent steps on 128 NVIDIA A100 GPUs. The model
is trained with batch size 1 (per GPU), making an effective batch size of 128. Throughout training, we use
cosine annealing to modify the learning rate from 10−4 to 10−5. Note that we did not find a need for a
dedicated warm-up period to stabilize training. We clipped gradients at 0.1. We use the AdamW optimizer
from PyTorch with default values for its parameters betas, eps, and weight_decay.
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The rollout tuning phase imposes additional demands on GPU memory. We now use gradient checkpointing
after all ten spectral and transformer layers. First, we train two steps ahead – i.e., the initial step plus
one autoregressive step – for 20,000 gradient descent steps at a constant learning rate of 10−5. Then we
subsequently train three, four, and five steps ahead for 4,000 steps each at a learning rate of 10−6. This
unbalanced schedule was partially motivated by the fact that a single gradient descent step takes longer and
longer lead times. At the same time, loss curves showed continuous improvement for the 2 step ahead case
until step 20,000. Generally, we used 64 GPUs for rollout tuning.

2.5 ZERO-SHOT EVALUATION

2.5.1 PREDICTING FUTURE SDO DATA (FORECASTING)
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Figure 5: Forecasting performance of Surya. MSE across all channels in model units. Left hand side shows
persistence and the flow model used to capture solar rotation. Both sides show the output of phase 1 of
pretraining (“1 hour”) as well as various stages of rollout tuning: 2 hour ahead rollout tuning to 5 hour ahead
rollout tuning. The latter of these is the last stage of pretraining and thus shows the zero-shot performance
of Surya.

We can get a first understanding of Surya’s capabilities, as well as the effectiveness of the pretraining proto-
col, by predicting future SDO images. The result of this evaluation can be seen in Figure 5. Rollout tuning
improves the performance at 12 hours ahead by 10.9, 12.3, 14.9, and 17.8% respectively when compared
against the state of the model after phase 1. At the longer lead times, the performance improvements of
Surya due to rollout tuning have not yet reached saturation. From a technical perspective, Surya could be
tuned up to 24 hours ahead with no modifications to the code when using an 80 GB A100 GPU. The lim-
iting factor here was actually data loading speed with GPUs waiting for data. It might be worthwhile to do
additional rollout tuning with longer lead times in the future.

2.5.2 VISUAL PREDICTION OF SOLAR FLARES

To further test and evaluate Surya’s capabilities to predict future SDO images – and thus the future state of
the sun – we initialize Surya just prior to a solar flare event. To start, we do this on training data, i.e., imagery
that Surya saw during its pretraining period. Figure 6 shows this for the St. Patrick’s Day Event Wu et al.
(2016). Compare the model output of Surya shown in figure 6. It exhibits a clear evolution of model output
between 01:12 and 02:12 UTC, fitting the actual observation.
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In 0: 2015-03-14 23:12 In 1: 2015-03-15 00:12 Out 0: 2015-03-15 01:12 Out 1: 2015-03-15 02:12

GT 0: 2015-03-15 01:12 GT 1: 2015-03-15 02:12

Figure 6: St. Patrick’s Day Event as modeled by Surya. AIA, 131Å. Top row, left two columns are model
inputs (“In”). Top row, right two columns are model outputs (“Out”). Bottom row shows corresponding
ground truth (“GT”).

Naturally, this is part of the training data, and one would expect a model pretrained with an MSE objective
to at least remember an event such as that illustrated in Figure 6. After all, the flare is a clearly visible
feature with much brighter pixels than the rest of the sun, having a strong impact on the MSE score. Thus,
the critical question is whether we can make similar observations on testing data.

Figures 8 and 14 as well as 1, 12 and 13 answer this to the positive. They show model inputs, outputs, and
ground truth at different initialization times on January 7 2014 and January 13 2015. While these are not
exactly in our testing period of section 2.1.2 as they lie in the “temporal buffer”, they are far enough from
actual training data such that leakage and contamination is not a concern.

The above figures show a strong visual feature evolving in channels 94 Åand 131 Å. Yet that alone does not
allow us to characterize these as “flare events”. To do that, we plot the integrated emissions for the January
13 2015 case in figure 7. Note that the time series here is a composite of multiple runs of Surya. Each
was initialized with two timestamps 60 minutes apart (as usual) and run two steps (2 hours) into the future.
Notably, for all channels except 1600 Å, the integrated output of Surya tracks the ground truth closely. In
particular, close to the rapid changes around 04:24 UTC. We consider the results discussed in this section
as visual prediction of solar flare events. This is in contrast to the conventional approach discussed via
fine-tuning in section 2.6.

2.5.3 BLURRING OF SHARP FEATURES AND DENOISING OF EUV CHANNELS

Surya is trained as a fully deterministic model with an MSE objective. A well-known characteristic of such
models is that they tend to blur sharp features. Figures 9 and 10 show local crops of Surya’s outputs AIA
171 Åas well as HMI_m compared to ground truth. Given the aforementioned choices regarding Surya’s
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Figure 7: Integrated emissions for a solar flare event on January 13, 2015. That is, the plot shows the per-
channel sum over all pixels in model inputs and outputs. The model was initialized for multiple lead times
on January 13, 2015, and ran up to 2 hours (2 steps) into the future. The time series is the join of all those
runs (which is why certain times show multiple outputs). This matches the visual output of figures 1 and 8.
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In 0: 2015-01-13 01:48 In 1: 2015-01-13 02:48 Out 0: 2015-01-13 03:48 Out 1: 2015-01-13 04:48

In 0: 2015-01-13 02:00 In 1: 2015-01-13 03:00 Out 0: 2015-01-13 04:00 Out 1: 2015-01-13 05:00

In 0: 2015-01-13 02:12 In 1: 2015-01-13 03:12 Out 0: 2015-01-13 04:12 Out 1: 2015-01-13 05:12

In 0: 2015-01-13 02:24 In 1: 2015-01-13 03:24 Out 0: 2015-01-13 04:24 Out 1: 2015-01-13 05:24
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In 0: 2015-01-13 03:00 In 1: 2015-01-13 04:00 Out 0: 2015-01-13 05:00 Out 1: 2015-01-13 06:00

In 0: 2015-01-13 03:12 In 1: 2015-01-13 04:12 Out 0: 2015-01-13 05:12 Out 1: 2015-01-13 06:12

1

Figure 8: Surya inputs and outputs with different initializations for January 13, 2015.
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GT: 2014-01-07 18:24 Out: 2014-01-07 18:24

Figure 9: Ground truth data (left) and corresponding outputs from Surya for one hour ahead forecasting.
171Å. The images shows a local crop of 600 by 600 pixel.

architecture and pretraining objective, we observe indeed a loss of the finest details for HMI data as well as
some blurring in the AIA bands. In theory, one might be able to address this by transitioning to a probabilistic
model. This could be done via diffusion techniques, or via noise injection and a suitable loss function as
in Lang et al. (2024). We experimented with the latter, injecting noise into the model during the long-short
attention blocks using adaptive layer norm and training on a CRPS objective. Yet we found that while it did
yield improved detail, in particular in the HMI channels, it lead to occasional token-level artifacts.

While Surya blurs the sharp features in the high frequency, high signal-to-noise AIA 171 Å, it has a positive
denoising effect on low-signal to noise channels like AIA 94 Åand AIA Å335. These channels, observing
the hottest and most energetic plasma in the solar atmosphere, tend to suffer from a low photon count and
high amounts of noise. Surya helps make this data more useful for analyzing small-scale features.

2.6 DOWNSTREAM EVALUATION

2.6.1 FINE-TUNING ARCHITECTURE AND FINE-TUNING PROTOCOL

Fine-tuning architecture As discussed in section 2.2.1, Surya was pretrained with a forecasting pretext
task. This was motivated by the dynamical properties of the solar surface and atmosphere as well as the
fact that some of our downstream tasks have a clear forecasting flavor. On the other hand, this can lead to
a challenge when fine-tuning the model with frozen weights. The issue is that the representation learned by
pretraining – the activations of the last long-short attention layer – can be assumed to be inherently local.
After all, in pretraining, we apply a linear layer to these activations to regress on the image seen by SDO at
this specific location in the future. This is in contrast to a masked reconstruction approach. Here, the encoder
learns a representation from which the decoder can reconstruct the entire image. This implies that each token
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GT: 2014-01-07 18:24 Out: 2014-01-07 18:24

Figure 10: Ground truth data (left) and corresponding outputs from Surya for one hour ahead forecasting.
HMI_m. These images show a local crop of 600 by 600 pixels.

learns a representation which – collectively with the other tokens – can be used for global reconstruction.4
With this in mind, we implement multiple fine-tuning architectures for Surya.

We consider problems covering global classification (flare forecasting) and regression (solar wind and EUV
spectral forecast). Here, we enable global average pooling, global max pooling, attention pooling, trans-
former pooling, and finally the use of a global class token. Let us briefly discuss each of these:

Global average and max pooling are straightforward: One aggregates the activations of the last transformer
block and applies one or several linear layers. It is here where the comments from the preceding paragraph
most apply: For a frozen model trained on a forecasting task, global max pooling can be assumed to return
the most prominent (brightest) pixels in the output. And indeed, if one uses global max or global average
pooling with frozen weights for solar flare forecasting, one obtains reasonable performance quickly; yet said
performance quickly reaches a maximum that can be surpassed by approaches that really consider patterns
rather than the maximal local activation values.

Attention pooling applies another attention layer before summing activations. Transformer pooling intro-
duces an additional attention block with a dedicated class token. For downstream tasks that concern rare
events – see solar flare forecasting – we find that attention and transformer pooling introduce too many
parameters and overfit heavily.

4The reader might complain that the representation learned by a masked autoencoder is still local. And indeed, if one
plots the activations returned by the encoder, they still contain the data at that location. So one should take the above
with a grain of salt. Still, the main point is that a model that regresses on future state will inherently be forced to contain
local information in its ultimate transformer layers.
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Finally, we consider the global class token. Here, we simply introduce a non-local token after the spectral
gating layers. This token is initialized with learnable weights. In contrast to Swin-transformers, an advantage
of the long-short attention codebase is that the introduction of this class token is relatively straightforward.

PARAMETER-EFFICIENT FINE-TUNING (LORA) Note that all of the above can be combined with LoRA
fine-tuning of the model. And indeed, this is how we obtain our strongest fine-tuning results. In other
words, to adapt Surya efficiently, selected linear maps (e.g., attention projections and MLP layers) are
augmented with a low-rank residual while the pretrained weights remain frozen. For any targeted weight
W0 ∈ Rdout×din , LoRA parameterizes

W = W0 +
α

r
BA, A ∈ Rr×din , B ∈ Rdout×r, (18)

with rank r and scaling α. During fine-tuning, only the adapter parameters (A,B) and any task-specific
head(s) are updated; W0 is fixed. Let S index the set of adapted layers. The resulting optimization problem
is

min
θhead, {Aℓ,Bℓ}ℓ∈S

Ltotal

(
θ0, θhead, {Aℓ, Bℓ}

)
+ λlora

∑
ℓ∈S

(
∥Aℓ∥2F + ∥Bℓ∥2F

)
, (19)

where λlora regularizes the low-rank updates. This reparameterization can be interpreted as learning a task-
specific, low-dimensional perturbation in the local tangent space of W0, preserving the inductive biases of
the pretrained model while controlling adaptation capacity via r and α.

2.6.2 ACTIVE REGION SEGMENTATION

Table 3: AR Segmentation results comparing baseline models with Surya
Model Params IoU Dice Coeff
Unet 9.2 M 0.688 0.801
Surya 4.1 M 0.768 0.853

Solar Active Regions (ARs) are magnetically complex structures associated with flares and CMEs. A key
feature within ARs is the Polarity Inversion Line (PIL), the boundary separating opposite magnetic polarities,
whose strong and sheared forms are robust precursors of eruptions Ji et al. (2023). Accurately segmenting
ARs containing PILs is thus critical for space weather forecasting and advancing our understanding of solar
magnetic complexity.

Traditional AR/PIL detection pipelines based on thresholding and morphology are interpretable but brit-
tle—sensitive to noise, parameter choices, and unable to capture the thin, filamentary structures of PILs.
This motivates a deep learning–based segmentation framework that learns robust, multi-scale representa-
tions directly from solar data.

We construct the ARPIL dataset using full-disk SDO/HMI line-of-sight magnetograms (4096×4096), adapt-
ing the method in Cai et al. (2020). Positive and negative polarity maps are generated using ±50 G thresh-
olds, filtered to remove regions smaller than 100 pixels, dilated with a 10-pixel kernel, and intersected to
extract PILs. Only ARs with PILs are retained, yielding 119,454 binary masks spanning January 2011–De-
cember 2024.

As baselines, we compare a standard UNet with our finetuned Surya foundation model using LoRA adap-
tation. With just 4.1M trainable parameters, Surya achieves higher segmentation quality (IoU 0.768, Dice
0.853) than UNet (IoU 0.688, Dice 0.801).
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Figure 11: Active region Segmentation Results. Top Row: SDO data on Date: 2014-02-01, Time: 08:12,
Middle Row: Model Output segmentation mask, Bottom Row: Ground Truth

2.6.3 SOLAR FLARE FORECASTING

As part of our downstream application evaluation, solar flare prediction is posed as a binary classification
problem, where the objective is to determine whether a significant flare (M- or X-class) will occur within
the next 24 hours following a time-point observation at t, similar to Pandey et al. (2023). The prediction
window is defined as [t, t + 24h) hours. The instance is labeled positive (flaring) if the peak X-ray flux of
the strongest flare in [t, t+ 24h) exceeds θmax = 10−5 W/m2.

Given solar observations xt ∈ RC×H×W (or RT×C×H×W for temporal sequences), the classifier predicts:

f(xt) → yt ∈ {0, 1}, (20)

with

yt =

{
1, if a strong flare occurs in [t, t+ 24h)

0, otherwise.

We considered True Skill Statistic (TSS), Heidke Skill Score (HSS) and F1 score as evaluation metrics. TSS
measures the ability to distinguish between flare and non-flare events. Ranges from -1 (inverse prediction)
to +1 (perfect prediction), with 0 indicating no skill, and is defined as

TSS =
TP

TP + FN
− FP

FP + TN
. (21)

HSS evaluates performance relative to random chance, considering both hits and false alarms. Ranges from
-1 to 1, and is defined as:

HSS =
2
(
TP · TN − FP · FN

)
(TP + FN)(FN + TN) + (TP + FP )(FP + TN)

. (22)

19



F1 Score is the harmonic mean of precision and recall of positive class (i.e., flaring), balancing both false
positives and false negatives, defined as :

F1 =
2TP

2TP + FP + FN
. (23)

The results of our evaluation are shown in Table 4 and we observe that Surya outperforms the baseline
models across all evaluation metrics. Notably, Surya achieves superior results despite using fewer trainable
parameters. Its advantage is evident in the balanced forecast skill metric (HSS), highlighting its robustness
in handling class imbalance in solar flare prediction. It should also be noted that these models serve as
proof-of-concept studies and are not optimized for end-to-end or operational forecasting use.

Table 4: The results of flare forecasting evaluation comparing baseline models used in literature Pandey et al.
(2023; 2024) with finetuned Surya-based ones

Model TSS HSS F1
AlexNet 0.358 0.398 0.454
ResNet50 0.018 0.028 0.055
Surya 0.436 0.522 0.561

2.6.4 SOLAR EUV SPECTRA MODELING

Accurately modeling solar Extreme Ultraviolet (EUV) irradiance is essential for advancing space weather
prediction, as it directly influences satellite functionality, communication infrastructures, and navigation
systems. The challenge lies in modeling irradiance over 1343 spectral bands (Woods et al., 2012) ranging
from 5 nm to 35 nm, which encode intricate spatial and temporal dynamics of multi-million degree solar
plasma captured through observations.

Given multi-channel solar imagery xt ∈ RC×H×W at time t, the objective is to estimate a continuous vector
of EUV irradiance measurements yt ∈ R1343:

yt = f(xt). (24)

Table 5: EUV spectra modeling results comparing baseline models with Surya
Model MSE MAE MAPE
Alexnet 0.0001311409 0.0061858603 1.6834715604
ResNet50 0.0030414662 0.0529725812 8.8635520935
Surya 0.0001260741 0.0045114677 1.4792510271

Table 5 shows the performance of EUV spectra modeling of surya compared to base models. We find that the
EUV irradiance prediction across the full spectrum from Surya model outperforms our baseline AlexNet and
ResNet50 models. We note that the current operational model, the Flare Irradiance Spectral Model (FISM,
Chamberlin et al., 2020), attains a MAPE of 1.5% and MSE of 0.00031 on the same dataset where Surya
is tested, which is 2.46× worse than the Surya prediction. Although the MAPE of Surya is comparable to
FISM, it is important to note that FISM relies on multiple instruments: the EUV Variability Experiment
(Woods et al., 2010), the Solar Radiation and Climate Experiment (Mcclintock et al., 2005), and the XUV
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Photometer System (Woods & Rottman, 2005), as well as three distinct proxies (the Penticton F10.7 cm
radio flux, the Mg II core-to-wing index, and H I Lyman-α emission at 121.6 nm) spanning radio to X-
ray wavelengths, while Surya relies solely on SDO/AIA and HMI data. The lower MSE achieved by Surya
indicates enhanced accuracy in capturing extreme events, such as large flares. Furthermore, we also note that
the Surya model outperforms the deep learning model by Szenicer et al. (2019), who obtain a median MAPE
of 1.6% and max MAPE of 4.6%. We also note that while Szenicer et al. (2019) predict the intensities in
specific spectral lines, Surya generates predictions across all spectral bins of EVE, providing a full spectral
readout. Hence, the Surya predictions are more comprehensive and better compared to the deep learning
model by Szenicer et al. (2019) reported in literature.

2.6.5 SOLAR WIND FORECASTING

Solar wind forecasting aims to predict the solar wind speed at a given spatial point (typically at the L1 point
in the Sun-Earth system), specifically within a 4-day prediction window following an observation time t.
Precise forecasting of solar wind speeds is fundamental for mitigating the adverse effects of space weather
on satellite communication systems, navigation systems, and electrical grids on Earth.

This dataset comprises scalar measurements of solar wind speeds near Earth, recorded hourly from 2010-
01-01 through 2023-12-31, resulting in a temporally rich dataset with substantial coverage of solar cy-
cles (Gloeckler, 2023). The solar wind speed values exhibit significant variability, ranging from 2.4 × 102

km/s to 8.8× 102 km/s.

Given solar observation data (such as AIA and HMI multi-channel solar imaging data) represented by xt at
observation time t, the task is to predict the scalar solar wind speed at time t+∆t, where ∆t = 4 days:

yt+∆t = f(xt),

where xt ∈ RC×H×W represents the multi-channel, high-resolution input imagery data at time t, and
yt+∆t ∈ R represents the predicted scalar solar wind speed. We select a forecast horizon of 4 days corre-
sponding to the typical travel time of solar wind plasma (Rotter et al., 2012; Upendran et al., 2020). The
table below mentions various metrics by AlexNet, trained on 18k steps, ResNet50 for 20k steps, and Surya
for 10k steps. Surya outperformed the baseline, achieving the best results in the least number of steps

Table 6: Solar Wind Prediction results comparing baseline models with Surya

Model RMSE (km s−1) MAE(km s−1) Validation MSE (km2s−2)

AlexNet 118.6 95.7 km 13839.49
ResNet50 93.76 74.65 8547.924
Surya 75.92 58.06 5698.62

We may perform a qualitative comparison of the solar wind forecast from Surya with the performance of a
few models reported in the literature. Each of these models considers data from the same instrument, while
they are evaluated over a range of time periods. These results are summarized in Table 7.
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Table 7: Solar wind speed prediction results comparing baseline models with Surya
Model RMSE (km s−1)

Surya 75.92
WindNet 193 (1,4) Upendran et al. (2020) 84.33 ± 2.31
WindNet 211 (1,4) Upendran et al. (2020) 85.94 ± 4.67
27-day Persistence Ahn et al. (2025) 89
SDO + solar wind speed model Ahn et al. (2025) 68.6
CH features + solar wind speed model: Collin et al. (2025) 61 – 71
MHD selected rotations Mayank et al. (2022) 47 – 85
ESWF using CH features: Reiss et al. (2016) 108.2
WSA model using photospheric B maps: Reiss et al. (2016) 99.5

From Table 7, we find that the Surya solar wind forecast outperforms the models that operate on purely
SDO/AIA data or photospheric B maps, and the standard 27-day persistence baseline. We also note that
the MHD model selected is evaluated on selected Carrington rotations, with the parameters fine-tuned for
each rotation. This would correspond to overfitting a model on the testing set samples, meaning the selected
parameters are not generalized across the dataset. Hence, the Surya model both generalizes across the full
solar cycle and beats several dedicated solar wind speed forecasting models from the literature. The models
that show better performance than Surya also consider the solar wind speed measurement at a previous time
step, and hence contain a measure of memory of the state of the wind speed, rendering a comparison with
Surya unfair. However, we note that even in this case, Surya’s performance is close to said models, bringing
it one step closer to being an effective operational model.

3 DISCUSSION AND CONCLUSIONS

In this work, we presented Surya, a 366M-parameter foundation model for heliophysics, trained at the native
4096×4096 resolution of SDO’s AIA and HMI instruments with a standardized 12-minute cadence. By
pretraining on the task of forecasting, Surya learns general-purpose solar representations that capture both
the fine-scale variability of magnetic fields and the large-scale dynamics of the solar atmosphere. This
pretraining strategy enables the model to perform zero-shot forecasting of solar activity, including the visual
evolution of flare events, while also providing transferable representations that can be adapted efficiently to
various downstream applications. Surya thus represents a shift from narrowly focused, task-specific models
to a more versatile and scalable approach for heliophysics. This positions Surya as a backbone for future
digital twin initiatives of the Sun-Earth system, aligned with ESA’s Digital Twin Earth and NASA’s digital
twin efforts.

A key result is Surya’s capability to forecast solar dynamics without additional training. For example, in the
case of the January 2015 flare, Surya’s predicted integrated EUV emissions closely tracked observations,
demonstrating sensitivity to the rapid changes associated with flare onset. Quantitatively, autoregressive
rollout tuning improved long-range forecasting skill by up to 17.8% at 12 hours lead time compared to
one-step pretraining. These results suggest that the model is not simply memorizing past patterns, but
rather developing representations that are, to some extent, physics-aware. It also significantly outperforms
persistence (MAE ≈ 0.59) and learned-flow baselines (MAE ≈ 0.34) in one-hour forecasts.

For finetuning on downstream tasks, we adapted parameter-efficient fine-tuning with LoRA. For active re-
gion segmentation, Surya achieved an IoU of 0.768 and a Dice coefficient of 0.853, outperforming a U-Net
baseline (IoU 0.688, Dice 0.801). In solar flare forecasting, Surya obtained TSS of 0.436, HSS of 0.522, and
F1 of 0.561, substantially improving over AlexNet (TSS = 0.358) and ResNet50 (TSS = 0.018). For EUV
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irradiance modeling, it reduced error with an MAE of 0.0043 compared to 0.0065 for AlexNet and 0.0256
for ResNet50. Finally, in solar wind speed forecasting, Surya achieved RMSE of 75.92 km s−1 and MAE
of 58.06 km s−1, outperforming both AlexNet (RMSE = 118.6 km s−1) and ResNet50 (RMSE = 93.76 km
s−1). We further note that Surya beats models from literature that use SDO/AIA as the sole input, while also
outperforming the 27-day persistence model. The model performance is close to the performance of models
that consume prior solar wind speed measurements and MHD models, which show the power of generaliza-
tion demonstrated by the foundation model. However, we do note caution against over-interpretation of this
comparison, since the validation dataset is typically not precisely the same timestamps across all the models.

We also observed some limitations that can be improved in future work. As a deterministic model trained
with an MSE objective, Surya exhibits blurring of sharp features in magnetograms and flare imagery, a com-
mon outcome in regression-based generative models. Probabilistic approaches, such as diffusion forecasting
or training with alternative loss functions like CRPS, could mitigate this issue by producing sharper, more
physically realistic predictions. Similarly, while forecasting proved effective as a pretraining task, other
self-supervised strategies such as masked reconstruction or band-to-band translation may further enrich the
learned representations. The main bottleneck was not model-scaling but data throughput during rollout train-
ing, suggesting that future large-scale heliophysics FMs will require investments in data pipelines as much
as compute.

In conclusion, Surya represents the first foundation model for heliophysics trained at the full resolution of
SDO data, establishing a unifying framework that combines forecasting skill with transferable representa-
tions for a range of scientific and operational tasks. Its ability to generalize across segmentation, classi-
fication, regression, and forecasting problems illustrates the potential of foundation models to accelerate
both discovery and operational space weather prediction. Looking forward, we can incorporate multimodal,
multi-mission datasets and adopt probabilistic approaches for better and improved foundation models to
support next-generation heliophysics and digital twin initiatives.

CODE AND DATA AVAILABILITY

By releasing Surya, its preprocessing pipeline, and downstream evaluation code openly, we align with
NASA’s Year of Open Science and the NAIRR pilot, ensuring that the community can build upon this
foundation. The model and datasets are publicly available on Huggingface: https://huggingface.
co/nasa-ibm-ai4science. Our code for model and downstream tasks is publicly available at
https://github.com/NASA-IMPACT/Surya
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A ARCHITECTURE

A.1 ABLATION STUDIES

The main body of the text already discusses the baseline scores: persistence as well as the flow model trained
to capture differential rotation. In addition, we performed a number of ablation studies to validate Surya’s
architecture choices. All ablation experiments were trained for 10,000 gradient descent steps on 16 GPUs.
The results can be found in table 8.

Table 8: Architecture ablations & baselines. The table shows MSE loss for 1 hour ahead forecasting in
model units of equation 1. All baselines and ablations in this table – including the Surya configuration –
were trained on 16 GPUs for 10,000 gradient descent steps.

Type Configuration Parameters Memory usage [MiB] Loss (MSE)
Baseline Persistence N/A N/A 0.594044030

Learned flow 642 24976 0.337624282

Ablation Single timestamp 361.93 M 55411 0.228553504
No spectral gating 210.39 M 59823 0.219618767
Perceiver 351.52 M 52721 0.234643415

Surya 366.19 M 56247 0.219778508

Let us start by discussing the spectral gating layers. In this ablation study (“No spectral gating”), we replace
the two spectral gating layers with additional long-short attention layers. Within the context of the compute
budget used here, this led to a virtually identical loss, yet at 6% reduced GPU memory consumption. Inter-
estingly, this happens although the conversion of long-short to spectral gating layers adds a huge number of
parameters, each spectral block containing a weight matrix consisting of 84, 541, 440 real parameters alone.
Indeed, table 8 shows that a large number of Surya’s parameters are in the two large weight matrices applied
in Fourier space in those layers.
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The next ablation we consider is training the model with one rather than two timestamps as input. Using two
timestamps as input improves performance by 3.8%. On the one hand, one clearly expects two timestamps
to do better than one, as the model can infer a motion field. On the other one might be surprised that
one timestamp as input still yields relatively strong performance. One reason for this might be that the
tokenization in Surya is effectively a compression. Given two timestamps, 13 bands, and a patch size of 16
by 16, each patch comprises 2 × 13 × 16 × 16 = 6, 656 pixels. Our embedding dimension, on the other
hand, is 1, 280. So we are effectively compressing our data by a factor of 5.2 with a very simple linear layer.
Using one timestamp as input rather than two reduces this compression ratio.

Given this compression ratio, one might expect that using a more complex tokenization procedure would
help model performance. Indeed, one can consider the case of atmospheric physics where there is a similar
situation: Model inputs comprise many different variables at different vertical levels. Nguyen et al. (2024)
used an attention mechanism to aggregate variables. Bodnar et al. (2024) extended this to the use of a
perceiver. The latter was also use in Majid et al. (2024). With this in mind, we evaluated the use of a perceiver
to aggregate input tokens and process outputs. As table 8, we obtained considerably worse performance.
Note however that the memory consumption of the perceiver was such that we had to use a 32 by 32 token
size in this case. Which of course makes the problem worse that the perceiver was supposed to address.

Let us conclude with a few remarks about the flow model. To start, it is remarkable how well it performs
given its miniscule parameter count. For AI forecasting and foundation models in atmospheric physics, it
is very common not to model the target directly, but to model the difference of the target from some known
quantity. In Lam et al. (2022) the authors predicted the difference of the latest input timestamp Xt from
the target Xt+1. That is, the model was trained to predict the difference from persistence. Noting that in
the presence of sharp features the model has to learn to exactly remove the sharp feature from Xt and add
it at a new location in Xt+1, Lang et al. (2024) improved on this by only considering the deviation from
a smoothened version of Xt. Schmude et al. (2024) was interested in the case of zero lead time. Here,
predicting a difference from the presence becomes meaningless and the authors chose to instead model the
delta from historical climate. In either case, given the parameter efficiency of the flow model, it is tempting
to first train a flow model and then a transformer to model the discrepancy between the flow model and the
actual target. In our ablation studies, we found this to perform worse than simply regressing directly onto
the target.

B ADDITIONAL RESULTS

B.1 IMPACT OF ROLLOUT TUNING

Table 9 shows the data corresponding to figure 5. Note that rollout tuning massively improves model perfor-
mance at long lead times, we also see ever so slightly decreasing performance at the shortest ones. I.e. the
best performing model at 1 hour ahead lead time is actually Surya before phase 2 of pretraining.

B.2 VISUAL PREDICTION OF SOLAR FLARES

B.2.1 THE 2024-01-07 EVENT

Figures 12, 13, and 14 show model inputs and outputs as well as ground truth for a solar flare event on
January 7, 2014. This is complementary to figures 1 and 8. Note that both cases show testing data. See
section 2.1.2 for a discussion of the train/test split.
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In 0: 2014-01-07 16:24 In 1: 2014-01-07 17:24 Out 0: 2014-01-07 18:24 Out 1: 2014-01-07 19:24

GT 0: 2014-01-07 18:24 GT 1: 2014-01-07 19:24

Figure 12: Surya inputs, outputs, and ground truth for January 7, 2014. AIA 94Å. Top row, left two columns
are model inputs (“In”). Top row, right two columns are model outputs (“Out”). Bottom row shows the
corresponding ground truth (“GT”). The model is initialized slightly later than in 13, so the flare is already
visible in its first output frame 60 minutes ahead.

In 0: 2014-01-07 15:24 In 1: 2014-01-07 16:24 Out 0: 2014-01-07 17:24 Out 1: 2014-01-07 18:24

GT 0: 2014-01-07 17:24 GT 1: 2014-01-07 18:24

Figure 13: Surya inputs, outputs, and ground truth for January 7, 2014. AIA 94Å. Top row, left two columns
are model inputs (“In”). Top row, right two columns are model outputs (“Out”). Bottom row shows corre-
sponding ground truth (“GT”).
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In 0: 2014-01-07 15:00 In 1: 2014-01-07 16:00 Out 0: 2014-01-07 17:00 Out 1: 2014-01-07 18:00

In 0: 2014-01-07 15:12 In 1: 2014-01-07 16:12 Out 0: 2014-01-07 17:12 Out 1: 2014-01-07 18:12

In 0: 2014-01-07 15:24 In 1: 2014-01-07 16:24 Out 0: 2014-01-07 17:24 Out 1: 2014-01-07 18:24

In 0: 2014-01-07 15:36 In 1: 2014-01-07 16:36 Out 0: 2014-01-07 17:36 Out 1: 2014-01-07 18:36

In 0: 2014-01-07 15:48 In 1: 2014-01-07 16:48 Out 0: 2014-01-07 17:48 Out 1: 2014-01-07 18:48

In 0: 2014-01-07 16:00 In 1: 2014-01-07 17:00 Out 0: 2014-01-07 18:00 Out 1: 2014-01-07 19:00

In 0: 2014-01-07 16:12 In 1: 2014-01-07 17:12 Out 0: 2014-01-07 18:12 Out 1: 2014-01-07 19:12

In 0: 2014-01-07 16:24 In 1: 2014-01-07 17:24 Out 0: 2014-01-07 18:24 Out 1: 2014-01-07 19:24

1

Figure 14: Surya inputs and outputs with different initializations for January 7, 2014. AIA 94Å.
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Table 9: Impact of rollout tuning. The table shows validation loss (MSE) per lead time for lead times up to
12 hours ahead (rows). Columns show persistence and flow baselines as well as Surya at various stages of
pretraining. The 5 hour ahead tuned version (rightmost column) corresponds to Surya as released. The best
score in each row is marked in bold.

Persistence Flow 1 hour (no rollout) 2 hours 3 hours 4 hours 5 hours
1 0.59868 0.34204 0.20133 0.20153 0.20159 0.20169 0.20172
2 0.70594 0.40124 0.22738 0.22371 0.22352 0.22359 0.22351
3 0.77862 0.45497 0.24889 0.24182 0.23928 0.23902 0.23889
4 0.83790 0.50416 0.26662 0.25759 0.25213 0.25125 0.25078
5 0.89444 0.55291 0.27976 0.26957 0.26295 0.26141 0.26064
6 0.94441 0.59671 0.29362 0.28111 0.27366 0.27140 0.26995
7 0.99986 0.64647 0.31217 0.29536 0.28557 0.28113 0.27854
8 1.04645 0.68856 0.32528 0.30458 0.29519 0.29018 0.28583
9 1.09013 0.72833 0.33984 0.31209 0.30361 0.29777 0.29216

10 1.12573 0.76106 0.35257 0.31934 0.31181 0.30522 0.29868
11 1.14940 0.78280 0.37037 0.33154 0.32443 0.31638 0.30789
12 1.16841 0.79964 0.38517 0.34304 0.33786 0.32791 0.31651
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