Update README.md
Browse files
README.md
CHANGED
|
@@ -22,24 +22,17 @@ ProkBERT-mini (kmer=6, shift=1) is part of the ProkBERT family of genomic langua
|
|
| 22 |
The following example demonstrates how to use the ProkBERT-mini model for processing a DNA sequence:
|
| 23 |
|
| 24 |
```python
|
| 25 |
-
from transformers import
|
| 26 |
-
from prokbert.prokbert_tokenizer import ProkBERTTokenizer
|
| 27 |
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
#
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
#
|
| 37 |
-
sequence = 'ATGTCCGCGGGACCT'
|
| 38 |
-
# Tokenize the sequence
|
| 39 |
-
inputs = tokenizer(sequence, return_tensors="pt")
|
| 40 |
-
# Ensure that inputs have a batch dimension
|
| 41 |
-
inputs = {key: value.unsqueeze(0) for key, value in inputs.items()}
|
| 42 |
-
# Generate outputs from the model
|
| 43 |
outputs = model(**inputs)
|
| 44 |
```
|
| 45 |
|
|
|
|
| 22 |
The following example demonstrates how to use the ProkBERT-mini model for processing a DNA sequence:
|
| 23 |
|
| 24 |
```python
|
| 25 |
+
from transformers import AutoTokenizer, AutoModelForMaskedLM
|
|
|
|
| 26 |
|
| 27 |
+
tokenizer = AutoTokenizer.from_pretrained("neuralbioinfo/prokbert-mini", trust_remote_code=True)
|
| 28 |
+
model = AutoModel.from_pretrained("neuralbioinfo/prokbert-mini", trust_remote_code=True)
|
| 29 |
+
|
| 30 |
+
segment = "ATGTCCGCGGGACCT"
|
| 31 |
+
|
| 32 |
+
# Tokenize the input and return as PyTorch tensors
|
| 33 |
+
inputs = tokenizer(segment, return_tensors="pt")
|
| 34 |
+
|
| 35 |
+
# Pass the tokenized input to the model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
outputs = model(**inputs)
|
| 37 |
```
|
| 38 |
|