Update README.md
Browse files
README.md
CHANGED
@@ -33,7 +33,7 @@ base_model: meta-llama/Meta-Llama-3.1-405B-Instruct
|
|
33 |
- **Model Developers:** Neural Magic
|
34 |
|
35 |
Quantized version of [Meta-Llama-3.1-405B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-405B-Instruct).
|
36 |
-
It achieves scores within 1% of the scores of the unquantized model for MMLU, ARC-Challenge, GSM-8k, Hellaswag, Winogrande and TruthfulQA.
|
37 |
|
38 |
### Model Optimizations
|
39 |
|
@@ -149,6 +149,8 @@ The model was evaluated on MMLU, ARC-Challenge, GSM-8K, Hellaswag, Winogrande an
|
|
149 |
Evaluation was conducted using the Neural Magic fork of [lm-evaluation-harness](https://github.com/neuralmagic/lm-evaluation-harness/tree/llama_3.1_instruct) (branch llama_3.1_instruct) and the [vLLM](https://docs.vllm.ai/en/stable/) engine.
|
150 |
This version of the lm-evaluation-harness includes versions of MMLU, ARC-Challenge and GSM-8K that match the prompting style of [Meta-Llama-3.1-Instruct-evals](https://huggingface.co/datasets/meta-llama/Meta-Llama-3.1-405B-Instruct-evals).
|
151 |
|
|
|
|
|
152 |
### Accuracy
|
153 |
|
154 |
#### Open LLM Leaderboard evaluation scores
|
@@ -158,7 +160,7 @@ This version of the lm-evaluation-harness includes versions of MMLU, ARC-Challen
|
|
158 |
</td>
|
159 |
<td><strong>Meta-Llama-3.1-405B-Instruct </strong>
|
160 |
</td>
|
161 |
-
<td><strong>Meta-Llama-3.1-405B-Instruct-quantized.
|
162 |
</td>
|
163 |
<td><strong>Recovery</strong>
|
164 |
</td>
|
@@ -166,31 +168,21 @@ This version of the lm-evaluation-harness includes versions of MMLU, ARC-Challen
|
|
166 |
<tr>
|
167 |
<td>MMLU (5-shot)
|
168 |
</td>
|
169 |
-
<td>87.
|
170 |
</td>
|
171 |
<td>86.76
|
172 |
</td>
|
173 |
<td>99.3%
|
174 |
</td>
|
175 |
-
</tr>
|
176 |
-
<tr>
|
177 |
-
<td>MMLU (CoT, 0-shot)
|
178 |
-
</td>
|
179 |
-
<td>88.26
|
180 |
-
</td>
|
181 |
-
<td>87.42
|
182 |
-
</td>
|
183 |
-
<td>99.0%
|
184 |
-
</td>
|
185 |
</tr>
|
186 |
<tr>
|
187 |
<td>ARC Challenge (0-shot)
|
188 |
</td>
|
189 |
<td>94.97
|
190 |
</td>
|
191 |
-
<td>94.
|
192 |
</td>
|
193 |
-
<td>99.
|
194 |
</td>
|
195 |
</tr>
|
196 |
<tr>
|
@@ -198,19 +190,19 @@ This version of the lm-evaluation-harness includes versions of MMLU, ARC-Challen
|
|
198 |
</td>
|
199 |
<td>96.44
|
200 |
</td>
|
201 |
-
<td>
|
202 |
</td>
|
203 |
-
<td>99.
|
204 |
</td>
|
205 |
</tr>
|
206 |
<tr>
|
207 |
<td>Hellaswag (10-shot)
|
208 |
-
</td>
|
209 |
<td>88.33
|
210 |
</td>
|
211 |
-
<td>88.
|
212 |
</td>
|
213 |
-
<td>99.
|
214 |
</td>
|
215 |
</tr>
|
216 |
<tr>
|
@@ -218,19 +210,19 @@ This version of the lm-evaluation-harness includes versions of MMLU, ARC-Challen
|
|
218 |
</td>
|
219 |
<td>87.21
|
220 |
</td>
|
221 |
-
<td>86.
|
222 |
</td>
|
223 |
-
<td>
|
224 |
</td>
|
225 |
</tr>
|
226 |
<tr>
|
227 |
-
<td>TruthfulQA (0-shot
|
228 |
</td>
|
229 |
<td>64.64
|
230 |
</td>
|
231 |
-
<td>64.
|
232 |
</td>
|
233 |
-
<td>99.
|
234 |
</td>
|
235 |
</tr>
|
236 |
<tr>
|
@@ -238,9 +230,9 @@ This version of the lm-evaluation-harness includes versions of MMLU, ARC-Challen
|
|
238 |
</td>
|
239 |
<td><strong>86.75</strong>
|
240 |
</td>
|
241 |
-
<td><strong>86.
|
242 |
</td>
|
243 |
-
<td><strong>99.
|
244 |
</td>
|
245 |
</tr>
|
246 |
</table>
|
@@ -253,7 +245,7 @@ The results were obtained using the following commands:
|
|
253 |
```
|
254 |
lm_eval \
|
255 |
--model vllm \
|
256 |
-
--model_args pretrained="neuralmagic/Meta-Llama-3.1-405B-Instruct-quantized.w8a8",dtype=auto,
|
257 |
--tasks mmlu_llama_3.1_instruct \
|
258 |
--fewshot_as_multiturn \
|
259 |
--apply_chat_template \
|
@@ -265,7 +257,7 @@ lm_eval \
|
|
265 |
```
|
266 |
lm_eval \
|
267 |
--model vllm \
|
268 |
-
--model_args pretrained="neuralmagic/Meta-Llama-3.1-405B-Instruct-quantized.w8a8",dtype=auto,
|
269 |
--tasks mmlu_cot_0shot_llama_3.1_instruct \
|
270 |
--apply_chat_template \
|
271 |
--num_fewshot 0 \
|
@@ -276,7 +268,7 @@ lm_eval \
|
|
276 |
```
|
277 |
lm_eval \
|
278 |
--model vllm \
|
279 |
-
--model_args pretrained="neuralmagic/Meta-Llama-3.1-405B-Instruct-quantized.w8a8",dtype=auto,
|
280 |
--tasks arc_challenge_llama_3.1_instruct \
|
281 |
--apply_chat_template \
|
282 |
--num_fewshot 0 \
|
@@ -287,7 +279,7 @@ lm_eval \
|
|
287 |
```
|
288 |
lm_eval \
|
289 |
--model vllm \
|
290 |
-
--model_args pretrained="neuralmagic/Meta-Llama-3.1-405B-Instruct-quantized.w8a8",dtype=auto,
|
291 |
--tasks gsm8k_cot_llama_3.1_instruct \
|
292 |
--fewshot_as_multiturn \
|
293 |
--apply_chat_template \
|
|
|
33 |
- **Model Developers:** Neural Magic
|
34 |
|
35 |
Quantized version of [Meta-Llama-3.1-405B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-405B-Instruct).
|
36 |
+
It achieves scores within 1.3% of the scores of the unquantized model for MMLU, ARC-Challenge, GSM-8k, Hellaswag, Winogrande and TruthfulQA.
|
37 |
|
38 |
### Model Optimizations
|
39 |
|
|
|
149 |
Evaluation was conducted using the Neural Magic fork of [lm-evaluation-harness](https://github.com/neuralmagic/lm-evaluation-harness/tree/llama_3.1_instruct) (branch llama_3.1_instruct) and the [vLLM](https://docs.vllm.ai/en/stable/) engine.
|
150 |
This version of the lm-evaluation-harness includes versions of MMLU, ARC-Challenge and GSM-8K that match the prompting style of [Meta-Llama-3.1-Instruct-evals](https://huggingface.co/datasets/meta-llama/Meta-Llama-3.1-405B-Instruct-evals).
|
151 |
|
152 |
+
**Note:** Results have been updated after Meta modified the chat template.
|
153 |
+
|
154 |
### Accuracy
|
155 |
|
156 |
#### Open LLM Leaderboard evaluation scores
|
|
|
160 |
</td>
|
161 |
<td><strong>Meta-Llama-3.1-405B-Instruct </strong>
|
162 |
</td>
|
163 |
+
<td><strong>Meta-Llama-3.1-405B-Instruct-quantized.w4a16 (this model)</strong>
|
164 |
</td>
|
165 |
<td><strong>Recovery</strong>
|
166 |
</td>
|
|
|
168 |
<tr>
|
169 |
<td>MMLU (5-shot)
|
170 |
</td>
|
171 |
+
<td>87.38
|
172 |
</td>
|
173 |
<td>86.76
|
174 |
</td>
|
175 |
<td>99.3%
|
176 |
</td>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
177 |
</tr>
|
178 |
<tr>
|
179 |
<td>ARC Challenge (0-shot)
|
180 |
</td>
|
181 |
<td>94.97
|
182 |
</td>
|
183 |
+
<td>94.37
|
184 |
</td>
|
185 |
+
<td>99.4%
|
186 |
</td>
|
187 |
</tr>
|
188 |
<tr>
|
|
|
190 |
</td>
|
191 |
<td>96.44
|
192 |
</td>
|
193 |
+
<td>95.45
|
194 |
</td>
|
195 |
+
<td>99.0%
|
196 |
</td>
|
197 |
</tr>
|
198 |
<tr>
|
199 |
<td>Hellaswag (10-shot)
|
200 |
+
</td>
|
201 |
<td>88.33
|
202 |
</td>
|
203 |
+
<td>88.15
|
204 |
</td>
|
205 |
+
<td>99.8%
|
206 |
</td>
|
207 |
</tr>
|
208 |
<tr>
|
|
|
210 |
</td>
|
211 |
<td>87.21
|
212 |
</td>
|
213 |
+
<td>86.11
|
214 |
</td>
|
215 |
+
<td>98.7%
|
216 |
</td>
|
217 |
</tr>
|
218 |
<tr>
|
219 |
+
<td>TruthfulQA (0-shot)
|
220 |
</td>
|
221 |
<td>64.64
|
222 |
</td>
|
223 |
+
<td>64.39
|
224 |
</td>
|
225 |
+
<td>99.6%
|
226 |
</td>
|
227 |
</tr>
|
228 |
<tr>
|
|
|
230 |
</td>
|
231 |
<td><strong>86.75</strong>
|
232 |
</td>
|
233 |
+
<td><strong>86.11</strong>
|
234 |
</td>
|
235 |
+
<td><strong>99.3%</strong>
|
236 |
</td>
|
237 |
</tr>
|
238 |
</table>
|
|
|
245 |
```
|
246 |
lm_eval \
|
247 |
--model vllm \
|
248 |
+
--model_args pretrained="neuralmagic/Meta-Llama-3.1-405B-Instruct-quantized.w8a8",dtype=auto,max_model_len=3850,max_gen_toks=10,tensor_parallel_size=8 \
|
249 |
--tasks mmlu_llama_3.1_instruct \
|
250 |
--fewshot_as_multiturn \
|
251 |
--apply_chat_template \
|
|
|
257 |
```
|
258 |
lm_eval \
|
259 |
--model vllm \
|
260 |
+
--model_args pretrained="neuralmagic/Meta-Llama-3.1-405B-Instruct-quantized.w8a8",dtype=auto,max_model_len=4064,max_gen_toks=1024,tensor_parallel_size=8 \
|
261 |
--tasks mmlu_cot_0shot_llama_3.1_instruct \
|
262 |
--apply_chat_template \
|
263 |
--num_fewshot 0 \
|
|
|
268 |
```
|
269 |
lm_eval \
|
270 |
--model vllm \
|
271 |
+
--model_args pretrained="neuralmagic/Meta-Llama-3.1-405B-Instruct-quantized.w8a8",dtype=auto,max_model_len=3940,max_gen_toks=100,tensor_parallel_size=8 \
|
272 |
--tasks arc_challenge_llama_3.1_instruct \
|
273 |
--apply_chat_template \
|
274 |
--num_fewshot 0 \
|
|
|
279 |
```
|
280 |
lm_eval \
|
281 |
--model vllm \
|
282 |
+
--model_args pretrained="neuralmagic/Meta-Llama-3.1-405B-Instruct-quantized.w8a8",dtype=auto,max_model_len=4096,max_gen_toks=1024,tensor_parallel_size=8 \
|
283 |
--tasks gsm8k_cot_llama_3.1_instruct \
|
284 |
--fewshot_as_multiturn \
|
285 |
--apply_chat_template \
|