--- tags: - spacy - token-classification language: - en model-index: - name: en_Task1_pipeline results: - task: name: NER type: token-classification metrics: - name: NER Precision type: precision value: 0.8972607563 - name: NER Recall type: recall value: 0.9031114891 - name: NER F Score type: f_score value: 0.900176616 --- | Feature | Description | | --- | --- | | **Name** | `en_Task1_pipeline` | | **Version** | `0.0.0` | | **spaCy** | `>=3.6.1,<3.7.0` | | **Default Pipeline** | `tok2vec`, `ner` | | **Components** | `tok2vec`, `ner` | | **Vectors** | 514157 keys, 514157 unique vectors (300 dimensions) | | **Sources** | n/a | | **License** | n/a | | **Author** | [n/a]() | ### Label Scheme
View label scheme (4 labels for 1 components) | Component | Labels | | --- | --- | | **`ner`** | `Allergy`, `Cancer`, `Chronic Disease`, `Treatment` |
### Accuracy | Type | Score | | --- | --- | | `ENTS_F` | 90.02 | | `ENTS_P` | 89.73 | | `ENTS_R` | 90.31 | | `TOK2VEC_LOSS` | 29669.10 | | `NER_LOSS` | 558320.92 |