nbroad commited on
Commit
6e0489f
·
verified ·
1 Parent(s): b875fc2

Training in progress, step 100

Browse files
.gitattributes CHANGED
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
37
+ wandb/run-20250201_230729-f0utp5v4/run-f0utp5v4.wandb filter=lfs diff=lfs merge=lfs -text
.hydra/config.yaml ADDED
@@ -0,0 +1,80 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ time_start: null
2
+ DEBUG: false
3
+ debug_model: unsloth/Qwen2.5-7B-bnb-4bit
4
+ fold: 0
5
+ random_seed: true
6
+ train_on_all_folds: false
7
+ eval_only: false
8
+ merge_adapters: false
9
+ wandb_id: null
10
+ val_split_name: val
11
+ pad_token: <pad>
12
+ response_template_ids:
13
+ - 4
14
+ num_proc: 20
15
+ hub_repo_tags:
16
+ - odesia
17
+ script_args:
18
+ dataset_name: nbroad/odesia-combined-v1
19
+ config: null
20
+ gradient_checkpointing_use_reentrant: true
21
+ ignore_bias_buffers: false
22
+ model_config:
23
+ model_name_or_path: mistralai/Ministral-8B-Instruct-2410
24
+ torch_dtype: bfloat16
25
+ attn_implementation: flash_attention_2
26
+ use_peft: true
27
+ lora_r: 16
28
+ lora_alpha: 32
29
+ lora_dropout: 0.05
30
+ lora_target_modules:
31
+ - q_proj
32
+ - v_proj
33
+ - k_proj
34
+ - o_proj
35
+ - up_proj
36
+ - down_proj
37
+ - gate_proj
38
+ lora_modules_to_save: null
39
+ lora_task_type: CAUSAL_LM
40
+ use_rslora: true
41
+ load_in_8bit: false
42
+ load_in_4bit: false
43
+ bnb_4bit_quant_type: nf4
44
+ use_bnb_nested_quant: true
45
+ training_args:
46
+ resume_from_checkpoint: null
47
+ output_dir: ./
48
+ num_train_epochs: 1
49
+ per_device_train_batch_size: 8
50
+ per_device_eval_batch_size: 8
51
+ warmup_ratio: 0.1
52
+ fp16: false
53
+ bf16: true
54
+ eval_strategy: steps
55
+ save_strategy: steps
56
+ eval_steps: 100
57
+ save_steps: 100
58
+ save_total_limit: 2
59
+ logging_steps: 2
60
+ run_name: null
61
+ weight_decay: 0.01
62
+ report_to: wandb
63
+ learning_rate: 6.0e-05
64
+ metric_for_best_model: loss
65
+ greater_is_better: false
66
+ gradient_checkpointing: true
67
+ gradient_accumulation_steps: 8
68
+ gradient_checkpointing_kwargs:
69
+ use_reentrant: true
70
+ optim: adamw_torch
71
+ dataloader_num_workers: 4
72
+ seed: 18
73
+ max_grad_norm: 2.0
74
+ load_best_model_at_end: true
75
+ push_to_hub: true
76
+ hub_private_repo: true
77
+ lr_scheduler_type: cosine
78
+ remove_unused_columns: false
79
+ ddp_find_unused_parameters: false
80
+ use_liger_kernel: true
.hydra/hydra.yaml ADDED
@@ -0,0 +1,157 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ hydra:
2
+ run:
3
+ dir: outputs/${now:%Y-%m-%d}/${now:%H-%M-%S}
4
+ sweep:
5
+ dir: multirun/${now:%Y-%m-%d}/${now:%H-%M-%S}
6
+ subdir: ${hydra.job.num}
7
+ launcher:
8
+ _target_: hydra._internal.core_plugins.basic_launcher.BasicLauncher
9
+ sweeper:
10
+ _target_: hydra._internal.core_plugins.basic_sweeper.BasicSweeper
11
+ max_batch_size: null
12
+ params: null
13
+ help:
14
+ app_name: ${hydra.job.name}
15
+ header: '${hydra.help.app_name} is powered by Hydra.
16
+
17
+ '
18
+ footer: 'Powered by Hydra (https://hydra.cc)
19
+
20
+ Use --hydra-help to view Hydra specific help
21
+
22
+ '
23
+ template: '${hydra.help.header}
24
+
25
+ == Configuration groups ==
26
+
27
+ Compose your configuration from those groups (group=option)
28
+
29
+
30
+ $APP_CONFIG_GROUPS
31
+
32
+
33
+ == Config ==
34
+
35
+ Override anything in the config (foo.bar=value)
36
+
37
+
38
+ $CONFIG
39
+
40
+
41
+ ${hydra.help.footer}
42
+
43
+ '
44
+ hydra_help:
45
+ template: 'Hydra (${hydra.runtime.version})
46
+
47
+ See https://hydra.cc for more info.
48
+
49
+
50
+ == Flags ==
51
+
52
+ $FLAGS_HELP
53
+
54
+
55
+ == Configuration groups ==
56
+
57
+ Compose your configuration from those groups (For example, append hydra/job_logging=disabled
58
+ to command line)
59
+
60
+
61
+ $HYDRA_CONFIG_GROUPS
62
+
63
+
64
+ Use ''--cfg hydra'' to Show the Hydra config.
65
+
66
+ '
67
+ hydra_help: ???
68
+ hydra_logging:
69
+ version: 1
70
+ formatters:
71
+ simple:
72
+ format: '[%(asctime)s][HYDRA] %(message)s'
73
+ handlers:
74
+ console:
75
+ class: logging.StreamHandler
76
+ formatter: simple
77
+ stream: ext://sys.stdout
78
+ root:
79
+ level: INFO
80
+ handlers:
81
+ - console
82
+ loggers:
83
+ logging_example:
84
+ level: DEBUG
85
+ disable_existing_loggers: false
86
+ job_logging:
87
+ version: 1
88
+ formatters:
89
+ simple:
90
+ format: '[%(asctime)s][%(name)s][%(levelname)s] - %(message)s'
91
+ handlers:
92
+ console:
93
+ class: logging.StreamHandler
94
+ formatter: simple
95
+ stream: ext://sys.stdout
96
+ file:
97
+ class: logging.FileHandler
98
+ formatter: simple
99
+ filename: ${hydra.runtime.output_dir}/${hydra.job.name}.log
100
+ root:
101
+ level: INFO
102
+ handlers:
103
+ - console
104
+ - file
105
+ disable_existing_loggers: false
106
+ env: {}
107
+ mode: RUN
108
+ searchpath: []
109
+ callbacks: {}
110
+ output_subdir: .hydra
111
+ overrides:
112
+ hydra:
113
+ - hydra.mode=RUN
114
+ task: []
115
+ job:
116
+ name: train
117
+ chdir: null
118
+ override_dirname: ''
119
+ id: ???
120
+ num: ???
121
+ config_name: ministral.yaml
122
+ env_set:
123
+ WANDB_RUN_GROUP: clm
124
+ TOKENIZERS_PARALLELISM: 'False'
125
+ HF_HUB_ENABLE_HF_TRANSFER: '0'
126
+ env_copy: []
127
+ config:
128
+ override_dirname:
129
+ kv_sep: '='
130
+ item_sep: ','
131
+ exclude_keys: []
132
+ runtime:
133
+ version: 1.3.2
134
+ version_base: '1.1'
135
+ cwd: /home/ubuntu/odesia-2025/train
136
+ config_sources:
137
+ - path: hydra.conf
138
+ schema: pkg
139
+ provider: hydra
140
+ - path: /home/ubuntu/odesia-2025/train/conf
141
+ schema: file
142
+ provider: main
143
+ - path: ''
144
+ schema: structured
145
+ provider: schema
146
+ output_dir: /home/ubuntu/odesia-2025/train/outputs/2025-02-01/23-07-29
147
+ choices:
148
+ hydra/env: default
149
+ hydra/callbacks: null
150
+ hydra/job_logging: default
151
+ hydra/hydra_logging: default
152
+ hydra/hydra_help: default
153
+ hydra/help: default
154
+ hydra/sweeper: basic
155
+ hydra/launcher: basic
156
+ hydra/output: default
157
+ verbose: false
.hydra/overrides.yaml ADDED
@@ -0,0 +1 @@
 
 
1
+ []
adapter_config.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "mistralai/Ministral-8B-Instruct-2410",
5
+ "bias": "none",
6
+ "eva_config": null,
7
+ "exclude_modules": null,
8
+ "fan_in_fan_out": false,
9
+ "inference_mode": true,
10
+ "init_lora_weights": true,
11
+ "layer_replication": null,
12
+ "layers_pattern": null,
13
+ "layers_to_transform": null,
14
+ "loftq_config": {},
15
+ "lora_alpha": 32,
16
+ "lora_bias": false,
17
+ "lora_dropout": 0.05,
18
+ "megatron_config": null,
19
+ "megatron_core": "megatron.core",
20
+ "modules_to_save": null,
21
+ "peft_type": "LORA",
22
+ "r": 16,
23
+ "rank_pattern": {},
24
+ "revision": null,
25
+ "target_modules": [
26
+ "v_proj",
27
+ "up_proj",
28
+ "down_proj",
29
+ "k_proj",
30
+ "o_proj",
31
+ "q_proj",
32
+ "gate_proj"
33
+ ],
34
+ "task_type": "CAUSAL_LM",
35
+ "use_dora": false,
36
+ "use_rslora": true
37
+ }
adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:72ef603437fd4c7865ad680b7a08163250634b533159f2956050c3481f855947
3
+ size 174655536
special_tokens_map.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "<pad>",
17
+ "unk_token": {
18
+ "content": "<unk>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ }
24
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d7edbeaf20dd7f571b5dd1c54d9ace4f9b6299127cc7ba2afb14a6d51a4a79a4
3
+ size 17078136
tokenizer_config.json ADDED
The diff for this file is too large to render. See raw diff
 
train.log ADDED
File without changes
train.py ADDED
@@ -0,0 +1,252 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import (
2
+ AutoModelForCausalLM,
3
+ AutoTokenizer,
4
+ Trainer,
5
+ TrainingArguments,
6
+ )
7
+ from datasets import load_dataset
8
+ from omegaconf import DictConfig, OmegaConf
9
+ import hydra
10
+ import wandb
11
+ import shutil
12
+ import os
13
+ from functools import partial
14
+ from pathlib import Path
15
+ from trl import (
16
+ SFTTrainer,
17
+ ModelConfig,
18
+ get_quantization_config,
19
+ get_kbit_device_map,
20
+ get_peft_config,
21
+ DataCollatorForCompletionOnlyLM,
22
+ )
23
+ from dotenv import load_dotenv
24
+ from peft import (
25
+ get_peft_model,
26
+ prepare_model_for_kbit_training,
27
+ AutoPeftModelForSequenceClassification,
28
+ )
29
+
30
+ # from utils import add_metric_to_card
31
+
32
+ loaded = load_dotenv("../.env", override=True)
33
+
34
+ if not loaded:
35
+ raise ValueError("Failed to load .env file")
36
+
37
+
38
+ def tokenize(example, tokenizer):
39
+ ids = tokenizer.apply_chat_template([
40
+ {"role": "user", "content": example["text"]},
41
+ {"role": "assistant", "content": example["response"]},
42
+ ])
43
+
44
+ return {
45
+ "input_ids": ids,
46
+ }
47
+
48
+
49
+ @hydra.main(config_path="conf", config_name="q7b-4bit")
50
+ def main(cfg: DictConfig):
51
+
52
+ cfg.time_start = "_".join(str(Path.cwd()).rsplit("/", 2)[-2:])
53
+
54
+ if cfg.DEBUG:
55
+ cfg.model_config.model_name_or_path = cfg.debug_model
56
+
57
+ script_args = cfg.script_args
58
+ training_args = TrainingArguments(**OmegaConf.to_container(cfg.training_args))
59
+ model_config = ModelConfig(**OmegaConf.to_container(cfg.model_config))
60
+
61
+ if training_args.process_index == 0:
62
+
63
+ if cfg.eval_only or training_args.resume_from_checkpoint is not None:
64
+ wandb_id = cfg.wandb_id
65
+ resume = "must"
66
+ config = None
67
+ else:
68
+ wandb_id = None
69
+ resume = None
70
+ config = OmegaConf.to_container(cfg)
71
+
72
+ wandb.init(config=config, id=wandb_id, resume=resume)
73
+ # copy current file to output, so it gets saved to hub
74
+ shutil.copy(
75
+ Path(__file__).resolve(),
76
+ Path(training_args.output_dir) / Path(__file__).name,
77
+ )
78
+
79
+ shutil.copy(
80
+ Path(__file__).resolve().parent / "utils.py",
81
+ Path(training_args.output_dir) / "utils.py",
82
+ )
83
+
84
+ quantization_config = get_quantization_config(model_config)
85
+ model_kwargs = dict(
86
+ revision=model_config.model_revision,
87
+ trust_remote_code=model_config.trust_remote_code,
88
+ attn_implementation=model_config.attn_implementation,
89
+ torch_dtype=model_config.torch_dtype,
90
+ use_cache=False if training_args.gradient_checkpointing else True,
91
+ device_map=get_kbit_device_map() if quantization_config is not None else None,
92
+ quantization_config=quantization_config,
93
+ cache_dir=os.environ["HF_HUB_CACHE"],
94
+ )
95
+
96
+ peft_config = get_peft_config(model_config)
97
+
98
+ if training_args.use_liger_kernel:
99
+ from liger_kernel.transformers import (
100
+ apply_liger_kernel_to_qwen2,
101
+ apply_liger_kernel_to_llama,
102
+ apply_liger_kernel_to_mistral,
103
+ )
104
+
105
+ apply_liger_kernel_to_qwen2()
106
+ apply_liger_kernel_to_llama()
107
+ apply_liger_kernel_to_mistral()
108
+ if cfg.eval_only:
109
+
110
+ model = AutoPeftModelForSequenceClassification.from_pretrained(
111
+ model_config.model_name_or_path,
112
+ **model_kwargs,
113
+ token=os.environ["HF_WRITE_PERSONAL"],
114
+ )
115
+
116
+ if cfg.merge_adapters:
117
+ model = model.merge_and_unload()
118
+
119
+ else:
120
+
121
+ model = AutoModelForCausalLM.from_pretrained(
122
+ model_config.model_name_or_path,
123
+ **model_kwargs,
124
+ token=os.environ["HF_GATED"],
125
+ )
126
+
127
+ tokenizer = AutoTokenizer.from_pretrained(
128
+ model_config.model_name_or_path,
129
+ use_fast=True,
130
+ token=os.environ["HF_GATED"],
131
+ )
132
+
133
+ tokenizer.padding_side = "left"
134
+ tokenizer.pad_token = cfg.pad_token
135
+
136
+
137
+ if not cfg.eval_only and model_config.load_in_4bit:
138
+ model = prepare_model_for_kbit_training(
139
+ model,
140
+ use_gradient_checkpointing=training_args.gradient_checkpointing,
141
+ gradient_checkpointing_kwargs=training_args.gradient_checkpointing_kwargs,
142
+ )
143
+
144
+ elif not cfg.eval_only and training_args.gradient_checkpointing:
145
+ model.enable_input_require_grads()
146
+
147
+ if not cfg.eval_only:
148
+ model = get_peft_model(model, peft_config)
149
+
150
+ with training_args.main_process_first():
151
+ ds = load_dataset(
152
+ script_args.dataset_name,
153
+ script_args.config,
154
+ token=os.environ["HF_WRITE_PERSONAL"],
155
+ )
156
+
157
+ if cfg.DEBUG:
158
+ ds[cfg.train_split_name] = (
159
+ ds[cfg.train_split_name].shuffle().select(range(100))
160
+ )
161
+ ds[cfg.val_split_name] = ds[cfg.val_split_name].shuffle().select(range(100))
162
+
163
+ if not cfg.eval_only:
164
+ ds[cfg.val_split_name] = ds[cfg.val_split_name].shuffle().select(range(500))
165
+
166
+ ds = ds.map(tokenize, fn_kwargs={"tokenizer": tokenizer}, num_proc=cfg.num_proc, remove_columns=ds["train"].column_names)
167
+
168
+ collator = DataCollatorForCompletionOnlyLM(
169
+ tokenizer=tokenizer,
170
+ mlm=False,
171
+ pad_to_multiple_of=16,
172
+ response_template=cfg.response_template_ids
173
+ )
174
+
175
+ if training_args.process_index == 0:
176
+ group = os.environ["WANDB_RUN_GROUP"]
177
+ training_args.hub_model_id = f"nbroad/nbroad-odesia-{group}-{wandb.run.id}"
178
+ training_args.hub_token = os.environ["HF_WRITE_PERSONAL"]
179
+
180
+ prefix = ""
181
+
182
+ if cfg.eval_only:
183
+ if "awq" in model_config.model_name_or_path.lower():
184
+ prefix = "awq_"
185
+ if model_config.load_in_4bit:
186
+ prefix += "int4_"
187
+ elif model_config.torch_dtype == "bfloat16":
188
+ prefix += "bf16_"
189
+ elif model_config.torch_dtype == "float16":
190
+ prefix += "fp16_"
191
+
192
+ trainer = SFTTrainer(
193
+ model=model,
194
+ args=training_args,
195
+ train_dataset=ds["train"],
196
+ eval_dataset=(
197
+ ds[cfg.val_split_name] if training_args.eval_strategy != "no" else None
198
+ ),
199
+ processing_class=tokenizer,
200
+ data_collator=collator,
201
+ # compute_metrics=partial(compute_metrics, prefix=prefix),
202
+ )
203
+
204
+ if training_args.process_index == 0:
205
+
206
+ trainer.model.config.update(
207
+ {
208
+ "wandb_id": wandb.run.id,
209
+ "fold": cfg.fold,
210
+ "group": group,
211
+ "dataset": script_args.dataset_name,
212
+ }
213
+ )
214
+
215
+ if not cfg.eval_only:
216
+ if training_args.resume_from_checkpoint is not None:
217
+ os.chdir(Path(training_args.resume_from_checkpoint).parent)
218
+ trainer.train(resume_from_checkpoint=training_args.resume_from_checkpoint)
219
+ else:
220
+ metrics = trainer.evaluate()
221
+
222
+ # if training_args.process_index == 0:
223
+ # met = [x for x in metrics if "accuracy" in x][0]
224
+
225
+ # result = add_metric_to_card(
226
+ # repo=training_args.hub_model_id,
227
+ # metrics_pretty_name=met,
228
+ # metrics_value=metrics[met],
229
+ # dataset_id=script_args.dataset_name,
230
+ # dataset_split=cfg.val_split_name,
231
+ # model_path=model_config.model_name_or_path,
232
+ # model_dtype=model_config.torch_dtype,
233
+ # token=os.environ["HF_WRITE_PERSONAL"],
234
+ # )
235
+ # print(result)
236
+
237
+ if not cfg.eval_only:
238
+ # Save and push to hub
239
+ trainer.save_model(training_args.output_dir)
240
+ if training_args.push_to_hub:
241
+ trainer.push_to_hub(
242
+ dataset_name=script_args.dataset_name,
243
+ model_name=model_config.model_name_or_path,
244
+ tags=cfg.hub_repo_tags,
245
+ )
246
+
247
+ if training_args.process_index == 0:
248
+ wandb.finish()
249
+
250
+
251
+ if __name__ == "__main__":
252
+ main()
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:630794b30c10210f357fe4a09f9c3f5bc93c8d4d863fb3314cce36a75bd7f376
3
+ size 5624
utils.py ADDED
File without changes
wandb/debug-internal.log ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {"time":"2025-02-01T23:07:29.707725114Z","level":"INFO","msg":"stream: starting","core version":"0.19.5","symlink path":"/home/ubuntu/odesia-2025/train/outputs/2025-02-01/23-07-29/wandb/run-20250201_230729-f0utp5v4/logs/debug-core.log"}
2
+ {"time":"2025-02-01T23:07:29.811064717Z","level":"INFO","msg":"created new stream","id":"f0utp5v4"}
3
+ {"time":"2025-02-01T23:07:29.811095949Z","level":"INFO","msg":"stream: started","id":"f0utp5v4"}
4
+ {"time":"2025-02-01T23:07:29.81113275Z","level":"INFO","msg":"writer: Do: started","stream_id":"f0utp5v4"}
5
+ {"time":"2025-02-01T23:07:29.811142254Z","level":"INFO","msg":"sender: started","stream_id":"f0utp5v4"}
6
+ {"time":"2025-02-01T23:07:29.811153678Z","level":"INFO","msg":"handler: started","stream_id":"f0utp5v4"}
7
+ {"time":"2025-02-01T23:07:29.920262374Z","level":"INFO","msg":"Starting system monitor"}
wandb/debug.log ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 2025-02-01 23:07:29,501 INFO MainThread:9387 [wandb_setup.py:_flush():68] Current SDK version is 0.19.5
2
+ 2025-02-01 23:07:29,501 INFO MainThread:9387 [wandb_setup.py:_flush():68] Configure stats pid to 9387
3
+ 2025-02-01 23:07:29,501 INFO MainThread:9387 [wandb_setup.py:_flush():68] Loading settings from /home/ubuntu/.config/wandb/settings
4
+ 2025-02-01 23:07:29,501 INFO MainThread:9387 [wandb_setup.py:_flush():68] Loading settings from /home/ubuntu/odesia-2025/train/outputs/2025-02-01/23-07-29/wandb/settings
5
+ 2025-02-01 23:07:29,501 INFO MainThread:9387 [wandb_setup.py:_flush():68] Loading settings from environment variables
6
+ 2025-02-01 23:07:29,501 INFO MainThread:9387 [wandb_init.py:setup_run_log_directory():637] Logging user logs to /home/ubuntu/odesia-2025/train/outputs/2025-02-01/23-07-29/wandb/run-20250201_230729-f0utp5v4/logs/debug.log
7
+ 2025-02-01 23:07:29,501 INFO MainThread:9387 [wandb_init.py:setup_run_log_directory():638] Logging internal logs to /home/ubuntu/odesia-2025/train/outputs/2025-02-01/23-07-29/wandb/run-20250201_230729-f0utp5v4/logs/debug-internal.log
8
+ 2025-02-01 23:07:29,501 INFO MainThread:9387 [wandb_init.py:init():756] calling init triggers
9
+ 2025-02-01 23:07:29,501 INFO MainThread:9387 [wandb_init.py:init():761] wandb.init called with sweep_config: {}
10
+ config: {'time_start': '2025-02-01_23-07-29', 'DEBUG': False, 'debug_model': 'unsloth/Qwen2.5-7B-bnb-4bit', 'fold': 0, 'random_seed': True, 'train_on_all_folds': False, 'eval_only': False, 'merge_adapters': False, 'wandb_id': None, 'val_split_name': 'val', 'pad_token': '<pad>', 'response_template_ids': [4], 'num_proc': 20, 'hub_repo_tags': ['odesia'], 'script_args': {'dataset_name': 'nbroad/odesia-combined-v1', 'config': None, 'gradient_checkpointing_use_reentrant': True, 'ignore_bias_buffers': False}, 'model_config': {'model_name_or_path': 'mistralai/Ministral-8B-Instruct-2410', 'torch_dtype': 'bfloat16', 'attn_implementation': 'flash_attention_2', 'use_peft': True, 'lora_r': 16, 'lora_alpha': 32, 'lora_dropout': 0.05, 'lora_target_modules': ['q_proj', 'v_proj', 'k_proj', 'o_proj', 'up_proj', 'down_proj', 'gate_proj'], 'lora_modules_to_save': None, 'lora_task_type': 'CAUSAL_LM', 'use_rslora': True, 'load_in_8bit': False, 'load_in_4bit': False, 'bnb_4bit_quant_type': 'nf4', 'use_bnb_nested_quant': True}, 'training_args': {'resume_from_checkpoint': None, 'output_dir': './', 'num_train_epochs': 1, 'per_device_train_batch_size': 8, 'per_device_eval_batch_size': 8, 'warmup_ratio': 0.1, 'fp16': False, 'bf16': True, 'eval_strategy': 'steps', 'save_strategy': 'steps', 'eval_steps': 100, 'save_steps': 100, 'save_total_limit': 2, 'logging_steps': 2, 'run_name': None, 'weight_decay': 0.01, 'report_to': 'wandb', 'learning_rate': 6e-05, 'metric_for_best_model': 'loss', 'greater_is_better': False, 'gradient_checkpointing': True, 'gradient_accumulation_steps': 8, 'gradient_checkpointing_kwargs': {'use_reentrant': True}, 'optim': 'adamw_torch', 'dataloader_num_workers': 4, 'seed': 18, 'max_grad_norm': 2.0, 'load_best_model_at_end': True, 'push_to_hub': True, 'hub_private_repo': True, 'lr_scheduler_type': 'cosine', 'remove_unused_columns': False, 'ddp_find_unused_parameters': False, 'use_liger_kernel': True}, '_wandb': {}}
11
+ 2025-02-01 23:07:29,501 INFO MainThread:9387 [wandb_init.py:init():789] starting backend
12
+ 2025-02-01 23:07:29,705 INFO MainThread:9387 [wandb_init.py:init():793] sending inform_init request
13
+ 2025-02-01 23:07:29,706 INFO MainThread:9387 [backend.py:_multiprocessing_setup():97] multiprocessing start_methods=fork,spawn,forkserver, using: spawn
14
+ 2025-02-01 23:07:29,706 INFO MainThread:9387 [wandb_init.py:init():808] backend started and connected
15
+ 2025-02-01 23:07:29,708 INFO MainThread:9387 [wandb_init.py:init():901] updated telemetry
16
+ 2025-02-01 23:07:29,710 INFO MainThread:9387 [wandb_init.py:init():926] communicating run to backend with 90.0 second timeout
17
+ 2025-02-01 23:07:29,918 INFO MainThread:9387 [wandb_init.py:init():984] starting run threads in backend
18
+ 2025-02-01 23:07:30,016 INFO MainThread:9387 [wandb_run.py:_console_start():2385] atexit reg
19
+ 2025-02-01 23:07:30,016 INFO MainThread:9387 [wandb_run.py:_redirect():2235] redirect: wrap_raw
20
+ 2025-02-01 23:07:30,016 INFO MainThread:9387 [wandb_run.py:_redirect():2300] Wrapping output streams.
21
+ 2025-02-01 23:07:30,016 INFO MainThread:9387 [wandb_run.py:_redirect():2325] Redirects installed.
22
+ 2025-02-01 23:07:30,017 INFO MainThread:9387 [wandb_init.py:init():1026] run started, returning control to user process
23
+ 2025-02-01 23:08:27,289 INFO MainThread:9387 [wandb_run.py:_config_callback():1253] config_cb None None {'peft_config': {'default': {'task_type': 'CAUSAL_LM', 'peft_type': <PeftType.LORA: 'LORA'>, 'auto_mapping': None, 'base_model_name_or_path': 'mistralai/Ministral-8B-Instruct-2410', 'revision': None, 'inference_mode': False, 'r': 16, 'target_modules': {'v_proj', 'up_proj', 'down_proj', 'k_proj', 'o_proj', 'q_proj', 'gate_proj'}, 'exclude_modules': None, 'lora_alpha': 32, 'lora_dropout': 0.05, 'fan_in_fan_out': False, 'bias': 'none', 'use_rslora': True, 'modules_to_save': None, 'init_lora_weights': True, 'layers_to_transform': None, 'layers_pattern': None, 'rank_pattern': {}, 'alpha_pattern': {}, 'megatron_config': None, 'megatron_core': 'megatron.core', 'loftq_config': {}, 'eva_config': None, 'use_dora': False, 'layer_replication': None, 'runtime_config': {'ephemeral_gpu_offload': False}, 'lora_bias': False}}, 'vocab_size': 131072, 'max_position_embeddings': 32768, 'hidden_size': 4096, 'intermediate_size': 12288, 'num_hidden_layers': 36, 'num_attention_heads': 32, 'sliding_window': 32768, 'head_dim': 128, 'num_key_value_heads': 8, 'hidden_act': 'silu', 'initializer_range': 0.02, 'rms_norm_eps': 1e-05, 'use_cache': False, 'rope_theta': 100000000.0, 'attention_dropout': 0.0, 'return_dict': True, 'output_hidden_states': False, 'output_attentions': False, 'torchscript': False, 'torch_dtype': 'bfloat16', 'use_bfloat16': False, 'tf_legacy_loss': False, 'pruned_heads': {}, 'tie_word_embeddings': False, 'chunk_size_feed_forward': 0, 'is_encoder_decoder': False, 'is_decoder': False, 'cross_attention_hidden_size': None, 'add_cross_attention': False, 'tie_encoder_decoder': False, 'max_length': 20, 'min_length': 0, 'do_sample': False, 'early_stopping': False, 'num_beams': 1, 'num_beam_groups': 1, 'diversity_penalty': 0.0, 'temperature': 1.0, 'top_k': 50, 'top_p': 1.0, 'typical_p': 1.0, 'repetition_penalty': 1.0, 'length_penalty': 1.0, 'no_repeat_ngram_size': 0, 'encoder_no_repeat_ngram_size': 0, 'bad_words_ids': None, 'num_return_sequences': 1, 'output_scores': False, 'return_dict_in_generate': False, 'forced_bos_token_id': None, 'forced_eos_token_id': None, 'remove_invalid_values': False, 'exponential_decay_length_penalty': None, 'suppress_tokens': None, 'begin_suppress_tokens': None, 'architectures': ['MistralForCausalLM'], 'finetuning_task': None, 'id2label': {0: 'LABEL_0', 1: 'LABEL_1'}, 'label2id': {'LABEL_0': 0, 'LABEL_1': 1}, 'tokenizer_class': None, 'prefix': None, 'bos_token_id': 1, 'pad_token_id': None, 'eos_token_id': 2, 'sep_token_id': None, 'decoder_start_token_id': None, 'task_specific_params': None, 'problem_type': None, '_name_or_path': 'mistralai/Ministral-8B-Instruct-2410', '_attn_implementation_autoset': True, 'transformers_version': '4.48.2', 'model_type': 'mistral', 'wandb_id': 'f0utp5v4', 'fold': 0, 'group': 'clm', 'dataset': 'nbroad/odesia-combined-v1', 'output_dir': './', 'overwrite_output_dir': False, 'do_train': False, 'do_eval': True, 'do_predict': False, 'eval_strategy': 'steps', 'prediction_loss_only': False, 'per_device_train_batch_size': 8, 'per_device_eval_batch_size': 8, 'per_gpu_train_batch_size': None, 'per_gpu_eval_batch_size': None, 'gradient_accumulation_steps': 8, 'eval_accumulation_steps': None, 'eval_delay': 0, 'torch_empty_cache_steps': None, 'learning_rate': 6e-05, 'weight_decay': 0.01, 'adam_beta1': 0.9, 'adam_beta2': 0.999, 'adam_epsilon': 1e-08, 'max_grad_norm': 2.0, 'num_train_epochs': 1, 'max_steps': -1, 'lr_scheduler_type': 'cosine', 'lr_scheduler_kwargs': {}, 'warmup_ratio': 0.1, 'warmup_steps': 0, 'log_level': 'passive', 'log_level_replica': 'warning', 'log_on_each_node': True, 'logging_dir': './runs/Feb01_23-07-29_192-222-56-224', 'logging_strategy': 'steps', 'logging_first_step': False, 'logging_steps': 2, 'logging_nan_inf_filter': True, 'save_strategy': 'steps', 'save_steps': 100, 'save_total_limit': 2, 'save_safetensors': True, 'save_on_each_node': False, 'save_only_model': False, 'restore_callback_states_from_checkpoint': False, 'no_cuda': False, 'use_cpu': False, 'use_mps_device': False, 'seed': 18, 'data_seed': None, 'jit_mode_eval': False, 'use_ipex': False, 'bf16': True, 'fp16': False, 'fp16_opt_level': 'O1', 'half_precision_backend': 'auto', 'bf16_full_eval': False, 'fp16_full_eval': False, 'tf32': None, 'local_rank': 0, 'ddp_backend': None, 'tpu_num_cores': None, 'tpu_metrics_debug': False, 'debug': [], 'dataloader_drop_last': False, 'eval_steps': 100, 'dataloader_num_workers': 4, 'dataloader_prefetch_factor': None, 'past_index': -1, 'run_name': './', 'disable_tqdm': False, 'remove_unused_columns': False, 'label_names': None, 'load_best_model_at_end': True, 'metric_for_best_model': 'loss', 'greater_is_better': False, 'ignore_data_skip': False, 'fsdp': [], 'fsdp_min_num_params': 0, 'fsdp_config': {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}, 'fsdp_transformer_layer_cls_to_wrap': None, 'accelerator_config': {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}, 'deepspeed': None, 'label_smoothing_factor': 0.0, 'optim': 'adamw_torch', 'optim_args': None, 'adafactor': False, 'group_by_length': False, 'length_column_name': 'length', 'report_to': ['wandb'], 'ddp_find_unused_parameters': False, 'ddp_bucket_cap_mb': None, 'ddp_broadcast_buffers': None, 'dataloader_pin_memory': True, 'dataloader_persistent_workers': False, 'skip_memory_metrics': True, 'use_legacy_prediction_loop': False, 'push_to_hub': True, 'resume_from_checkpoint': None, 'hub_model_id': 'nbroad/nbroad-odesia-clm-f0utp5v4', 'hub_strategy': 'every_save', 'hub_token': '<HUB_TOKEN>', 'hub_private_repo': True, 'hub_always_push': False, 'gradient_checkpointing': True, 'gradient_checkpointing_kwargs': {'use_reentrant': True}, 'include_inputs_for_metrics': False, 'include_for_metrics': [], 'eval_do_concat_batches': True, 'fp16_backend': 'auto', 'evaluation_strategy': None, 'push_to_hub_model_id': None, 'push_to_hub_organization': None, 'push_to_hub_token': '<PUSH_TO_HUB_TOKEN>', 'mp_parameters': '', 'auto_find_batch_size': False, 'full_determinism': False, 'torchdynamo': None, 'ray_scope': 'last', 'ddp_timeout': 1800, 'torch_compile': False, 'torch_compile_backend': None, 'torch_compile_mode': None, 'dispatch_batches': None, 'split_batches': None, 'include_tokens_per_second': False, 'include_num_input_tokens_seen': False, 'neftune_noise_alpha': None, 'optim_target_modules': None, 'batch_eval_metrics': False, 'eval_on_start': False, 'use_liger_kernel': True, 'eval_use_gather_object': False, 'average_tokens_across_devices': False, 'dataset_text_field': 'text', 'packing': False, 'max_seq_length': 1024, 'dataset_num_proc': None, 'dataset_batch_size': 1000, 'model_init_kwargs': None, 'dataset_kwargs': {}, 'eval_packing': None, 'num_of_sequences': 1024, 'chars_per_token': '<CHARS_PER_TOKEN>', 'use_liger': False}
24
+ 2025-02-01 23:08:27,294 INFO MainThread:9387 [wandb_config.py:__setitem__():154] config set model/num_parameters = 8063455232 - <bound method Run._config_callback of <wandb.sdk.wandb_run.Run object at 0xfedf481b3130>>
25
+ 2025-02-01 23:08:27,294 INFO MainThread:9387 [wandb_run.py:_config_callback():1253] config_cb model/num_parameters 8063455232 None
wandb/run-20250201_230729-f0utp5v4/files/output.log ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Applied Liger kernels to Qwen2
2
+ You are attempting to use Flash Attention 2.0 with a model not initialized on GPU. Make sure to move the model to GPU after initializing it on CPU with `model.to('cuda')`.
3
+ Loading checkpoint shards: 100%|███████████████████████████████████████████████████████| 4/4 [00:00<00:00, 9.63it/s]
4
+ You are using the default legacy behaviour of the <class 'transformers.models.llama.tokenization_llama_fast.LlamaTokenizerFast'>. This is expected, and simply means that the `legacy` (previous) behavior will be used so nothing changes for you. If you want to use the new behaviour, set `legacy=False`. This should only be set if you understand what it means, and thoroughly read the reason why this was added as explained in https://github.com/huggingface/transformers/pull/24565 - if you loaded a llama tokenizer from a GGUF file you can ignore this message.
5
+ Map (num_proc=20): 100%|███████████████████████████████████████████████████| 500/500 [00:03<00:00, 142.98 examples/s]
6
+ /home/ubuntu/.local/lib/python3.10/site-packages/trl/trainer/sft_trainer.py:300: UserWarning: You passed a processing_class with `padding_side` not equal to `right` to the SFTTrainer. This might lead to some unexpected behaviour due to overflow issues when training a model in half-precision. You might consider adding `processing_class.padding_side = 'right'` to your code.
7
+ warnings.warn(
8
+ The model is not an instance of PreTrainedModel. No liger kernels will be applied.
9
+ wandb: WARNING The `run_name` is currently set to the same value as `TrainingArguments.output_dir`. If this was not intended, please specify a different run name by setting the `TrainingArguments.run_name` parameter.
10
+
11
+ {'loss': 0.9506, 'grad_norm': 43.904598236083984, 'learning_rate': 2.1428571428571427e-06, 'epoch': 0.0}
12
+ {'loss': 0.7928, 'grad_norm': 28.828706741333008, 'learning_rate': 4.2857142857142855e-06, 'epoch': 0.01}
13
+ {'loss': 0.7947, 'grad_norm': 20.504751205444336, 'learning_rate': 6.428571428571429e-06, 'epoch': 0.01}
14
+ {'loss': 0.4011, 'grad_norm': 10.117717742919922, 'learning_rate': 8.571428571428571e-06, 'epoch': 0.01}
15
+ {'loss': 0.3382, 'grad_norm': 8.685040473937988, 'learning_rate': 1.0714285714285714e-05, 'epoch': 0.02}
16
+ {'loss': 0.2912, 'grad_norm': 9.239078521728516, 'learning_rate': 1.2857142857142857e-05, 'epoch': 0.02}
17
+ {'loss': 0.2343, 'grad_norm': 5.444039344787598, 'learning_rate': 1.5e-05, 'epoch': 0.03}
18
+ {'loss': 0.2005, 'grad_norm': 6.025508880615234, 'learning_rate': 1.7142857142857142e-05, 'epoch': 0.03}
19
+ {'loss': 0.1983, 'grad_norm': 4.520172595977783, 'learning_rate': 1.928571428571429e-05, 'epoch': 0.03}
20
+ {'loss': 0.2099, 'grad_norm': 4.423872947692871, 'learning_rate': 2.1428571428571428e-05, 'epoch': 0.04}
21
+ {'loss': 0.1928, 'grad_norm': 4.764410018920898, 'learning_rate': 2.357142857142857e-05, 'epoch': 0.04}
22
+ {'loss': 0.1733, 'grad_norm': 3.6303350925445557, 'learning_rate': 2.5714285714285714e-05, 'epoch': 0.04}
23
+ {'loss': 0.2067, 'grad_norm': 3.779996395111084, 'learning_rate': 2.7857142857142858e-05, 'epoch': 0.05}
24
+ {'loss': 0.2261, 'grad_norm': 4.439054012298584, 'learning_rate': 3e-05, 'epoch': 0.05}
25
+ {'loss': 0.2546, 'grad_norm': 4.5176215171813965, 'learning_rate': 3.2142857142857144e-05, 'epoch': 0.05}
26
+ {'loss': 0.1637, 'grad_norm': 3.3032355308532715, 'learning_rate': 3.4285714285714284e-05, 'epoch': 0.06}
27
+ {'loss': 0.1875, 'grad_norm': 4.7432169914245605, 'learning_rate': 3.6428571428571423e-05, 'epoch': 0.06}
28
+ {'loss': 0.1727, 'grad_norm': 3.2494094371795654, 'learning_rate': 3.857142857142858e-05, 'epoch': 0.06}
29
+ {'loss': 0.1926, 'grad_norm': 4.482065200805664, 'learning_rate': 4.0714285714285717e-05, 'epoch': 0.07}
30
+ {'loss': 0.1706, 'grad_norm': 2.981718063354492, 'learning_rate': 4.2857142857142856e-05, 'epoch': 0.07}
31
+ {'loss': 0.1594, 'grad_norm': 4.96915864944458, 'learning_rate': 4.5e-05, 'epoch': 0.08}
32
+ {'loss': 0.1828, 'grad_norm': 3.0867984294891357, 'learning_rate': 4.714285714285714e-05, 'epoch': 0.08}
33
+ {'loss': 0.1709, 'grad_norm': 3.345247507095337, 'learning_rate': 4.928571428571428e-05, 'epoch': 0.08}
34
+ {'loss': 0.1815, 'grad_norm': 3.01137638092041, 'learning_rate': 5.142857142857143e-05, 'epoch': 0.09}
35
+ {'loss': 0.2335, 'grad_norm': 5.000576972961426, 'learning_rate': 5.3571428571428575e-05, 'epoch': 0.09}
36
+ {'loss': 0.193, 'grad_norm': 6.766908168792725, 'learning_rate': 5.5714285714285715e-05, 'epoch': 0.09}
37
+ {'loss': 0.1902, 'grad_norm': 4.348695755004883, 'learning_rate': 5.785714285714286e-05, 'epoch': 0.1}
38
+ {'loss': 0.1889, 'grad_norm': 3.219531774520874, 'learning_rate': 6e-05, 'epoch': 0.1}
39
+ {'loss': 0.1536, 'grad_norm': 3.3314571380615234, 'learning_rate': 5.999763132611449e-05, 'epoch': 0.1}
40
+ {'loss': 0.1715, 'grad_norm': 3.6466634273529053, 'learning_rate': 5.9990525678499e-05, 'epoch': 0.11}
41
+ {'loss': 0.1848, 'grad_norm': 3.5136561393737793, 'learning_rate': 5.9978684179217676e-05, 'epoch': 0.11}
42
+ {'loss': 0.1405, 'grad_norm': 2.3875110149383545, 'learning_rate': 5.996210869818053e-05, 'epoch': 0.12}
43
+ {'loss': 0.1667, 'grad_norm': 2.477057695388794, 'learning_rate': 5.994080185284815e-05, 'epoch': 0.12}
44
+ {'loss': 0.1254, 'grad_norm': 2.3600058555603027, 'learning_rate': 5.991476700781841e-05, 'epoch': 0.12}
45
+ {'loss': 0.2003, 'grad_norm': 3.6588945388793945, 'learning_rate': 5.9884008274295174e-05, 'epoch': 0.13}
46
+ {'loss': 0.1626, 'grad_norm': 2.740492343902588, 'learning_rate': 5.984853050943901e-05, 'epoch': 0.13}
47
+ {'loss': 0.2002, 'grad_norm': 3.283466339111328, 'learning_rate': 5.9808339315600256e-05, 'epoch': 0.13}
48
+ {'loss': 0.1682, 'grad_norm': 2.546633243560791, 'learning_rate': 5.976344103943434e-05, 'epoch': 0.14}
49
+ {'loss': 0.1892, 'grad_norm': 3.356383800506592, 'learning_rate': 5.971384277089953e-05, 'epoch': 0.14}
50
+ {'loss': 0.1502, 'grad_norm': 2.480137348175049, 'learning_rate': 5.965955234213742e-05, 'epoch': 0.14}
51
+ {'loss': 0.1647, 'grad_norm': 3.033668041229248, 'learning_rate': 5.960057832623604e-05, 'epoch': 0.15}
52
+ {'loss': 0.1562, 'grad_norm': 1.9358534812927246, 'learning_rate': 5.9536930035876166e-05, 'epoch': 0.15}
53
+ {'loss': 0.1617, 'grad_norm': 4.796277046203613, 'learning_rate': 5.9468617521860666e-05, 'epoch': 0.15}
54
+ {'loss': 0.1382, 'grad_norm': 2.9329020977020264, 'learning_rate': 5.939565157152741e-05, 'epoch': 0.16}
55
+ {'loss': 0.1484, 'grad_norm': 3.4402196407318115, 'learning_rate': 5.9318043707045806e-05, 'epoch': 0.16}
56
+ {'loss': 0.1837, 'grad_norm': 2.546185255050659, 'learning_rate': 5.923580618359732e-05, 'epoch': 0.17}
57
+ {'loss': 0.1634, 'grad_norm': 2.6801390647888184, 'learning_rate': 5.9148951987440224e-05, 'epoch': 0.17}
58
+ {'loss': 0.1356, 'grad_norm': 2.303766965866089, 'learning_rate': 5.9057494833858934e-05, 'epoch': 0.17}
59
+ {'loss': 0.1862, 'grad_norm': 6.340909957885742, 'learning_rate': 5.896144916499822e-05, 'epoch': 0.18}
60
+ {'loss': 0.1572, 'grad_norm': 5.256030082702637, 'learning_rate': 5.8860830147582575e-05, 'epoch': 0.18}
61
+
62
+ {'eval_loss': 0.16956467926502228, 'eval_runtime': 33.4907, 'eval_samples_per_second': 14.93, 'eval_steps_per_second': 1.881, 'epoch': 0.18}
wandb/run-20250201_230729-f0utp5v4/files/requirements.txt ADDED
@@ -0,0 +1,228 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ aiohttp==3.11.11
2
+ typing_extensions==4.12.2
3
+ antlr4-python3-runtime==4.9.3
4
+ async-timeout==5.0.1
5
+ huggingface-hub==0.28.1
6
+ wandb==0.19.5
7
+ docker-pycreds==0.4.0
8
+ urllib3==2.3.0
9
+ pyarrow==19.0.0
10
+ omegaconf==2.3.0
11
+ pydantic==2.10.6
12
+ python-dotenv==1.0.1
13
+ multiprocess==0.70.16
14
+ aiosignal==1.3.2
15
+ hf_transfer==0.1.9
16
+ datasets==3.2.0
17
+ safetensors==0.5.2
18
+ multidict==6.1.0
19
+ dill==0.3.8
20
+ liger_kernel==0.5.2
21
+ annotated-types==0.7.0
22
+ frozenlist==1.5.0
23
+ sentry-sdk==2.20.0
24
+ yarl==1.18.3
25
+ smmap==5.0.2
26
+ transformers==4.48.2
27
+ GitPython==3.1.44
28
+ hydra-core==1.3.2
29
+ pydantic_core==2.27.2
30
+ tokenizers==0.21.0
31
+ Jinja2==3.1.5
32
+ requests==2.32.3
33
+ setproctitle==1.3.4
34
+ aiohappyeyeballs==2.4.4
35
+ regex==2024.11.6
36
+ gitdb==4.0.12
37
+ charset-normalizer==3.4.1
38
+ xxhash==3.5.0
39
+ tqdm==4.67.1
40
+ trl==0.14.0
41
+ peft==0.14.0
42
+ propcache==0.2.1
43
+ accelerate==1.3.0
44
+ future==0.18.2
45
+ msgpack==1.0.3
46
+ websocket-client==1.2.3
47
+ pexpect==4.8.0
48
+ pyOpenSSL==21.0.0
49
+ protobuf==4.21.12
50
+ PyGObject==3.42.1
51
+ lazr.restfulclient==0.14.4
52
+ lz4==3.1.3+dfsg
53
+ icdiff==2.0.4
54
+ unicodedata2==14.0.0
55
+ fs==2.4.12
56
+ unattended-upgrades==0.1
57
+ py==1.10.0
58
+ torchvision==0.20.1
59
+ jupyter-core==4.9.1
60
+ livereload==2.6.3
61
+ libtmux==0.10.1
62
+ jax==0.4.30
63
+ ufoLib2==0.13.1
64
+ wadllib==1.3.6
65
+ networkx==2.4
66
+ cycler==0.11.0
67
+ configobj==5.0.6
68
+ pipx==1.0.0
69
+ ctop==1.0.0
70
+ jsonpatch==1.32
71
+ ssh-import-id==5.11
72
+ einops==0.8.0
73
+ wrapt==1.13.3
74
+ argcomplete==1.8.1
75
+ decorator==4.4.2
76
+ olefile==0.46
77
+ traitlets==5.1.1
78
+ jeepney==0.7.1
79
+ iotop==0.6
80
+ pystache==0.6.0
81
+ importlib-metadata==4.6.4
82
+ kiwisolver==1.3.2
83
+ distro-info==1.1+ubuntu0.2
84
+ flake8==4.0.1
85
+ nest-asyncio==1.5.4
86
+ wheel==0.37.1
87
+ scipy==1.8.0
88
+ ptyprocess==0.7.0
89
+ distlib==0.3.4
90
+ filelock==3.6.0
91
+ lazr.uri==1.0.6
92
+ zope.interface==5.4.0
93
+ docker==5.0.3
94
+ matplotlib==3.5.1
95
+ python-magic==0.4.24
96
+ fsspec==2024.3.1
97
+ rich==11.2.0
98
+ cloud-init==24.4
99
+ Twisted==22.1.0
100
+ more-itertools==8.10.0
101
+ ipython==7.31.1
102
+ torch==2.5.1
103
+ dbus-python==1.2.18
104
+ tornado==6.1
105
+ bcrypt==3.2.0
106
+ netifaces==0.11.0
107
+ Markdown==3.3.6
108
+ virtualenv==20.13.0+ds
109
+ cryptography==3.4.8
110
+ pyserial==3.5
111
+ flatbuffers==1.12.1-git20200711.33e2d80-dfsg1-0.6
112
+ parso==0.8.1
113
+ fonttools==4.29.1
114
+ tmuxp==1.9.2
115
+ pysmi==0.3.2
116
+ launchpadlib==1.10.16
117
+ appdirs==1.4.4
118
+ mkdocs==1.1.2
119
+ grpcio==1.30.2
120
+ MarkupSafe==2.0.1
121
+ zipp==1.0.0
122
+ pycryptodomex==3.11.0
123
+ jedi==0.18.0
124
+ flash-attn==2.7.0.post2
125
+ html5lib==1.1
126
+ astunparse==1.6.3
127
+ triton==3.1.0
128
+ pyasn1==0.4.8
129
+ pyrsistent==0.18.1
130
+ command-not-found==0.3
131
+ userpath==1.8.0
132
+ ply==3.11
133
+ attrs==21.2.0
134
+ mpmath==0.0.0
135
+ PyJWT==2.3.0
136
+ google-pasta==0.2.0
137
+ Werkzeug==2.0.2
138
+ pyinotify==0.9.6
139
+ PyHamcrest==2.0.2
140
+ Automat==20.2.0
141
+ colorama==0.4.4
142
+ beniget==0.4.1
143
+ influxdb==5.3.1
144
+ h5py==3.6.0
145
+ Pillow==9.0.1
146
+ Jinja2==3.0.3
147
+ Glances==3.2.4.2
148
+ platformdirs==2.5.1
149
+ ufw==0.36.1
150
+ jsonschema==3.2.0
151
+ jaxlib==0.4.30
152
+ pandas==1.3.5
153
+ python-dateutil==2.8.1
154
+ matplotlib-inline==0.1.3
155
+ SecretStorage==3.3.1
156
+ Brotli==1.0.9
157
+ prompt-toolkit==3.0.28
158
+ absl-py==2.1.0
159
+ blinker==1.4
160
+ optree==0.13.1
161
+ numpy==1.21.5
162
+ service-identity==18.1.0
163
+ bottle==0.12.19
164
+ hyperlink==21.0.0
165
+ idna==3.3
166
+ webencodings==0.5.1
167
+ gast==0.5.2
168
+ certifi==2020.6.20
169
+ pyparsing==2.4.7
170
+ PyYAML==5.4.1
171
+ sos==4.7.2
172
+ bleach==4.1.0
173
+ backcall==0.2.0
174
+ urllib3==1.26.5
175
+ incremental==21.3.0
176
+ joblib==0.17.0
177
+ python-apt==2.4.0+ubuntu4
178
+ commonmark==0.9.1
179
+ pythran==0.10.0
180
+ h5py.-debian-h5py-serial==3.6.0
181
+ threadpoolctl==3.1.0
182
+ kaptan==0.5.12
183
+ setuptools==59.6.0
184
+ keras==3.6.0
185
+ mccabe==0.6.1
186
+ jsonpointer==2.0
187
+ packaging==21.3
188
+ cffi==1.15.0
189
+ typing_extensions==4.9.0
190
+ sympy==1.12
191
+ httplib2==0.20.2
192
+ ipykernel==6.7.0
193
+ defusedxml==0.7.1
194
+ ipython_genutils==0.2.0
195
+ Pygments==2.11.2
196
+ lxml==4.8.0
197
+ nvidia-ml-py==12.555.43
198
+ pysnmp==4.4.12
199
+ pycparser==2.21
200
+ keyring==23.5.0
201
+ tensorboard==2.18.0
202
+ psutil==5.9.0
203
+ requests==2.25.1
204
+ six==1.16.0
205
+ termcolor==1.1.0
206
+ pyflakes==2.4.0
207
+ oauthlib==3.2.0
208
+ beautifulsoup4==4.10.0
209
+ entrypoints==0.4
210
+ ml-dtypes==0.5.0
211
+ scikit-learn==0.23.2
212
+ constantly==15.1.0
213
+ pyzmq==22.3.0
214
+ tensorflow==2.18.0
215
+ soupsieve==2.3.1
216
+ chardet==4.0.0
217
+ wcwidth==0.2.5
218
+ pip==22.0.2
219
+ jupyter-client==7.1.2
220
+ pyasn1-modules==0.2.1
221
+ pycodestyle==2.8.0
222
+ pickleshare==0.7.5
223
+ opt-einsum==3.3.0
224
+ click==8.0.3
225
+ distro==1.7.0
226
+ Babel==2.8.0
227
+ namex==0.0.8
228
+ pytz==2022.1
wandb/run-20250201_230729-f0utp5v4/files/wandb-metadata.json ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "os": "Linux-6.8.0-1013-nvidia-64k-aarch64-with-glibc2.35",
3
+ "python": "CPython 3.10.12",
4
+ "startedAt": "2025-02-01T23:07:29.707088Z",
5
+ "args": [
6
+ "-cn",
7
+ "ministral.yaml"
8
+ ],
9
+ "program": "/home/ubuntu/odesia-2025/train/train.py",
10
+ "codePath": "train/train.py",
11
+ "git": {
12
+ "remote": "https://github.com/nbroad1881/odesia-2025.git",
13
+ "commit": "fcdb0c7ae3ecfa5c0862a0e47d92f8d6f1a57e89"
14
+ },
15
+ "email": "[email protected]",
16
+ "root": "/home/ubuntu/odesia-2025/train/outputs/2025-02-01/23-07-29",
17
+ "host": "192-222-56-224",
18
+ "executable": "/usr/bin/python",
19
+ "cpu_count": 64,
20
+ "cpu_count_logical": 64,
21
+ "gpu": "NVIDIA GH200 480GB",
22
+ "gpu_count": 1,
23
+ "disk": {
24
+ "/": {
25
+ "total": "4261618229248",
26
+ "used": "51781664768"
27
+ }
28
+ },
29
+ "memory": {
30
+ "total": "564442890240"
31
+ },
32
+ "cpu": {
33
+ "count": 64,
34
+ "countLogical": 64
35
+ },
36
+ "gpu_nvidia": [
37
+ {
38
+ "name": "NVIDIA GH200 480GB",
39
+ "memoryTotal": "102625181696",
40
+ "cudaCores": 16896,
41
+ "architecture": "Hopper"
42
+ }
43
+ ],
44
+ "cudaVersion": "12.4"
45
+ }
wandb/run-20250201_230729-f0utp5v4/logs/debug-core.log ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {"time":"2025-02-01T23:07:29.510948818Z","level":"INFO","msg":"main: starting server","port-filename":"/tmp/tmpiv5yo5ed/port-9387.txt","pid":9387,"log-level":0,"disable-analytics":false,"shutdown-on-parent-exit":false}
2
+ {"time":"2025-02-01T23:07:29.512658204Z","level":"INFO","msg":"Will exit if parent process dies.","ppid":9387}
3
+ {"time":"2025-02-01T23:07:29.512650236Z","level":"INFO","msg":"server is running","addr":{"IP":"127.0.0.1","Port":34097,"Zone":""}}
4
+ {"time":"2025-02-01T23:07:29.705144233Z","level":"INFO","msg":"connection: ManageConnectionData: new connection created","id":"127.0.0.1:56806"}
5
+ {"time":"2025-02-01T23:07:29.707614937Z","level":"INFO","msg":"handleInformInit: received","streamId":"f0utp5v4","id":"127.0.0.1:56806"}
6
+ {"time":"2025-02-01T23:07:29.811099597Z","level":"INFO","msg":"handleInformInit: stream started","streamId":"f0utp5v4","id":"127.0.0.1:56806"}
wandb/run-20250201_230729-f0utp5v4/logs/debug-internal.log ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {"time":"2025-02-01T23:07:29.707725114Z","level":"INFO","msg":"stream: starting","core version":"0.19.5","symlink path":"/home/ubuntu/odesia-2025/train/outputs/2025-02-01/23-07-29/wandb/run-20250201_230729-f0utp5v4/logs/debug-core.log"}
2
+ {"time":"2025-02-01T23:07:29.811064717Z","level":"INFO","msg":"created new stream","id":"f0utp5v4"}
3
+ {"time":"2025-02-01T23:07:29.811095949Z","level":"INFO","msg":"stream: started","id":"f0utp5v4"}
4
+ {"time":"2025-02-01T23:07:29.81113275Z","level":"INFO","msg":"writer: Do: started","stream_id":"f0utp5v4"}
5
+ {"time":"2025-02-01T23:07:29.811142254Z","level":"INFO","msg":"sender: started","stream_id":"f0utp5v4"}
6
+ {"time":"2025-02-01T23:07:29.811153678Z","level":"INFO","msg":"handler: started","stream_id":"f0utp5v4"}
7
+ {"time":"2025-02-01T23:07:29.920262374Z","level":"INFO","msg":"Starting system monitor"}
wandb/run-20250201_230729-f0utp5v4/logs/debug.log ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 2025-02-01 23:07:29,501 INFO MainThread:9387 [wandb_setup.py:_flush():68] Current SDK version is 0.19.5
2
+ 2025-02-01 23:07:29,501 INFO MainThread:9387 [wandb_setup.py:_flush():68] Configure stats pid to 9387
3
+ 2025-02-01 23:07:29,501 INFO MainThread:9387 [wandb_setup.py:_flush():68] Loading settings from /home/ubuntu/.config/wandb/settings
4
+ 2025-02-01 23:07:29,501 INFO MainThread:9387 [wandb_setup.py:_flush():68] Loading settings from /home/ubuntu/odesia-2025/train/outputs/2025-02-01/23-07-29/wandb/settings
5
+ 2025-02-01 23:07:29,501 INFO MainThread:9387 [wandb_setup.py:_flush():68] Loading settings from environment variables
6
+ 2025-02-01 23:07:29,501 INFO MainThread:9387 [wandb_init.py:setup_run_log_directory():637] Logging user logs to /home/ubuntu/odesia-2025/train/outputs/2025-02-01/23-07-29/wandb/run-20250201_230729-f0utp5v4/logs/debug.log
7
+ 2025-02-01 23:07:29,501 INFO MainThread:9387 [wandb_init.py:setup_run_log_directory():638] Logging internal logs to /home/ubuntu/odesia-2025/train/outputs/2025-02-01/23-07-29/wandb/run-20250201_230729-f0utp5v4/logs/debug-internal.log
8
+ 2025-02-01 23:07:29,501 INFO MainThread:9387 [wandb_init.py:init():756] calling init triggers
9
+ 2025-02-01 23:07:29,501 INFO MainThread:9387 [wandb_init.py:init():761] wandb.init called with sweep_config: {}
10
+ config: {'time_start': '2025-02-01_23-07-29', 'DEBUG': False, 'debug_model': 'unsloth/Qwen2.5-7B-bnb-4bit', 'fold': 0, 'random_seed': True, 'train_on_all_folds': False, 'eval_only': False, 'merge_adapters': False, 'wandb_id': None, 'val_split_name': 'val', 'pad_token': '<pad>', 'response_template_ids': [4], 'num_proc': 20, 'hub_repo_tags': ['odesia'], 'script_args': {'dataset_name': 'nbroad/odesia-combined-v1', 'config': None, 'gradient_checkpointing_use_reentrant': True, 'ignore_bias_buffers': False}, 'model_config': {'model_name_or_path': 'mistralai/Ministral-8B-Instruct-2410', 'torch_dtype': 'bfloat16', 'attn_implementation': 'flash_attention_2', 'use_peft': True, 'lora_r': 16, 'lora_alpha': 32, 'lora_dropout': 0.05, 'lora_target_modules': ['q_proj', 'v_proj', 'k_proj', 'o_proj', 'up_proj', 'down_proj', 'gate_proj'], 'lora_modules_to_save': None, 'lora_task_type': 'CAUSAL_LM', 'use_rslora': True, 'load_in_8bit': False, 'load_in_4bit': False, 'bnb_4bit_quant_type': 'nf4', 'use_bnb_nested_quant': True}, 'training_args': {'resume_from_checkpoint': None, 'output_dir': './', 'num_train_epochs': 1, 'per_device_train_batch_size': 8, 'per_device_eval_batch_size': 8, 'warmup_ratio': 0.1, 'fp16': False, 'bf16': True, 'eval_strategy': 'steps', 'save_strategy': 'steps', 'eval_steps': 100, 'save_steps': 100, 'save_total_limit': 2, 'logging_steps': 2, 'run_name': None, 'weight_decay': 0.01, 'report_to': 'wandb', 'learning_rate': 6e-05, 'metric_for_best_model': 'loss', 'greater_is_better': False, 'gradient_checkpointing': True, 'gradient_accumulation_steps': 8, 'gradient_checkpointing_kwargs': {'use_reentrant': True}, 'optim': 'adamw_torch', 'dataloader_num_workers': 4, 'seed': 18, 'max_grad_norm': 2.0, 'load_best_model_at_end': True, 'push_to_hub': True, 'hub_private_repo': True, 'lr_scheduler_type': 'cosine', 'remove_unused_columns': False, 'ddp_find_unused_parameters': False, 'use_liger_kernel': True}, '_wandb': {}}
11
+ 2025-02-01 23:07:29,501 INFO MainThread:9387 [wandb_init.py:init():789] starting backend
12
+ 2025-02-01 23:07:29,705 INFO MainThread:9387 [wandb_init.py:init():793] sending inform_init request
13
+ 2025-02-01 23:07:29,706 INFO MainThread:9387 [backend.py:_multiprocessing_setup():97] multiprocessing start_methods=fork,spawn,forkserver, using: spawn
14
+ 2025-02-01 23:07:29,706 INFO MainThread:9387 [wandb_init.py:init():808] backend started and connected
15
+ 2025-02-01 23:07:29,708 INFO MainThread:9387 [wandb_init.py:init():901] updated telemetry
16
+ 2025-02-01 23:07:29,710 INFO MainThread:9387 [wandb_init.py:init():926] communicating run to backend with 90.0 second timeout
17
+ 2025-02-01 23:07:29,918 INFO MainThread:9387 [wandb_init.py:init():984] starting run threads in backend
18
+ 2025-02-01 23:07:30,016 INFO MainThread:9387 [wandb_run.py:_console_start():2385] atexit reg
19
+ 2025-02-01 23:07:30,016 INFO MainThread:9387 [wandb_run.py:_redirect():2235] redirect: wrap_raw
20
+ 2025-02-01 23:07:30,016 INFO MainThread:9387 [wandb_run.py:_redirect():2300] Wrapping output streams.
21
+ 2025-02-01 23:07:30,016 INFO MainThread:9387 [wandb_run.py:_redirect():2325] Redirects installed.
22
+ 2025-02-01 23:07:30,017 INFO MainThread:9387 [wandb_init.py:init():1026] run started, returning control to user process
23
+ 2025-02-01 23:08:27,289 INFO MainThread:9387 [wandb_run.py:_config_callback():1253] config_cb None None {'peft_config': {'default': {'task_type': 'CAUSAL_LM', 'peft_type': <PeftType.LORA: 'LORA'>, 'auto_mapping': None, 'base_model_name_or_path': 'mistralai/Ministral-8B-Instruct-2410', 'revision': None, 'inference_mode': False, 'r': 16, 'target_modules': {'v_proj', 'up_proj', 'down_proj', 'k_proj', 'o_proj', 'q_proj', 'gate_proj'}, 'exclude_modules': None, 'lora_alpha': 32, 'lora_dropout': 0.05, 'fan_in_fan_out': False, 'bias': 'none', 'use_rslora': True, 'modules_to_save': None, 'init_lora_weights': True, 'layers_to_transform': None, 'layers_pattern': None, 'rank_pattern': {}, 'alpha_pattern': {}, 'megatron_config': None, 'megatron_core': 'megatron.core', 'loftq_config': {}, 'eva_config': None, 'use_dora': False, 'layer_replication': None, 'runtime_config': {'ephemeral_gpu_offload': False}, 'lora_bias': False}}, 'vocab_size': 131072, 'max_position_embeddings': 32768, 'hidden_size': 4096, 'intermediate_size': 12288, 'num_hidden_layers': 36, 'num_attention_heads': 32, 'sliding_window': 32768, 'head_dim': 128, 'num_key_value_heads': 8, 'hidden_act': 'silu', 'initializer_range': 0.02, 'rms_norm_eps': 1e-05, 'use_cache': False, 'rope_theta': 100000000.0, 'attention_dropout': 0.0, 'return_dict': True, 'output_hidden_states': False, 'output_attentions': False, 'torchscript': False, 'torch_dtype': 'bfloat16', 'use_bfloat16': False, 'tf_legacy_loss': False, 'pruned_heads': {}, 'tie_word_embeddings': False, 'chunk_size_feed_forward': 0, 'is_encoder_decoder': False, 'is_decoder': False, 'cross_attention_hidden_size': None, 'add_cross_attention': False, 'tie_encoder_decoder': False, 'max_length': 20, 'min_length': 0, 'do_sample': False, 'early_stopping': False, 'num_beams': 1, 'num_beam_groups': 1, 'diversity_penalty': 0.0, 'temperature': 1.0, 'top_k': 50, 'top_p': 1.0, 'typical_p': 1.0, 'repetition_penalty': 1.0, 'length_penalty': 1.0, 'no_repeat_ngram_size': 0, 'encoder_no_repeat_ngram_size': 0, 'bad_words_ids': None, 'num_return_sequences': 1, 'output_scores': False, 'return_dict_in_generate': False, 'forced_bos_token_id': None, 'forced_eos_token_id': None, 'remove_invalid_values': False, 'exponential_decay_length_penalty': None, 'suppress_tokens': None, 'begin_suppress_tokens': None, 'architectures': ['MistralForCausalLM'], 'finetuning_task': None, 'id2label': {0: 'LABEL_0', 1: 'LABEL_1'}, 'label2id': {'LABEL_0': 0, 'LABEL_1': 1}, 'tokenizer_class': None, 'prefix': None, 'bos_token_id': 1, 'pad_token_id': None, 'eos_token_id': 2, 'sep_token_id': None, 'decoder_start_token_id': None, 'task_specific_params': None, 'problem_type': None, '_name_or_path': 'mistralai/Ministral-8B-Instruct-2410', '_attn_implementation_autoset': True, 'transformers_version': '4.48.2', 'model_type': 'mistral', 'wandb_id': 'f0utp5v4', 'fold': 0, 'group': 'clm', 'dataset': 'nbroad/odesia-combined-v1', 'output_dir': './', 'overwrite_output_dir': False, 'do_train': False, 'do_eval': True, 'do_predict': False, 'eval_strategy': 'steps', 'prediction_loss_only': False, 'per_device_train_batch_size': 8, 'per_device_eval_batch_size': 8, 'per_gpu_train_batch_size': None, 'per_gpu_eval_batch_size': None, 'gradient_accumulation_steps': 8, 'eval_accumulation_steps': None, 'eval_delay': 0, 'torch_empty_cache_steps': None, 'learning_rate': 6e-05, 'weight_decay': 0.01, 'adam_beta1': 0.9, 'adam_beta2': 0.999, 'adam_epsilon': 1e-08, 'max_grad_norm': 2.0, 'num_train_epochs': 1, 'max_steps': -1, 'lr_scheduler_type': 'cosine', 'lr_scheduler_kwargs': {}, 'warmup_ratio': 0.1, 'warmup_steps': 0, 'log_level': 'passive', 'log_level_replica': 'warning', 'log_on_each_node': True, 'logging_dir': './runs/Feb01_23-07-29_192-222-56-224', 'logging_strategy': 'steps', 'logging_first_step': False, 'logging_steps': 2, 'logging_nan_inf_filter': True, 'save_strategy': 'steps', 'save_steps': 100, 'save_total_limit': 2, 'save_safetensors': True, 'save_on_each_node': False, 'save_only_model': False, 'restore_callback_states_from_checkpoint': False, 'no_cuda': False, 'use_cpu': False, 'use_mps_device': False, 'seed': 18, 'data_seed': None, 'jit_mode_eval': False, 'use_ipex': False, 'bf16': True, 'fp16': False, 'fp16_opt_level': 'O1', 'half_precision_backend': 'auto', 'bf16_full_eval': False, 'fp16_full_eval': False, 'tf32': None, 'local_rank': 0, 'ddp_backend': None, 'tpu_num_cores': None, 'tpu_metrics_debug': False, 'debug': [], 'dataloader_drop_last': False, 'eval_steps': 100, 'dataloader_num_workers': 4, 'dataloader_prefetch_factor': None, 'past_index': -1, 'run_name': './', 'disable_tqdm': False, 'remove_unused_columns': False, 'label_names': None, 'load_best_model_at_end': True, 'metric_for_best_model': 'loss', 'greater_is_better': False, 'ignore_data_skip': False, 'fsdp': [], 'fsdp_min_num_params': 0, 'fsdp_config': {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}, 'fsdp_transformer_layer_cls_to_wrap': None, 'accelerator_config': {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}, 'deepspeed': None, 'label_smoothing_factor': 0.0, 'optim': 'adamw_torch', 'optim_args': None, 'adafactor': False, 'group_by_length': False, 'length_column_name': 'length', 'report_to': ['wandb'], 'ddp_find_unused_parameters': False, 'ddp_bucket_cap_mb': None, 'ddp_broadcast_buffers': None, 'dataloader_pin_memory': True, 'dataloader_persistent_workers': False, 'skip_memory_metrics': True, 'use_legacy_prediction_loop': False, 'push_to_hub': True, 'resume_from_checkpoint': None, 'hub_model_id': 'nbroad/nbroad-odesia-clm-f0utp5v4', 'hub_strategy': 'every_save', 'hub_token': '<HUB_TOKEN>', 'hub_private_repo': True, 'hub_always_push': False, 'gradient_checkpointing': True, 'gradient_checkpointing_kwargs': {'use_reentrant': True}, 'include_inputs_for_metrics': False, 'include_for_metrics': [], 'eval_do_concat_batches': True, 'fp16_backend': 'auto', 'evaluation_strategy': None, 'push_to_hub_model_id': None, 'push_to_hub_organization': None, 'push_to_hub_token': '<PUSH_TO_HUB_TOKEN>', 'mp_parameters': '', 'auto_find_batch_size': False, 'full_determinism': False, 'torchdynamo': None, 'ray_scope': 'last', 'ddp_timeout': 1800, 'torch_compile': False, 'torch_compile_backend': None, 'torch_compile_mode': None, 'dispatch_batches': None, 'split_batches': None, 'include_tokens_per_second': False, 'include_num_input_tokens_seen': False, 'neftune_noise_alpha': None, 'optim_target_modules': None, 'batch_eval_metrics': False, 'eval_on_start': False, 'use_liger_kernel': True, 'eval_use_gather_object': False, 'average_tokens_across_devices': False, 'dataset_text_field': 'text', 'packing': False, 'max_seq_length': 1024, 'dataset_num_proc': None, 'dataset_batch_size': 1000, 'model_init_kwargs': None, 'dataset_kwargs': {}, 'eval_packing': None, 'num_of_sequences': 1024, 'chars_per_token': '<CHARS_PER_TOKEN>', 'use_liger': False}
24
+ 2025-02-01 23:08:27,294 INFO MainThread:9387 [wandb_config.py:__setitem__():154] config set model/num_parameters = 8063455232 - <bound method Run._config_callback of <wandb.sdk.wandb_run.Run object at 0xfedf481b3130>>
25
+ 2025-02-01 23:08:27,294 INFO MainThread:9387 [wandb_run.py:_config_callback():1253] config_cb model/num_parameters 8063455232 None
wandb/run-20250201_230729-f0utp5v4/run-f0utp5v4.wandb ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8fb65e22e6313999083f2674dafed0b1b9e0ec57f1fdcf1c51c6f517ea2a1b8a
3
+ size 229376