Update README.md
Browse files
README.md
CHANGED
|
@@ -20,20 +20,15 @@ tokenization_parameters = {
|
|
| 20 |
'kmer': 6,
|
| 21 |
'shift': 1
|
| 22 |
}
|
| 23 |
-
|
| 24 |
# Initialize the tokenizer and model
|
| 25 |
tokenizer = ProkBERTTokenizer(tokenization_params=tokenization_parameters, operation_space='sequence')
|
| 26 |
model = MegatronBertForMaskedLM.from_pretrained("nerualbioinfo/prokbert-mini-k6s2")
|
| 27 |
-
|
| 28 |
# Example DNA sequence
|
| 29 |
sequence = 'ATGTCCGCGGGACCT'
|
| 30 |
-
|
| 31 |
# Tokenize the sequence
|
| 32 |
inputs = tokenizer(sequence, return_tensors="pt")
|
| 33 |
-
|
| 34 |
# Ensure that inputs have a batch dimension
|
| 35 |
inputs = {key: value.unsqueeze(0) for key, value in inputs.items()}
|
| 36 |
-
|
| 37 |
# Generate outputs from the model
|
| 38 |
outputs = model(**inputs)
|
| 39 |
```
|
|
@@ -91,48 +86,6 @@ After segmentation, sequences are encoded into a vector format. The LCA method a
|
|
| 91 |
4. **Create a Padded/Truncated Array**: Generate a uniform array structure, padding or truncating as necessary.
|
| 92 |
5. **Save the Array to HDF**: Store the processed data in an HDF (Hierarchical Data Format) file for efficient retrieval and use in training models.
|
| 93 |
|
| 94 |
-
```python
|
| 95 |
-
import pkg_resources
|
| 96 |
-
from os.path import join
|
| 97 |
-
from prokbert.sequtils import *
|
| 98 |
-
|
| 99 |
-
# Directory for pretraining FASTA files
|
| 100 |
-
pretraining_fasta_files_dir = pkg_resources.resource_filename('prokbert','data/pretraining')
|
| 101 |
-
|
| 102 |
-
# Define segmentation and tokenization parameters
|
| 103 |
-
segmentation_params = {
|
| 104 |
-
'max_length': 256, # Split the sequence into segments of length L
|
| 105 |
-
'min_length': 6,
|
| 106 |
-
'type': 'random'
|
| 107 |
-
}
|
| 108 |
-
tokenization_parameters = {
|
| 109 |
-
'kmer': 6,
|
| 110 |
-
'shift': 1,
|
| 111 |
-
'max_segment_length': 2003,
|
| 112 |
-
'token_limit': 2000
|
| 113 |
-
}
|
| 114 |
-
|
| 115 |
-
# Setup configuration
|
| 116 |
-
defconfig = SeqConfig()
|
| 117 |
-
segmentation_params = defconfig.get_and_set_segmentation_parameters(segmentation_params)
|
| 118 |
-
tokenization_params = defconfig.get_and_set_tokenization_parameters(tokenization_parameters)
|
| 119 |
-
|
| 120 |
-
# Load and segment sequences
|
| 121 |
-
input_fasta_files = [join(pretraining_fasta_files_dir, file) for file in get_non_empty_files(pretraining_fasta_files_dir)]
|
| 122 |
-
sequences = load_contigs(input_fasta_files, IsAddHeader=True, adding_reverse_complement=True, AsDataFrame=True, to_uppercase=True, is_add_sequence_id=True)
|
| 123 |
-
segment_db = segment_sequences(sequences, segmentation_params, AsDataFrame=True)
|
| 124 |
-
|
| 125 |
-
# Tokenization
|
| 126 |
-
tokenized = batch_tokenize_segments_with_ids(segment_db, tokenization_params)
|
| 127 |
-
expected_max_token = max(len(arr) for arrays in tokenized.values() for arr in arrays)
|
| 128 |
-
X, torchdb = get_rectangular_array_from_tokenized_dataset(tokenized, tokenization_params['shift'], expected_max_token)
|
| 129 |
-
|
| 130 |
-
# Save to HDF file
|
| 131 |
-
hdf_file = '/tmp/pretraining.h5'
|
| 132 |
-
save_to_hdf(X, hdf_file, database=torchdb, compression=True)
|
| 133 |
-
```
|
| 134 |
-
|
| 135 |
-
|
| 136 |
|
| 137 |
### Installation of ProkBERT (if needed)
|
| 138 |
|
|
@@ -177,8 +130,10 @@ Please report any issues with the model or its outputs to the Neural Bioinformat
|
|
| 177 |
- **Feedback and inquiries:** [[email protected]](mailto:[email protected])
|
| 178 |
|
| 179 |
## Reference
|
| 180 |
-
```
|
| 181 |
If you use ProkBERT-mini in your research, please cite the following paper:
|
|
|
|
|
|
|
|
|
|
| 182 |
@ARTICLE{10.3389/fmicb.2023.1331233,
|
| 183 |
AUTHOR={Ligeti, Balázs and Szepesi-Nagy, István and Bodnár, Babett and Ligeti-Nagy, Noémi and Juhász, János},
|
| 184 |
TITLE={ProkBERT family: genomic language models for microbiome applications},
|
|
|
|
| 20 |
'kmer': 6,
|
| 21 |
'shift': 1
|
| 22 |
}
|
|
|
|
| 23 |
# Initialize the tokenizer and model
|
| 24 |
tokenizer = ProkBERTTokenizer(tokenization_params=tokenization_parameters, operation_space='sequence')
|
| 25 |
model = MegatronBertForMaskedLM.from_pretrained("nerualbioinfo/prokbert-mini-k6s2")
|
|
|
|
| 26 |
# Example DNA sequence
|
| 27 |
sequence = 'ATGTCCGCGGGACCT'
|
|
|
|
| 28 |
# Tokenize the sequence
|
| 29 |
inputs = tokenizer(sequence, return_tensors="pt")
|
|
|
|
| 30 |
# Ensure that inputs have a batch dimension
|
| 31 |
inputs = {key: value.unsqueeze(0) for key, value in inputs.items()}
|
|
|
|
| 32 |
# Generate outputs from the model
|
| 33 |
outputs = model(**inputs)
|
| 34 |
```
|
|
|
|
| 86 |
4. **Create a Padded/Truncated Array**: Generate a uniform array structure, padding or truncating as necessary.
|
| 87 |
5. **Save the Array to HDF**: Store the processed data in an HDF (Hierarchical Data Format) file for efficient retrieval and use in training models.
|
| 88 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 89 |
|
| 90 |
### Installation of ProkBERT (if needed)
|
| 91 |
|
|
|
|
| 130 |
- **Feedback and inquiries:** [[email protected]](mailto:[email protected])
|
| 131 |
|
| 132 |
## Reference
|
|
|
|
| 133 |
If you use ProkBERT-mini in your research, please cite the following paper:
|
| 134 |
+
|
| 135 |
+
|
| 136 |
+
```
|
| 137 |
@ARTICLE{10.3389/fmicb.2023.1331233,
|
| 138 |
AUTHOR={Ligeti, Balázs and Szepesi-Nagy, István and Bodnár, Babett and Ligeti-Nagy, Noémi and Juhász, János},
|
| 139 |
TITLE={ProkBERT family: genomic language models for microbiome applications},
|